1
|
Dai M, Chen B, Wang X, Gao C, Yu H. Icariin enhance mild hypothermia-induced neuroprotection via inhibiting the activation of NF-κB in experimental ischemic stroke. Metab Brain Dis 2021; 36:1779-1790. [PMID: 33978900 DOI: 10.1007/s11011-021-00731-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic hypothermia (TH) is a promising neuroprotective agent for treating stroke. However, its clinical application was limited by the impractical duration. Icariin (ICA) were reported to have therapeutic effect on cerebral ischemia. In this research, our aim was to investigate whether the combination of TH and ICA had better neuroprotective effects on ischemic stroke. An ischemia-reperfusion rat model was established and treated with mild hypothermia, ICA or JSH-23 (inhibitor of NF-κB). Thermistor probe, 2'3'5'-triphenyl tetrazolium chloride (TTC), 5/12-score system, and ELISA were used to detect temperature (rectum, cortex, striatum), infarct volume, neurological deficit, and cerebral cell death of these rats. The expressions of tumor necrosis factor (TNF)-α, Interleukin- 6 (IL-6), nuclear factor-kappa B (NF-κB), nuclear factor erythroid2-related factor (Nrf2), peroxisome proliferator activated receptor gamma (PPARα), PPARγ, Janus kinase 2 (JAK2), p-JAK2, signal transducers and activators of transduction-3 (STAT3), and p-STAT3 were detected by Western blot or q-PCR. Mild hypothermia, ICA, and JSH-23 reduced the cerebral infarct volume, neurological deficit, cerebral cell death of rats, downregulated the expressions of TNF-α, IL-6, C-Caspase 3 and Bax, and the activation of PPARs/Nrf2/NF-κB and JAK2/STAT3 pathways, but elevated the expression of Bcl-2. ICA promoted the effect of mild hypothermia on infarct volume, neurological deficit, and cerebral cell death. Moreover, ICA also enhanced the regulatory effect of mild hypothermia on apoptosis/inflammation factors expressions and activation of PPARs/Nrf2/NF-κB and JAK2/STAT3 pathways. ICA could promote mild hypothermia-induced neuroprotection by inhibiting the activation of NF-κB through the PPARs/Nrf2/NF-κB and JAK2/STAT3/NF-κB pathways in experimental stroke.
Collapse
|
|
4 |
22 |
2
|
Luo Z, Hu Z, Bian Y, Su W, Li X, Li S, Wu J, Shi L, Song Y, Zheng G, Ni W, Xue J. Scutellarin Attenuates the IL-1β-Induced Inflammation in Mouse Chondrocytes and Prevents Osteoarthritic Progression. Front Pharmacol 2020; 11:107. [PMID: 32161544 PMCID: PMC7054241 DOI: 10.3389/fphar.2020.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease wherein the articular cartilage exhibits inflammation and degradation. Scutellarin (SCU) is a flavonoid glycoside with a range of pharmacological activities, as shown in previous studies demonstrating its anti-inflammatory activity. How SCU impacts the progression of OA, however, has not been explored to date. Herein, we assessed the impact of SCU on murine chondrocytes in an OA model system. In in vitro assays, we measured chondrocyte expression of key OA-associated factors such as matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) via qRT-PCR and Western blotting, the expression of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2) were detected by qRT-PCR. Our results showed that the downregulation of MMP-13, ADAMTS-5, COX-2, and iNOS expression by SCU and the overproduction of IL-6, TNF-α, and PGE2 induced by IL-1β were all inhibited by SCU in a concentration-dependent manner. Moreover, SCU was able to reverse aggrecan and collagen II degradation and nuclear factor-κB (NF-κB) and nuclear factor erythroid-derived 2-like 2 (Nrf2) signaling pathway activation both in vivo and in vitro. We further used a destabilization of the medial meniscus (DMM) murine model of OA to explore the therapeutic benefits of SCU in vivo. Together, our findings suggest SCU to be a potentially valuable therapeutic agent useful for treating OA.
