1
|
Semwal RB, Semwal DK, Combrinck S, Viljoen AM. Gingerols and shogaols: Important nutraceutical principles from ginger. PHYTOCHEMISTRY 2015; 117:554-568. [PMID: 26228533 DOI: 10.1016/j.phytochem.2015.07.012] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/17/2015] [Accepted: 07/15/2015] [Indexed: 05/09/2023]
Abstract
Gingerols are the major pungent compounds present in the rhizomes of ginger (Zingiber officinale Roscoe) and are renowned for their contribution to human health and nutrition. Medicinal properties of ginger, including the alleviation of nausea, arthritis and pain, have been associated with the gingerols. Gingerol analogues are thermally labile and easily undergo dehydration reactions to form the corresponding shogaols, which impart the characteristic pungent taste to dried ginger. Both gingerols and shogaols exhibit a host of biological activities, ranging from anticancer, anti-oxidant, antimicrobial, anti-inflammatory and anti-allergic to various central nervous system activities. Shogaols are important biomarkers used for the quality control of many ginger-containing products, due to their diverse biological activities. In this review, a large body of available knowledge on the biosynthesis, chemical synthesis and pharmacological activities, as well as on the structure-activity relationships of various gingerols and shogaols, have been collated, coherently summarised and discussed. The manuscript highlights convincing evidence indicating that these phenolic compounds could serve as important lead molecules for the development of therapeutic agents to treat various life-threatening human diseases, particularly cancer. Inclusion of ginger or ginger extracts in nutraceutical formulations could provide valuable protection against diabetes, cardiac and hepatic disorders.
Collapse
|
Review |
10 |
286 |
2
|
Emerging concepts in the nutraceutical and functional properties of pectin-A Review. Carbohydr Polym 2017; 168:227-239. [PMID: 28457445 DOI: 10.1016/j.carbpol.2017.03.058] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 01/30/2023]
Abstract
Pectin is a structural heteropolysaccharide found ubiquitously in terrestrial plants. It finds diverse food applications such as that of a gelling agent, stabilizer, and fat replacer. In the pharmaceutical arena, pectin exhibits a number of functions, from decreasing blood fat to combating various types of cancers. This review shows the shift of pectin from its conventional roles to its progressive applications. Insights into the advances in the production of pectin, the role it plays as a nutraceutical, possible prebiotic potential and a delivery vehicle for probiotics, and food applications are highlighted. Bioactive and functional properties of pectin are discussed and how the structural built up defines them, is emphasized. As a biopolymer, the applications of pectin in active packaging are also mentioned.
Collapse
|
Review |
8 |
238 |
3
|
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 2015; 35 Suppl:S5-S24. [PMID: 25869442 PMCID: PMC4600419 DOI: 10.1016/j.semcancer.2015.03.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
202 |
4
|
Rashmi HB, Negi PS. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res Int 2020; 136:109298. [PMID: 32846511 DOI: 10.1016/j.foodres.2020.109298] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Abstract
Phenolic acids are the most prominent group of bioactive compounds present in various plant sources. Hydroxybenzoic acids and hydroxycinnamic acids, the aromatic secondary metabolites imparting typical organoleptic characteristics to food are the major phenolic acids, and they are linked to several health benefits. Fruit and beverage crops being the richer sources of phenolic acids have been studied in depth, but phenolic acids from vegetables are largely overlooked. Though lesser in quantity in many vegetables, there is a need to explore the health benefits of the phenolic acids present in them. In this review, the importance of vegetables as a significant source of phenolic acids is emphasized. Vegetables being easily accessible throughout the year and consumed in larger quantities compared to fruits in our daily diet will probably contribute to significant health benefits. Since vegetables are often processed before consumption, the changes in phenolic acids as influenced by processing methods are highlighted. Best processing methods, pre-treatments and storage conditions for higher retention of phenolic acids have been highlighted to minimize their losses. The phenolic acids in vegetables and their health benefits have been cluster mapped, which may facilitate further research for nutraceutical development for specific health concerns. The processing stability of phenolic acids coupled with higher consumption indicates that they may be a potential source of phenolic acids in the diet. It is expected that the popularization of vegetables as a source of phenolic acids in daily diet will help in ameliorating the adverse effect of some of the lifestyle diseases.
