1
|
Wu W, Niu X, Yan Z, Li S, Comer-Warner SA, Tian H, Li SL, Zou J, Yu G, Liu CQ. Agricultural ditches are hotspots of greenhouse gas emissions controlled by nutrient input. WATER RESEARCH 2023; 242:120271. [PMID: 37399689 DOI: 10.1016/j.watres.2023.120271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular water course, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which included four different types of ditches in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 μmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 μmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to ditches adjacent to farmlands, which potentially received more nutrients. Nevertheless, the ditches directly connected to farmlands showed lower GHG concentrations and fluxes compared to the ditches adjacent to farmlands, possibly due to seasonal dryness and occasional drainage. All the ditches covered approximately 3.3% of the 312 km2 farmland area in the study district, and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented water course.
Collapse
|
|
2 |
12 |
2
|
Levi L, Cvetkovic V, Destouni G. Data-driven analysis of nutrient inputs and transfers through nested catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:482-494. [PMID: 28820979 DOI: 10.1016/j.scitotenv.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
A data-driven screening methodology is developed for estimating nutrient input and retention-delivery in catchments with measured water discharges and nutrient concentrations along the river network. The methodology is applied to the Sava River Catchment (SRC), a major transboundary catchment in southeast Europe, with seven monitoring stations along the main river, defining seven nested catchments and seven incremental subcatchments that are analysed and compared in this study. For the relatively large nested catchments (>40,000km2), characteristic regional values emerge for nutrient input per unit area of around 30T/yr/km2 for dissolved inorganic nitrogen (DIN) and 2T/yr/km2 for total phosphorus (TP). For the smaller nested catchments and incremental subcatchments, corresponding values fluctuate and indicate hotspot areas with total nutrient inputs of 158T/yr/km2 for DIN and 13T/yr/km2 for TP. The delivered fraction of total nutrient input mass (termed delivery factor) and associated nutrient loads per area are scale-dependent, exhibiting power-law decay with increasing catchment area, with exponents of around 0.2-0.3 for DIN and 0.3-0.5 for TP. For the largest of the nested catchments in the SRC, the delivery factor is around 0.08 for DIN and 0.03 for TP. Overall, the nutrient data for nested catchments within the SRC show consistency with previously reported data for multiple nested catchments within the Baltic Sea Drainage Basin, identifying close nutrient relationships to driving hydro-climatic conditions (runoff for nutrient loads) and socio-economic conditions (population density and farmland share for nutrient concentrations).
Collapse
|
|
7 |
2 |
3
|
Huang Y, Fu M, Chen G, Zhang J, Xu P, Pan L, Zhang X, Chen X. Reducing the water residence time is inadequate to limit the algal proliferation in eutrophic lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117177. [PMID: 36603259 DOI: 10.1016/j.jenvman.2022.117177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The eutrophication problem now threatens many lakes and reservoirs. To avoid the occurrence of algal blooms, some cities try to increase the flow rate or directly choose lakes or reservoirs with a short water residence time (WRT) as drinking water sources. However, up to now, whether such a strategy can achieve its goal is still unclear. In this study, a newly restored lake with a WRT of approximately 3 days was chosen to investigate algal growth potential as well as its responses to external nitrogen (N) and phosphorus (P) inputs. The results suggested that although the water quality of the lake could generally meet the environmental quality standards for surface water, dissolved inorganic nitrogen reached a high level with an average value of 1.58 mg/L. Meanwhile, a considerable increase in Chl-a concentration was observed across the flow direction. Especially, in July, Chl-a concentration at the site near the outlet was 8.1 times higher than that at the inlet, and cyanobacteria became the dominant species accounting for 83% of the total cell density. Nutrient enrichment experiments showed that algae could grow rapidly within 3 days with average specific growth rates (μ) of 0.36-0.42 d-1. The addition of N and P furtherly promoted the algal growth, and μ values of the treatments with P addition were the highest at 0.67-0.83 d-1. These results indicated that even if the WRT was reduced to 3 days, the risk of the occurrence of algal blooms still exists, and this undesirable trend would be enhanced by the short-term external nutrient input. Our findings indicated that the hydrodynamic control measures may not be entirely successful in protecting the drinking water source from algal blooms, especially when its influent has already been under eutrophication.