Collapse
|
Journal Article |
5 |
22 |
3
|
Zhang P, Jin Y, Xia W, Wang X, Zhou Z. Phillygenin inhibits inflammation in chondrocytes via the Nrf2/NF-κB axis and ameliorates osteoarthritis in mice. J Orthop Translat 2023; 41:1-11. [PMID: 37197096 PMCID: PMC10184049 DOI: 10.1016/j.jot.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Objective Osteoarthritis (OA), widely seen in the elderly, is featured by cartilage degradation, subchondral bone remolding, and synovium inflammation. Currently, there is no cure for OA development. Phillygenin (PHI), an active ingredient from the Forsythiae Fructus, possesses many biological properties, such as anti-inflammation and anti-oxidative stress in several diseases. However, the potential effects and underlying mechanisms of PHI on OA remain unclear. Methods Western blotting, RT-PCR, ELISA and tissue staining were employed to explore the mechanisms by which PHI exerted a protective effect on IL-1β-induced production of pro-inflammation cytokines and extracellular matrix (ECM) degradation in primary murine chondrocytes and destabilization of the medial meniscus (DMM) mouse models. Results In this study, we found that PHI inhibited the production of pro-inflammation cytokines and ECM degradation induced by IL-1β in primary murine chondrocytes. Mechanically, PHI inhibited the NF-κB pathway via activating nuclear factor (erythrluteolind-derived 2)-like 2 (Nrf2). In vivo experiments also confirmed the chondroprotection of PHI in DMM mouse models. Conclusion PHI alleviated IL-1β-induced inflammation cytokines and ECM degradation via activating Nrf2 and inhibiting NF-κB pathway. The translational potential of this article This study provides a biological rationale for the use of PHI as a potential candidate for OA treatment.
Collapse
|
research-article |
2 |
14 |
4
|
Fu C, Zheng Y, Zhu J, Chen B, Lin W, Lin K, Zhu J, Chen S, Li P, Fu X, Lin Z. Lycopene Exerts Neuroprotective Effects After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the Nuclear Factor Erythroid-2 Related Factor 2/Nuclear Factor-κ-Gene Binding Pathway. Front Pharmacol 2020; 11:585898. [PMID: 33390957 PMCID: PMC7774511 DOI: 10.3389/fphar.2020.585898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a brain injury caused by perinatal asphyxia and is the main cause of neonatal death and chronic neurological diseases. Protection of neuron after hypoxic-ischemic (HI) brain injury is considered as a potential therapeutic target of HI brain injury. To date, there are no effective medicines for neonatal HI brain injury. Lycopene (Lyc), a member of the carotenoids family, has been reported to have anti-oxidative and anti-inflammatory effects. However, its effects and potential mechanisms in HI brain injury have not yet to be systematically evaluated. In this study, we investigated whether Lyc could ameliorate HI brain injury and explored the associated mechanism both in vivo and in vitro experiments. In vivo study, Lyc significantly reduced infarct volume and ameliorated cerebral edema, decreased inflammatory response, promoted the recovery of tissue structure, and improved prognosis following HI brain injury. In vitro study, results showed that Lyc reduced expression of apoptosis mediators in oxygen-glucose deprivation (OGD)-induced primary cortical neurons. Mechanistically, we found that Lyc-induced Nrf2/NF-κB pathway could partially reversed by Brusatol (an Nrf2 inhibitor), indicated that the Nrf2/NF-κB pathway was involved in the therapy of Lyc. In summary, our findings indicate that Lyc can attenuated HI brain injury in vivo and OGD-induced apoptosis of primary cortical neurons in vitro through the Nrf2/NF-κB signaling pathway.
Collapse
|
Journal Article |
5 |
8 |
5
|
Alsharif KF, Albrakati A, Al Omairi NE, Almalki AS, Alsanie W, Abd Elmageed ZY, Alharthi F, Althagafi HA, Alghamdi AAA, Hassan IE, Habotta OA, Lokman MS, Kassab RB, El-Hennamy RE. Neuroprotective efficacy of the bacterial metabolite, prodigiosin, against aluminium chloride-induced neurochemical alternations associated with Alzheimer's disease murine model: Involvement of Nrf2/HO-1/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:266-277. [PMID: 36447373 DOI: 10.1002/tox.23718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.