Collapse
|
Systematic Review |
5 |
178 |
5
|
Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta SC. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 2019; 76:1947-1966. [PMID: 30879091 PMCID: PMC7775409 DOI: 10.1007/s00018-019-03053-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
Collapse
|
Review |
6 |
172 |
6
|
Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. An overview: biomolecules from microalgae for animal feed and aquaculture. ACTA ACUST UNITED AC 2014; 21:6. [PMID: 25984489 PMCID: PMC4376511 DOI: 10.1186/2241-5793-21-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/31/2013] [Indexed: 01/07/2023]
Abstract
Despite being more popular for biofuel, microalgae have gained a lot of attention as a source of biomolecules and biomass for feed purposes. Algae farming can be established using land as well as sea and strategies can be designed in order to gain the products of specific interest in the optimal way. A general overview of the contributions of Algae to meet the requirements of nutrients in animal/aquaculture feed is presented in this study. In addition to its applications in animal/aquaculture feed, algae can produce a number of biomolecules including astaxanthin, lutein, beta-carotene, chlorophyll, phycobiliprotein, Polyunsaturated Fatty Acids (PUFAs), beta-1,3-glucan, and pharmaceutical and nutraceutical compounds which have been reviewed with respect to their commercial importance and current status. The review is further extended to highlight the adequate utilization of value added products in the feeds for livestock, poultry and aquaculture (with emphasis in shrimp farming).
Collapse
|
Review |
11 |
148 |
7
|
Jacka FN. Nutritional Psychiatry: Where to Next? EBioMedicine 2017; 17:24-29. [PMID: 28242200 PMCID: PMC5360575 DOI: 10.1016/j.ebiom.2017.02.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
The nascent field of 'Nutritional Psychiatry' offers much promise for addressing the large disease burden associated with mental disorders. A consistent evidence base from the observational literature confirms that the quality of individuals' diets is related to their risk for common mental disorders, such as depression. This is the case across countries and age groups. Moreover, new intervention studies implementing dietary changes suggest promise for the prevention and treatment of depression. Concurrently, data point to the utility of selected nutraceuticals as adjunctive treatments for mental disorders and as monotherapies for conditions such as ADHD. Finally, new studies focused on understanding the biological pathways that mediate the observed relationships between diet, nutrition and mental health are pointing to the immune system, oxidative biology, brain plasticity and the microbiome-gut-brain axis as key targets for nutritional interventions. On the other hand, the field is currently limited by a lack of data and methodological issues such as heterogeneity, residual confounding, measurement error, and challenges in measuring and ensuring dietary adherence in intervention studies. Key challenges for the field are to now: replicate, refine and scale up promising clinical and population level dietary strategies; identify a clear set of biological pathways and targets that mediate the identified associations; conduct scientifically rigorous nutraceutical and 'psychobiotic' interventions that also examine predictors of treatment response; conduct observational and experimental studies in psychosis focused on dietary and related risk factors and treatments; and continue to advocate for policy change to improve the food environment at the population level.
Collapse
|
Review |
8 |
144 |
8
|
Sachdeva V, Roy A, Bharadvaja N. Current Prospects of Nutraceuticals: A Review. Curr Pharm Biotechnol 2020; 21:884-896. [PMID: 32000642 DOI: 10.2174/1389201021666200130113441] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are dietary supplements, utilized to ameliorate health, delay senescence, prevent diseases, and support the proper functioning of the human body. Currently, nutraceuticals are gaining substantial attention due to nutrition and therapeutic potentials. Based on their sources, they are categorized as dietary supplements and herbal bioactive compounds. The global market for nutraceutical is huge i.e. approximately USD 117 billion. Herbal nutraceutical helps in maintaining health and promoting optimal health, longevity, and quality of life. Studies have shown promising results of nutraceuticals to treat several diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, etc. In the present review, an overview of various bioactive ingredients that act as nutraceuticals (carbohydrates, lipids, edible flowers, alkaloids, medicinal plants, etc.) and their role in health benefits, has been discussed. Further application of nutraceuticals in the prevention of various diseases has also been discussed.