Collapse
|
|
2 |
1 |
4
|
Malherbe H, Le Maitre D, Le Roux J, Pauleit S, Lorz C. A Simplified Method to Assess the Impact of Sediment and Nutrient Inputs on River Water Quality in Two Regions of the Southern Coast of South Africa. ENVIRONMENTAL MANAGEMENT 2019; 63:658-672. [PMID: 30778651 DOI: 10.1007/s00267-019-01147-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Many rivers in the southern coastal region of the Western Cape Province, South Africa, are known to be in a poor state. Since the 1990s, the river water quality of this coastal region has been affected by increasing populations and by intensifying land use activities. Simplified risk assessment approaches are critical to identify in a timely manner areas where land use activities may impact water quality, particularly for regions with limited data. For this study, a simple assessment approach to estimate the impacts of land use activities on river water quality was improved by incorporating landscape potentials that take into account environmental factors. The methods were applied to two regions experiencing intensive land use along the southern coast. The findings indicate that the incorporation of the landscape potentials, (i) the landscape sediment generation potential and (ii) the diffuse nitrate potential, to estimate the impacts of sediment and nutrient inputs on river water quality need to be considered. Agricultural activities and informal settlements contribute to the increasing sediment and nutrient inputs of the river reaches. Areas with high proportions of river reaches at increasing pollution risk need to be managed on a large scale to ensure that all the potentially affected sub-catchments are included.
Collapse
|
|
6 |
1 |
5
|
Chen Z, Yu L, Hu J. Disentangling the contributions of anthropogenic nutrient input and physical forcing to long-term deoxygenation off the Pearl River Estuary, China. WATER RESEARCH 2024; 265:122258. [PMID: 39173363 DOI: 10.1016/j.watres.2024.122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Deoxygenation in estuarine and coastal waters worldwide has been largely attributed to the increasing anthropogenic nutrient input, whereas the contribution by long-term (decadal) changes in physical forcing is less investigated. This study aims to disentangle the impacts of three-decade changes in summer river nutrient concentration and physical forcing on the deoxygenation off a large eutrophic estuary, the Pearl River Estuary (PRE) in China. Using a coupled physical-biogeochemical model, we reproduce the observed summer oxygen conditions under the historical (the 1990s) and present (the 2020s) status of river nutrient concentration, freshwater discharge, and wind forcing. We show that the bottom hypoxic (dissolved oxygen < 2 mg/L) area off the PRE in the 2020s has increased by 73 % relative to the 1990s. The expansion is a result of the increased bottom water oxygen consumption outweighing the enhanced vertical oxygen supply, with the former driven by the sharp increase in inorganic nitrogen and phosphorus concentrations (160 %) and the latter caused by the decadal decline in both freshwater discharge (38 %) and wind speed (12.5 %) in summer. Model experiments suggest that if the observed changes in physical forcing had not occurred, the dramatic increase in anthropogenic nutrient concentrations from the 1990s to 2020s could have led to a much greater expansion of hypoxic area (249 %). On the contrary, the decadal decrease in summer freshwater discharge alone (while keeping the nutrient loading the same as in the 1990s) almost eliminates hypoxia off the PRE by weakening water column stratification and limiting the offshore spread of nutrients and organic matter, whereas the declined wind speed increases the hypoxic area by 247 % mainly through enhancing water column stability. Our results reveal that long-term changes in physical forcing are confounding the effects of anthropogenic nutrient input on deoxygenation, underlining the need to consider regional forcing changes in nutrient management to meet water quality goals.
Collapse
|
|
1 |
|
6
|
Botter-Carvalho ML, Carvalho PVVC, Valença APMC, Santos PJP. Estuarine macrofauna responses to continuous in situ nutrient addition on a tropical mudflat. MARINE POLLUTION BULLETIN 2014; 83:214-223. [PMID: 24835372 DOI: 10.1016/j.marpolbul.2014.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 03/20/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
A field experiment to assess the effects of continuous nutrient addition on the macrobenthic community was carried out on an estuarine mudflat on the northeast coast of Brazil. The experiment began on 5 October 2005 and ended on 8 February 2006. Macrofauna was compared at approximately four-week intervals in triplicate plots with three levels (Control - C, Low Dose - LD and High Dose - HD) of weekly fertilizer additions for 17 weeks. Inorganic fertilizer (N-P-K) was applied on nine randomly defined quadrangular plots (4m(2) each). All measurements were calculated from species abundances. Multivariate analyses as well as the univariate indices (richness, abundance and Shannon-Wiener index) showed statistically significant differences between the enriched and control areas during the period of the experiment. The expected gradual response based on the succession model of Pearson and Rosenberg was not observed. The nutrient doses used were high enough to cause severe decreases in abundance, richness and evenness, and an increase in dominance.