Collapse
|
|
2 |
4 |
6
|
Rizq AT, Sirwi A, El-Agamy DS, Abdallah HM, Ibrahim SRM, Mohamed GA. Cepabiflas B and C as Novel Anti-Inflammatory and Anti-Apoptotic Agents against Endotoxin-Induced Acute Kidney and Hepatic Injury in Mice: Impact on Bax/Bcl2 and Nrf2/NF-κB Signalling Pathways. BIOLOGY 2023; 12:938. [PMID: 37508369 PMCID: PMC10376508 DOI: 10.3390/biology12070938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Cepabiflas B and C (CBs) are flavonoid dimers separated from Allium cepa. They demonstrated antioxidant and α-glucosidase and protein tyrosine phosphatase 1B inhibition capacities. However, their anti-inflammatory activities and their effects on endotoxemia are unknown. The current study aimed at exploring the protective activities of CBs on lipopolysaccharide (LPS)-induced kidney and liver damage in mice and investigating the possible molecular mechanisms. Mice were orally treated with a low (40 mg/kg) or high (60 mg/kg) dose of CBs for five days prior to a single intraperitoneal injection of LPS (10 mg/kg). Samples of serum and hepatic and kidney tissues were collected 24 h after the LPS challenge. Changes in serum indices of hepatic and renal injury, pathological changes, molecular biological parameters, and proteins/genes related to inflammation and apoptosis of these organs were estimated. LPS injection resulted in deleterious injury to both organs as indicated by elevation of serum ALT, AST, creatinine, and BUN. The deteriorated histopathology of hepatic and renal tissues confirmed the biochemical indices. CBs treated groups showed a reduction in these parameters and improved histopathological injurious effects of LPS. LPS-induced hepatorenal injury was linked to elevated oxidative stress as indicated by high levels of MDA, 4-HNE, as well as repressed antioxidants (TAC, SOD, and GSH) in hepatic and kidney tissues. This was accompanied with suppressed Nrf2/HO-1 activity. Additionally, there was a remarkable inflammatory response in both organs as NF-κB signalling was activated and high levels of downstream cytokines were produced following the LPS challenge. Apoptotic changes were observed as the level and gene expression of Bax and caspase-3 were elevated along with declined level and gene expression of Bcl2. Interestingly, CBs reversed all these molecular and genetic changes and restricted oxidative inflammatory and apoptotic parameters after LPS-injection. Collectedly, our findings suggested the marked anti-inflammatory and anti-apoptotic activity of CBs which encouraged its use as a new candidate for septic patients.
Collapse
|
|
2 |
4 |
7
|
Zhou K, Liu D, Jin Y, Xia W, Zhang P, Zhou Z. Oxymatrine ameliorates osteoarthritis via the Nrf2/NF-κB axis in vitro and in vivo. Chem Biol Interact 2023; 380:110539. [PMID: 37196756 DOI: 10.1016/j.cbi.2023.110539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/25/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE Osteoarthritis (OA) is a common degenerative joint disorder. Currently, the underlying etiology of OA is still far from fully elucidated and there is no cure for OA progression. Previous studies have demonstrated that oxymatrine (OMT) could inhibit inflammation and oxidative stress in several animal models. However, the potential effects of OMT on OA remain largely elusive. The aim of the study is to investigate the anti-inflammatory and chondrocyte protective effect of OMT, and delineate the potential mechanism in vitro and in vivo. METHODS Western blotting, RT-qPCR, ELISA and tissue staining were employed to explore the mechanisms by which OMT exerted a protective effect on IL-1β-induced production of pro-inflammation cytokines and extracellular matrix (ECM) degradation in primary murine chondrocytes and DMM mouse models. RESULTS The results showed that OMT reduced the IL-1β-induced over-production of pro-inflammation cytokines and ECM degradation. Mechanistically, OMT inhibited the NF-κB pathway via activating Nrf2. In vivo studies also demonstrated that OMT ameliorated OA progression. CONCLUSIONS OMT reduced pro-inflammation cytokines, ECM degradation and OA progression via activating Nrf2 and inhibiting NF-κB pathway.
Collapse
|
|
2 |
2 |
8
|
Liu ZH, Xu QY, Wang Y, Gao HX, Min YH, Jiang XW, Yu WH. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1451-1485. [PMID: 39075978 DOI: 10.1142/s0192415x24500575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.