Collapse
|
Review |
5 |
98 |
9
|
Chaves-Silva S, Santos ALD, Chalfun-Júnior A, Zhao J, Peres LEP, Benedito VA. Understanding the genetic regulation of anthocyanin biosynthesis in plants - Tools for breeding purple varieties of fruits and vegetables. PHYTOCHEMISTRY 2018; 153:11-27. [PMID: 29803860 DOI: 10.1016/j.phytochem.2018.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 05/21/2023]
Abstract
Anthocyanins are naturally occurring flavonoids derived from the phenylpropanoid pathway. There is increasing evidence of the preventative and protective roles of anthocyanins against a broad range of pathologies, including different cancer types and metabolic diseases. However, most of the fresh produce available to consumers typically contains only small amounts of anthocyanins, mostly limited to the epidermis of plant organs. Therefore, transgenic and non-transgenic approaches have been proposed to enhance the levels of this phytonutrient in vegetables, fruits, and cereals. Here, were review the current literature on the anthocyanin biosynthesis pathway in model and crop species, including the structural and regulatory genes involved in the differential pigmentation patterns of plant structures. Furthermore, we explore the genetic regulation of anthocyanin biosynthesis and the reasons why it is strongly repressed in specific cell types, in order to create more efficient breeding strategies to boost the biosynthesis and accumulation of anthocyanins in fresh fruits and vegetables.
Collapse
|
Review |
7 |
95 |
10
|
Skrovanek S, DiGuilio K, Bailey R, Huntington W, Urbas R, Mayilvaganan B, Mercogliano G, Mullin JM. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol 2014; 5:496-513. [PMID: 25400994 PMCID: PMC4231515 DOI: 10.4291/wjgp.v5.i4.496] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.
Collapse
|
Review |
11 |
90 |
11
|
Pirro M, Mannarino MR, Bianconi V, Simental-Mendía LE, Bagaglia F, Mannarino E, Sahebkar A. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2016; 110:76-88. [PMID: 27157250 DOI: 10.1016/j.phrs.2016.04.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
Abstract
Dyslipidemia and hyperglycemia are associated with an increased risk of ischemic cardiovascular disease. Positive effects of a nutraceutical combination comprising red yeast rice, berberine, policosanol, astaxanthin, coenzyme Q10 and folic acid (NComb) on plasma lipid and glucose levels have been reported in some but not all clinical trials. To address this inconsistency, we tried to estimate the size of lipid- and glucose-lowering effects of NComb through a systematic review and meta-analysis of randomized controlled trials. A systematic literature search in PubMed-Medline, SCOPUS and Google Scholar databases was conducted to identify randomized controlled trials investigating the effects of NComb on plasma lipids and glucose levels. Inverse variance-weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid and glucose levels using a random-effects model. Random-effects meta-regression was performed to assess the effect of putative confounders on plasma lipid and glucose levels. Fourteen trials (1670 subjects in the NComb arm and 1489 subjects in the control arm) met the eligibility criteria for lipid analysis and 10 trials (1014 subjects in the NComb arm and 962 subjects in the control arm) for glucose analysis. Overall, WMDs were significant for the impact of NComb supplementation on plasma levels of total cholesterol (-26.15mg/dL, p<0.001), LDL-cholesterol (-23.85mg/dL, p<0.001), HDL-cholesterol (2.53mg/dL, p<0.001), triglycerides (-13.83mg/dL, p<0.001) and glucose (-2.59mg/dL, p=0.010). NComb-induced amelioration of lipid profile was not affected by duration of supplementation nor by baseline lipid levels; conversely, a greater glucose-lowering effect of NComb was found with higher baseline glucose levels and longer durations of supplementation. In conclusion, the present results suggest that NComb supplementation is associated with improvement of lipid and glucose profile. Short-term beneficial effects of NComb supplementation appear to be maintained in the long term.