Collapse
|
|
11 |
|
7
|
Cui P, Cui L, Zheng Y, Su F. Land use and urbanization indirectly control riverine CH 4 and CO 2 emissions by altering nutrient input. WATER RESEARCH 2024; 265:122266. [PMID: 39159507 DOI: 10.1016/j.watres.2024.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Urban rivers are recognized as significant sources of methane (CH4) and carbon dioxide (CO2) emissions. Despite this, the influence of land use and urbanization on carbon emissions across rural-urban rivers at the watershed scale has been insufficiently explored. This study utilized in-situ surveys of the Liao River in northern China to investigate the spatial and temporal variations of CH4 and CO2 emissions and their relationship with urbanization and its potential controlling factors. The findings revealed that CH4 emissions peaked in fall, whereas CO2 emissions were highest in summer. The average fluxes of CH4 and CO2 at the water-gas interface were 1387.22 ± 2474.98 µmol·m-2·d-1 and 52.78 ± 54.44 mmol·m-2·d-1, respectively. Water quality parameters accounted for 80.49 % of the total variation in CH4 and CO2 concentrations and fluxes. Structural equation modeling indicated that TN, TP, DTC, and conductivity had direct effects on riverine CH4 and CO2 emissions, with standardized direct effects of 0.50 and 0.49, respectively. Nutrient input emerged as the primary driver, increasing CH4 and CO2 concentrations and fluxes, particularly in urban-adjacent river sections likely receiving higher nutrient loads. This study underscores that land use and urbanization indirectly influence riverine CH4 and CO2 emissions by modifying nutrient inputs. Effective land use management and nutrient input control are recommended strategies to mitigate riverine CH4 and CO2 emissions.
Collapse
|
|
1 |
|
8
|
Grillo AC, Inagaki KY, Costa PG, Salvi KP, Lacerda CHF, Mies M, Bianchini A, Longo GO. Differential effects of iron enrichment on corals competing with macroalgae and zoantharians. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125944. [PMID: 40023239 DOI: 10.1016/j.envpol.2025.125944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Marine anthropogenic eutrophication from nutrient and metal inputs has been linked to shifts in reef communities, benefitting fast-growing organisms that can outcompete corals. In 2015, the collapse of a mining dam in Brazil containing iron (Fe) waste reached the Southwestern Atlantic (SWA) Ocean and adjacent environments, but its effects on competitive interactions of corals are still unknown. We assessed the impacts of seawater enrichment with dissolved Fe on benthic competition with three reef-building corals (Siderastrea sp., Millepora alcicornis, Mussismilia harttii) against a common macroalga (Lobophora variegata) and a zoantharian (Palythoa caribaeorum) in a mesocosm experiment. Organisms physically interacted while submitted to four Fe concentrations (0, 100, 300, and 900 μg L-1) for 26 days. We measured photosynthetic efficiencies of all organisms and recorded tissue discoloration and necrosis on corals. The photosynthetic efficiency of all corals reduced along time, regardless of Fe. When contacting macroalgae, Siderastrea sp. was least affected while Mi. alcicornis and Mu. harttii were damaged within the first days and suffered high discoloration. Mu. harttii underwent necrosis and dead areas were significantly larger at the highest Fe concentration. Contacts with the zoantharian caused discoloration in all corals and necrosis in Mu. harttii, without a clear effect of Fe. The concentration of Fe differentially impacted the studied species interactions, but did not cause negative effects alone. Our study shows the vulnerability of SWA corals considering future increases in the abundance of benthic competitors and the consequences for corals following mining disasters, helping to predict the impacts of iron enrichment on reefs.
Collapse
|
|
1 |
|
9
|
Ma W, Feng J, Zhang J, Wang H, Guo Y, Lyu Y, Wang C, Yang Z, Yan M, Ru J, Qiu X, Wan S. Different responses of phytoplankton taxa to water N and P inputs in a freshwater wetland: A mesocosm study. MARINE POLLUTION BULLETIN 2025; 216:117895. [PMID: 40203771 DOI: 10.1016/j.marpolbul.2025.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The intensification of human activities has led to a large amount of nitrogen (N) and phosphorus (P) inputs into water, resulting in an increase in nutrient load and an imbalance of N and P stoichiometric ratio in wetlands. However, whether and how water eutrophication influences phytoplankton diversity, community composition, and biomass remain largely unclear. As part of a two-year (2022-2023) field experiment, this study was conducted to examine the effects of N and P inputs on phytoplankton community in a freshwater wetland in the North China Plain. The results showed that N and P inputs did not change the Shannon-Wiener or Evenness indices of phytoplankton community, but increased phytoplankton biomass by 30 % and 62 %, respectively. In addition, N input enhanced the biomass of non-dominant taxa (e.g., Cryptomonas, Chrysophyta, Dinoflagellates, and Euglena) by two-fold, likely due to the inhibited growth of submerged macrophytes and thus the increased water temperature. In contrast, P input increased the biomass of dominant taxa (e.g., Cyanobacteria, Bacillariophyta, and Chlorophyta) by 116 %, which was primarily attributed to the elevated water pH and reduced light intensity. Moreover, the enhanced phytoplankton biomass under water eutrophication positively contributed to the water-air interface methane (CH4) emissions in this study, suggesting an important role of phytoplankton in regulating wetland C cycling. Our findings indicate the differentially regulatory mechanisms of N and P inputs on the structure and biomass of phytoplankton community, and can provide more insights for protecting and managing wetland ecosystems under water eutrophication.