Collapse
|
|
1 |
2 |
9
|
Zhang T, Zhao L, Xu M, Jiang P, Zhang K. Moringin alleviates DSS-induced ulcerative colitis in mice by regulating Nrf2/NF-κB pathway and PI3K/AKT/mTOR pathway. Int Immunopharmacol 2024; 134:112241. [PMID: 38761782 DOI: 10.1016/j.intimp.2024.112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ulcerative colitis (UC) is a main form of inflammatory bowel disease (IBD), which is a chronic and immune-mediated inflammatory disease. Moringin (MOR) is an isothiocyanate isolated from Moringa oleifera Lam., and has been recognized as a promising potent drug for inflammatory diseases and antibacterial infections. The present study investigated the role of moringin in dextran sulfate sodium (DSS)-induced UC mice. Mouse colitis was induced by adding DSS to the drinking water for seven consecutive days. Our experimental results showed that MOR relieves DSS-induced UC in mice by increasing body weight and colonic length, and reducing the disease activity index and histological injury. Mechanistically, MOR improves intestinal barrier function by increasing the expression of tight junction proteins (TJPs) and enhancing the secretion of mucin in DSS-induced mice. MOR inhibits inflammatory response and intestinal damage by regulating Nrf2/NF-κB signaling pathway and modulating the PI3K/AKT/mTOR pathway. Furthermore, in Nrf2 knockout (Nrf2-/-) mice, the protective effects of MOR on DSS-induced UC were abolished. Meanwhile, treatment with MOR reduced inflammation and cell damage via regulating Nrf2/NF-κB pathway in a lipopolysaccharide (LPS)-induced inflammation model of Caco-2 cells. In contrast, ML385, an Nrf2 inhibitor, might eliminate the protection provided by MOR. Notably, treatment with MOR significantly up-regulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), suggesting that MOR may be a potential PPAR-γ activator. In conclusion, MOR exerts protective effect in UC by improving intestinal barrier function, regulating Nrf2/NF-κB and PI3K/AKT/mTOR signaling pathways, and another effect associated with the regulation of PPAR-γ expression.
Collapse
|
|
1 |
|
10
|
Li H, Wang R, Chen Y, Zhao M, Lan S, Zhao C, Li X, Li W. Integrated network pharmacology and pharmacological investigations to discover the active compounds of Toona sinensis pericarps against diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118441. [PMID: 38851471 DOI: 10.1016/j.jep.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toona sinensis (A. Juss.) Roem. Is a deciduous woody plant native to Eastern and Southeastern Asia. Different parts of this plant have a long history of being applied as traditional medicines to treat various diseases. The fruits have been used for antidiabetic, antidiabetic nephropathy (anti-DN), antioxidant, anti-inflammatory, and other activities. AIM OF THE STUDY The purpose of this study was to investigate the effects of EtOAc (PEAE) and n-BuOH extracts (PNBE) from T. sinensis pericarps (TSP) on kidney injury in high-fat and high-glucose diet (HFD)/streptozotocin (STZ)-induced DN mice by network pharmacology and pharmacological investigations, as well as to further discover active compounds that could ameliorate oxidative stress and inflammation, thereby delaying DN progression by regulating the Nrf2/NF-κB pathway in high glucose (HG)-induced glomerular mesangial cells (GMCs). MATERIALS AND METHODS The targets of TSP 1-16 with DN were analyzed by network pharmacology. HFD/STZ-induced DN mouse models were established to evaluate the effects of PEAE and PNBE. Six groups were divided into normal, model, PEAE100, PEAE400, PNBE100, and PNBE400 groups. Fasting blood glucose (FBG) levels, organ indices, plasma MDA, SOD, TNF-α, and IL-6 levels, as well as renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-β1 levels were determined, along with hematoxylin-eosin (H&E) and immunohistochemical (IHC) analysis of kidney sections. Furthermore, GMC activity screening combined with molecular docking was utilized to discover active compounds targeting HO-1, TNF-α, and IL-6. Moreover, western blotting assays were performed to validate the mechanism of Nrf2 and NF-κB in HG-induced GMCs. RESULTS Network pharmacology predicted that the main targets of PEAE and PNBE in the treatment of DN include IL-6, INS, TNF, ALB, GAPDH, IL-1β, TP53, EGFR, and CASP3. Additionally, major pathways include AGE-RAGE and IL-17. In vivo experiments, treatment with PEAE and PNBE effectively reduced FBG levels and organ indices, while plasma MDA, SOD, TNF-α, and IL-6 levels, renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-β1 levels, and renal function were significantly improved. PEAE and PNBE significantly improved glomerular and tubule injury, and inhibited the development of DN by regulating the levels of oxidative stress and inflammation-related factors. In vitro experiments, compound 11 strongly activated HO-1 and inhibited TNF-α and IL-6. The molecular docking results revealed that compound 11 exhibited a high binding affinity towards the targets HO-1, TNF-α, and IL-6 (<-6 kcal/mol). Western blotting results showed compound 11 effectively regulated Nrf2 and NF-κB p65 protein levels, and significantly improved oxidative stress damage and inflammatory responses in HG-induced GMCs. CONCLUSION PEAE, PNBE, and their compounds, especially compound 11, may have the potential to prevent and treat DN, and are promising natural nephroprotective agents.