Collapse
|
Systematic Review |
9 |
84 |
12
|
Armitage EG, Southam AD. Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics 2016; 12:146. [PMID: 27616976 PMCID: PMC4987388 DOI: 10.1007/s11306-016-1093-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics. OBJECTIVES Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case-control, prognostic and longitudinal study designs. METHODS A literature search of the current relevant primary research was performed. RESULTS Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case-control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance. CONCLUSION Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies.
Collapse
|
research-article |
9 |
82 |
13
|
Sonani RR, Rastogi RP, Patel R, Madamwar D. Recent advances in production, purification and applications of phycobiliproteins. World J Biol Chem 2016; 7:100-9. [PMID: 26981199 PMCID: PMC4768114 DOI: 10.4331/wjbc.v7.i1.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/07/2015] [Accepted: 12/16/2015] [Indexed: 02/05/2023] Open
Abstract
An obligatory sunlight requirement for photosynthesis has exposed cyanobacteria to different quantity and quality of light. Cyanobacteria can exhibit efficient photosynthesis over broad region (450 to 650 nm) of solar spectrum with the help of brilliantly coloured pigment proteins called phycobiliproteins (PBPs). Besides light-harvesting, PBPs are found to involve in several life sustaining phenomena including photoprotection in cyanobacteria. The unique spectral features (like strong absorbance and fluorescence), proteineous nature and, some imperative properties like hepato-protective, anti-oxidants, anti-inflammatory and anti-aging activity of PBPs enable their use in food, cosmetics, pharmaceutical and biomedical industries. PBPs have been also noted to show beneficial effect in therapeutics of some disease like Alzheimer and cancer. Such large range of applications increases the demand of PBPs in commodity market. Therefore, the large-scale and coast effective production of PBPs is the real need of time. To fulfil this need, many researchers have been working to find the potential producer of PBPs for the production and purification of PBPs. Results of these efforts have caused the inventions of some novel techniques like mixotrophic and heterotrophic strategies for production and aqueous two phase separation for purification purpose. Overall, the present review summarises the recent findings and identifies gaps in the field of production, purification and applications of this biological and economically important proteins.
Collapse
|
Review |
9 |
81 |
14
|
Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res 2015; 59:1962-72. [PMID: 26147655 DOI: 10.1002/mnfr.201500137] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/12/2015] [Accepted: 06/15/2015] [Indexed: 11/09/2022]
Abstract
SCOPE The "dietary xenomiR hypothesis" proposes that microRNAs (miRNAs) in foodstuffs survive transit through the mammalian gastrointestinal tract and pass into cells intact to affect gene regulation. However, debate continues as to whether dietary intake poses a feasible route for such exogenous gene regulators. Understanding on miRNA levels during pretreatments of human diet is essential to test their bioavailability during digestion. This study makes the novel first use of an in vitro method to eliminate the inherent complexities and variability of in vivo approaches used to test this hypothesis. METHODS AND RESULTS Plant miRNA levels in soybean and rice were measured during storage, processing, cooking, and early digestion using real-time PCR. We have demonstrated for the first time that storage, processing, and cooking does not abolish the plant miRNAs present in the foodstuffs. In addition, utilizing a simulated human digestion system revealed significant plant miRNA bioavailability after early stage digestion for 75 min. Attenuation of plant messenger RNA and synthetic miRNA was observed under these conditions. CONCLUSION Even after an extensive pretreatment, plant-derived miRNA, delivered by typical dietary ingestion, has a robustness that could make them bioavailable for uptake during early digestion. The potential benefit of these regulatory molecules in pharma nutrition could be explored further.
Collapse
|
|
10 |
72 |
15
|
Hoste H, Torres-Acosta JFJ, Quijada J, Chan-Perez I, Dakheel MM, Kommuru DS, Mueller-Harvey I, Terrill TH. Interactions Between Nutrition and Infections With Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants. ADVANCES IN PARASITOLOGY 2016; 93:239-351. [PMID: 27238007 DOI: 10.1016/bs.apar.2016.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interactions between host nutrition and feeding behaviour are central to understanding the pathophysiological consequences of infections of the digestive tract with parasitic nematodes. The manipulation of host nutrition provides useful options to control gastrointestinal nematodes as a component of an integrated strategy. Focussed mainly on the Haemonchus contortus infection model in small ruminants, this chapter (1) illustrates the relationship between quantitative (macro- and micro-nutrients) and qualitative (plant secondary metabolites) aspects of host nutrition and nematode infection, and (2) shows how basic studies aimed at addressing some generic questions can help to provide solutions, despite the considerable diversity of epidemiological situations and breeding systems.
Collapse
|
Review |
9 |
66 |
16
|
Berk M, Turner A, Malhi GS, Ng CH, Cotton SM, Dodd S, Samuni Y, Tanious M, McAulay C, Dowling N, Sarris J, Owen L, Waterdrinker A, Smith D, Dean OM. A randomised controlled trial of a mitochondrial therapeutic target for bipolar depression: mitochondrial agents, N-acetylcysteine, and placebo. BMC Med 2019; 17:18. [PMID: 30678686 PMCID: PMC6346513 DOI: 10.1186/s12916-019-1257-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A phasic dysregulation of mitochondrial bioenergetics may operate in bipolar disorder, increased in mania and decreased in depression. We aimed to examine efficacy of two add-on treatments in bipolar depression: N-acetylcysteine (NAC) and NAC with a combination of nutraceutical agents that may increase mitochondrial biogenesis. METHODS A three-arm 16-week, double-blind, randomised, placebo-controlled trial, adjunctive to usual treatment, was conducted. Participants (n = 181) with bipolar disorder and current depressive symptoms were randomised to 2000 mg/day NAC (n = 59), 2000 mg/day NAC with the combination nutraceutical treatment (CT, n = 61), or placebo (n = 61). The primary outcome was change in Montgomery-Åsberg Depression Rating Scale (MADRS) total score from baseline to week 16. Young Mania Rating Scale, Clinical Global Impression (CGI)-Improvement and CGI-Severity scales, Patient Global Impression scale, Social and Occupational Functioning Assessment Scale (SOFAS), Longitudinal Interval Follow-Up Evaluation - Range of Impaired Functioning Tool (LIFE-RIFT), and Quality of Life Enjoyment, and Satisfaction Questionnaire Short Form (Q-LES-Q-SF) were secondary outcomes. RESULTS One hundred forty-eight participants had post-randomisation data and were analysed (NAC = 52, CT = 47, Placebo = 49). No between-group differences were found for the rate of change between baseline and 16 weeks on any of the clinical and functioning variables. Improvements in MADRS, BDRS, SOFAS, and LIFE-RIFT scores from baseline to the week 20 post-discontinuation visit were significantly greater in the CT group compared to those in the placebo. At week 20, the CGI-I was significantly lower in the CT group versus placebo. Gastrointestinal symptoms were significantly greater in the NAC than in the placebo group. CONCLUSIONS These overall negative results, with no significant differences between groups detected at the primary outcome but some positive secondary signals, suggest either delayed benefit of the combination or an improvement of symptoms on withdrawal which warrants further exploration regarding the composition, mechanisms, and application of mitochondrial agents in illnesses characterised by mitochondrial dysfunction. TRIAL REGISTRATION ANZCTR ( ACTRN12612000830897 ).