Collapse
|
|
1 |
|
11
|
Zhou R, Fan Y, Wu H, Zhan S, Shen J, Zhu M. The molecular mechanism of PLD2-mediated regulation of apoptosis and cell edema in pancreatic cells via the Nrf2/NF-κB pathway. Sci Rep 2024; 14:25563. [PMID: 39461986 PMCID: PMC11513971 DOI: 10.1038/s41598-024-76274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to elucidate the molecular mechanisms by which PLD2 controls apoptosis and edema in pancreatic cells via the Nrf2/NF-κB pathway. AR42J rat pancreatic cells were treated with 10 nM mitomycin to create an in vitro pancreatitis model (model group), with a control group receiving phosphate-buffered saline. Cells were transfected with a PLD2 overexpression plasmid using Lipofectamine 3000, forming the PLD2 overexpression group. PLD2 protein expression was assessed by Western blotting, and TNF-α, IL-6, and IL-10 levels were measured by RT-qPCR. Nrf2/NF-κB protein expressions were also analyzed. Apoptosis and necrosis were evaluated using Annexin V-FITC/PI staining and the LDH release test. Cell edema was assessed by cell volume, ion content, and membrane damage. Western blotting was used to analyze pan-apoptosis-related proteins. PLD2 expression was lower in the model group compared to controls (P < 0.05) but higher in the PLD2 overexpression group (P < 0.05). TNF-α, IL-6, and IL-10 levels were elevated in the model group (P < 0.05) and reduced in the PLD2 overexpression group (P < 0.05). Nrf2 expression decreased in the model group but increased with PLD2 overexpression (P < 0.05). NF-κB expression increased in the model group but decreased with PLD2 overexpression (P < 0.05). Apoptosis and necrosis rates were higher in the model group (P < 0.05) but lower in the PLD2 overexpression group (P < 0.05). Cell volume, Na + content, and LDH release increased in the model group (P < 0.05) but decreased with PLD2 overexpression (P < 0.05). RIPK1 expression decreased in the model group (P < 0.05) but increased with PLD2 overexpression (P < 0.05). CASP8, FADD, and ZBP1 levels were higher in the model group (P < 0.05) and reduced with PLD2 overexpression (P < 0.05). PLD2 exerts a protective effect in acute pancreatitis by activating Nrf2 and inhibiting NF-κB, reducing apoptosis, cell swelling, and membrane damage. This highlights potential therapeutic targets for pancreatic inflammation.
Collapse
|
research-article |
1 |
|
12
|
Yan Z, Chen S, Juliet Igbokwe C, Duan Y, Hu K, Cai M, Zhang H. Study on the interventional effect and molecular mechanism of HSP72 in regulating oxidative stress by watermelon seed peptide RDPEER. Food Chem 2025; 478:143748. [PMID: 40058266 DOI: 10.1016/j.foodchem.2025.143748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Molecular docking and dynamics simulation techniques were used to analyze the binding capacity and stability of watermelon seed oligopeptides with heat shock protein 72 (HSP72), as well as the signaling pathway and mechanisms through cellular experiments. Computational simulation results indicated these peptides could form stable complexes with HSP72 through hydrogen bonds and other interactions, with the lowest free energy binding to RDPEER (-60.83 kcal/mol). In addition, by reducing HSP72 expression, RDPEER enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and superoxide dismutase (SOD). Moreover, RDPEER decreased the levels of Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor kappa B subunit p65 (NF-κBp65), tumor necrosis factor-alpha (TNF-α), lipid peroxides (MDA), and reactive oxygen species (ROS), increasing cell survival rate by 20 % compared to control. Therefore, this study demonstrates that watermelon seed peptides regulate the Nrf2/NF-κB signaling axis by targeting HSP72, thereby maintaining cellular homeostasis.
Collapse
|
|
1 |
|
13
|
Fu W, Huang Z, Li W, Xu L, Yang M, Ma Y, Liu H, Qian H, Wang W. Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease. Bioact Mater 2025; 46:118-133. [PMID: 39760067 PMCID: PMC11697280 DOI: 10.1016/j.bioactmat.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS). It can effectively modulate the inflammatory microenvironment including facilitating the efficient reduction of pro-inflammatory cytokine levels, protecting intestinal epithelial cells, promoting mucosal barrier repair and regulating intestinal microbiota. In addition, CuL NCs have been found to enhance cellular antioxidant and anti-inflammatory capacities by regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) oxidative stress pathway and nuclear factor kappa B (NF-κB) signaling pathway, respectively. Notably, CuL NCs demonstrate significant prophylactic and therapeutic efficacy in mouse models with typical IBD, including ulcerative colitis (UC) and Crohn's disease (CD). This study provides a new approach for building multifaceted therapeutic platforms for natural products to treat IBD.
Collapse
|
research-article |
1 |
|