Collapse
|
Randomized Controlled Trial |
6 |
61 |
17
|
Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I. Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem 2014; 163:178-85. [PMID: 24912714 DOI: 10.1016/j.foodchem.2014.04.088] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Quinoa (Chenopodium quinoa Willd.) contains high levels of biologically active phytoecdysteroids, which have been implicated in plant defense from insects, and have shown a range of beneficial pharmacological effects in mammals. We demonstrated that the most prevalent phytoecdysteroid, 20-hydroxyecdysone (20HE), was secreted (leached) from intact quinoa seeds into water during the initial stages of seed germination. Leaching efficiency was optimized by ethanol concentration (70% ethanol), temperature (80°C), time (4h), and solvent ratio (5 ml/g seed). When compared to extraction of macerated seeds, the leaching procedure released essentially all the 20HE available in the seeds (491 μg/g seed). The optimized quinoa leachate (QL), containing 0.86% 20HE, 1.00% total phytoecdysteroids, 2.59% flavonoid glycosides, 11.9% oil, and 20.4% protein, significantly lowered fasting blood glucose in obese, hyperglycemic mice. Leaching effectively releases and concentrates bioactive phytochemicals from quinoa seeds, providing an efficient means to produce a food-grade mixture that may be useful for anti-diabetic applications.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
61 |
18
|
Armitage EG, Ciborowski M. Applications of Metabolomics in Cancer Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:209-234. [PMID: 28132182 DOI: 10.1007/978-3-319-47656-8_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the start of metabolomics as a field of research, the number of studies related to cancer has grown to such an extent that cancer metabolomics now represents its own discipline. In this chapter, the applications of metabolomics in cancer studies are explored. Different approaches and analytical platforms can be employed for the analysis of samples depending on the goal of the study and the aspects of the cancer metabolome being investigated. Analyses have concerned a range of cancers including lung, colorectal, bladder, breast, gastric, oesophageal and thyroid, amongst others. Developments in these strategies and methodologies that have been applied are discussed, in addition to exemplifying the use of cancer metabolomics in the discovery of biomarkers and in the assessment of therapy (both pharmaceutical and nutraceutical). Finally, the application of cancer metabolomics in personalised medicine is presented.
Collapse
|
Review |
8 |
59 |
19
|
Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, Ferreira CR, van Karnebeek CDM. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis 2021; 16:170. [PMID: 33845862 PMCID: PMC8042729 DOI: 10.1186/s13023-021-01727-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disability (collectively 'treatable IDs'). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identification of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. METHODS Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classification of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is available. Data on clinical symptoms, diagnostic testing, treatment strategies, effects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. RESULTS Our review identified 116 treatable IDs (139 genes), of which 44 newly identified, belonging to 17 ICIMD categories. The most frequent therapeutic interventions were nutritional, pharmacological and vitamin and trace element supplementation. Evidence level varied from 1 to 3 (trials, cohort studies, case-control studies) for 19% and 4-5 (case-report, expert opinion) for 81% of treatments. Reported effects included improvement of clinical deterioration in 62%, neurological manifestations in 47% and development in 37%. CONCLUSION The number of treatable IDs identified by our literature review increased by more than one-third in eight years. Although there has been much attention to gene-based and enzyme replacement therapy, the majority of effective treatments are nutritional, which are relatively affordable, widely available and (often) surprisingly effective. We present a diagnostic algorithm (adjustable to local resources and expertise) and the updated App to facilitate a swift and accurate workup, prioritizing treatable IDs. Our digital tool is freely available as Native and Web App (www.treatable-id.org) with several novel features. Our Treatable ID endeavor contributes to the Treatabolome and International Rare Diseases Research Consortium goals, enabling clinicians to deliver rapid evidence-based interventions to our rare disease patients.
Collapse
|
Review |
4 |
58 |
20
|
Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020; 44:24-32. [PMID: 32095094 PMCID: PMC7033355 DOI: 10.1016/j.jgr.2019.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases prevail among modern societies and underdeveloped countries, and a high mortality rate has also been reported by the World Health Organization affecting millions of people worldwide. Hyperactive platelets are the major culprits in thrombotic disorders. A group of drugs is available to deal with such platelet-related disorders; however, sometimes, side effects and complications caused by these drugs outweigh their benefits. Ginseng and its nutraceuticals have been reported to reduce the impact of thrombotic conditions and improve cardiovascular health by antiplatelet mechanisms. This review provides (1) a comprehensive insight into the available pharmacological options from ginseng and ginsenosides (saponin and nonsaponin fractions) for platelet-originated cardiovascular disorders; (2) a discussion on the impact of specific functional groups on the modulation of platelet functions and how structural modifications among ginsenosides affect platelet activation, which may further provide a basis for drug design, optimization, and the development of ginsenoside scaffolds as pharmacological antiplatelet agents; (3) an insight into the synergistic effects of ginsenosides on platelet functions; and (4) a perspective on future research and the development of ginseng and ginsenosides as super nutraceuticals.
Collapse
Key Words
- AA, arachidonic acid
- AC, adenylyl cyclase
- ADP, adenosine diphosphate
- ASA, acetylsalicylic acid
- ATP, adenosine triphosphate
- Akt, protein kinase B
- Antiplatelet
- COX, cyclooxygenase
- CRP, collagen-related peptide
- CSF, crude saponin fraction
- ERK, extracellular signal–regulated kinase
- GPVI, glycoprotein VI
- Ginsenosides
- IC50, half maximal (50%) inhibitory concentration
- IP3, inositol-1,4,5-triphosphate
- JNK, c-Jun N-terminal kinase
- MAPK, mitogen-activated protein kinase
- MKK4, mitogen-activated protein kinase kinase 4
- MLC, myosin light chain
- Nutraceutical
- PAF, platelet-activating factor
- PAR, proteinase-activated receptor
- PI3K, phosphatidylinositol 3-kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- PLA2, phospholipase A2
- PLCγ2, phospholipase C gamma-2
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- PT, prothrombin time
- ROCK, Rho-associated protein kinase
- SFK, Src family kinase
- Structural modification
- Syk, spleen tyrosine kinase
- Synergism
- TS, total saponin
- TxA2, thromboxane A2
- TxAS, thromboxane-A synthase
- TxB2, thromboxane B2
- TxR, thromboxane receptor
- VASP, vasodilator-stimulated phosphoprotein
- [Ca2+]i, intracellular calcium ion
- aPTT, activated partial thromboplastin time
- cAMP, cyclic adenosine monophosphate
- cPLA2α, cytosolic phospholipase A2α
- vWF, von Willebrand factor
Collapse
|
Review |
5 |
51 |
21
|
Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. Int J Pharm 2019; 570:118652. [PMID: 31472219 DOI: 10.1016/j.ijpharm.2019.118652] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/30/2023]
Abstract
The aim of this work was to optimize the preparative process of quercetin loaded casein nanoparticles as well as to evaluate the pharmacokinetics of this flavonoid when administered orally in Wistar rats. Nanoparticles were obtained by coacervation after the incubation of casein, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and quercetin in an aqueous environment. Then, nanoparticles were purified and dried. The resulting nanoparticles displayed a size of 200 nm with a negative zeta potential and a payload of about 32 μg/mg. Release studies showed a zero-order kinetic, suggesting a mechanism based on erosion of the nanoparticle matrix. For the pharmacokinetic study, quercetin was orally administered to rats as a single dose of 25 mg/kg. Animals treated with quercetin-loaded casein nanoparticles displayed higher plasma levels than those observed in animals receiving the solution of the flavonoid (control). Thus, the relative oral bioavailability of quercetin when administered as casein nanoparticles (close to 37%) was found to be about 9-times higher than the oral solution of the flavonoid in a mixture of PEG 400 and water. In summary, the combination of casein and 2-hydroxypropyl-β-cyclodextrin produces nanoparticles that may be a good option to load quercetin for both nutraceutical and pharmaceutical purposes.
Collapse
|
Journal Article |
6 |
51 |
22
|
Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K. Enhanced memory in Wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress. PHARMACEUTICAL BIOLOGY 2017; 55:825-832. [PMID: 28118770 PMCID: PMC6130622 DOI: 10.1080/13880209.2017.1280688] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. OBJECTIVE Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. MATERIALS AND METHODS Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. RESULTS VCO-fed Wistar rats exhibited significant (p < 0.05) improvement of cognitive functions [reduced escape latency (≥ 1.8 s), reduced escape distance (≥ 0.3 m) and increased total time spent on platform (≥ 1 s)]. The findings were accompanied by elevation of ACh (15%), SOD (8%), CAT (≥ 54%), GSH (≥ 20%) and GPx (≥ 12%) and reduction of AChE (≥17%), MDA (> 33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. DISCUSSION AND CONCLUSION VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.
Collapse
|
research-article |
8 |
49 |
23
|
Sulfated polysaccharides and its commercial applications in food industries-A review. Journal of Food Science and Technology 2020; 58:2453-2466. [PMID: 34194082 DOI: 10.1007/s13197-020-04837-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Polysaccharides a large chain of simple sugars covalently linked by glycosidic bonds which are obtained from living organisms and microbes commercially used in food and pharmaceutical industries. Marine macroalgae or seaweed is an unexploited natural source of polysaccharides, which contains many variant phytonutrients whose cells are enriched with sulfated polysaccharides which have been progressively read these days for their potential value in food and pharmaceutical applications. This review aims the exploration of these polysaccharides in food applications, with a focus on its types and biological properties in the view of food application.
Collapse
|
Review |
5 |
49 |
24
|
Rossi M, Mirbagheri SEYEDS, Keshavarzian A, Bishehsari F. Nutraceuticals in colorectal cancer: A mechanistic approach. Eur J Pharmacol 2018; 833:396-402. [PMID: 29935172 PMCID: PMC6063737 DOI: 10.1016/j.ejphar.2018.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers in the world. Even though screening, surgery and oncology have greatly advanced, CRC is still one of the leading causes of cancer deaths, with 700,000 annual mortalities in both men and women. Environmental and lifestyle factors brought up by industrialization, such as an altered diet, lack of physical activity, increase in alcohol consumption, and circadian disruption, have greatly affected the burden of CRC. These factors increase the CRC risk, at least partly, by pathologically altering the colonic environment, including composition of the gut microbiota, referred to as dysbiosis. Colonic dysbiosis can promote pro-carcinogenic immune signaling cascades, leading to pro-tumorigenic inflammation, carcinogen production, and altered cellular responses in susceptible host resulting to development and/or progression of CRC. Nutraceuticals such as prebiotic molecules and probiotic bacterial species can help maintain intestinal microbial homeostasis and thus mitigate this pathological processes. Therefore, prebiotics and probiotics can hinder the effects of dysbiosis by encouraging anti-carcinogenic, anti-inflammatory immunity, the maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and carcinogen inactivation. In addition to its implications in preventing CRC, because of the mechanisms affected, nutraceuticals are being discovered as potential adjuncts to immune checkpoint inhibitors in the treatment of CRC. In this review, we provide an overview of the potential implications of prebiotics and probiotics in the prevention and treatment of CRC.
Collapse
|
Review |
7 |
46 |
25
|
Triglycerides of medium-chain fatty acids: a concise review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022:1-10. [PMID: 35761969 PMCID: PMC9217113 DOI: 10.1007/s13197-022-05499-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 10/25/2022]
Abstract
Medium-chain triglycerides contain medium-chain fatty acid esterified to the glycerol backbone. These MCFA have a shorter chain length and are quickly metabolized in the body serving as an immediate energy source. They are known to have good physiological as well as functional characteristics which help in treating various health disorders. Naturally, they are found in coconut oil, milk fat, and palm kernel oil, and they are synthetically produced by esterification and interesterification reactions. Due to their numerous health benefits, MCT is used as a functional or nutraceutical oil in various food and pharmaceutical formulations. To increase their nutraceutical benefits and food applications MCFA can be used along with polyunsaturated fatty acids in the synthesis of structured lipids. This review aims to provide information about triglycerides of MCFA, structure, metabolism, properties, synthetic routes, intensified synthesis approaches, health benefits, application, and safety of use of MCT in the diet.
Collapse
|
Review |
3 |
45 |