Collapse
|
|
1 |
|
10
|
Wang X, Lin J, Peng X, Zhao Y, Yu H, Zhao K, Barberán A, Kuzyakov Y, Dai Z. Microbial rrn copy number is associated with soil C: N ratio and pH under long-term fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176675. [PMID: 39366580 DOI: 10.1016/j.scitotenv.2024.176675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Soil microbial life-history strategies, as indicated by rRNA operon (rrn) copy numbers, strongly influence agro-ecosystem functioning. Long-term N fertilization causes strong and lasting changes in soil properties, yet its impact on microbial strategies remains largely unexplored. Using long-term field experiments across three agro-ecosystems, we consistently found that N fertilization strongly decreased soil C: N ratio and pH, further increasing the community-level rrn copy number, including both average rrn copy number and total 16S rRNA copy number. Soil C: N stoichiometry balanced by N supplement favored the growth of N-dependent copiotrophic species containing high rrn copy numbers (an average of 2.5) and increased their network connections, predominantly contributing to community-level rrn copy number increase. Decreased soil pH caused by N fertilization also favored the growth of some species whose abundances negatively correlated with pH, partially contributing to the community-level rrn copy number increase. By examining the genomes of two dominant species, we found that microorganisms with a higher rrn copy number (6), e.g., Streptomyces scabiei, possessed more genes related to C and N transport and metabolism. In contrast, the Mycobacterium simiae with a lower rrn copy number (1) has more genes associated with secondary metabolite biosynthesis and lipid transport and metabolism. Our finding challenges the concept of microbial life-strategy regulation solely by nutrient availability, highlighting the important contributions of soil stoichiometric balance and pH to microbial strategies in agro-ecosystems under long-term N inputs.
Collapse
|
|
1 |
|
11
|
Li J, Liang E, Deng C, Li B, Cai H, Ma R, Xu Q, Liu J, Wang T. Labile dissolved organic matter (DOM) and nitrogen inputs modified greenhouse gas dynamics: A source-to-estuary study of the Yangtze River. WATER RESEARCH 2024; 253:121318. [PMID: 38387270 DOI: 10.1016/j.watres.2024.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Although rivers are increasingly recognized as essential sources of greenhouse gases (GHG) to the atmosphere, few systematic efforts have been made to reveal the drivers of spatiotemporal variations of dissolved GHG (dGHG) in large rivers under increasing anthropogenic stress and intensified hydrological cycling. Here, through a source-to-estuary survey of the Yangtze River in March (spring) and October (autumn) of 2018, we revealed that labile dissolved organic matter (DOM) and nitrogen inputs remarkably modified the spatiotemporal distribution of dGHG. The average partial pressure of CO2 (pCO2), CH4 and N2O concentrations of all sampling sites in the Yangtze River were 1015 ± 225 μatm, and 87.5± 36.5 nmol L-1, and 20.3 ± 6.6 nmol L-1, respectively, significantly lower than the global average. In terms of longitudinal and seasonal variations, higher GHG concentrations were observed in the middle-lower reach in spring. The dominant drivers of spatiotemporal variations in dGHG were labile, protein-like DOM components and nitrogen level. Compared with the historical data of dGHG from published literature, we found a significant increase in N2O concentrations in the Yangtze River during 2004-2018, and the increasing trend was consistent with the rising riverine nitrogen concentrations. Our study emphasized the critical roles of labile DOM and nitrogen inputs in driving the spatial hotspots, seasonal variations and annual trends of dGHG. These findings can contribute to constraining the global GHG budget estimations and controls of GHG emission in large rivers in response to global change.
Collapse
|
|
1 |
|
12
|
Lv P, Sun S, Li Y, Zhao S, Zhang J, Hu Y, Yue P, Zuo X. Growing-season drought and nitrogen addition interactively impair grassland ecosystem stability by reducing species diversity, asynchrony, and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169122. [PMID: 38065502 DOI: 10.1016/j.scitotenv.2023.169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Aboveground net primary productivity controls the amount of energy available to sustain all living organisms, and its sustainable provision relies on the stability of grassland ecosystems. Human activities leading to global changes, such as increased nitrogen (N) deposition and the more frequent occurrence of extreme precipitation events, with N addition increasing the sensitivity of ecosystem production stability to changes in the precipitation regime. However, whether N addition, in combination with seasonal precipitation increases or severe drought, affects ecosystem stability remains unclear. In this study, we conducted a six-year environmental change monitoring experiment in a semiarid grassland in northern China to test the effects of N addition, seasonal drought, and precipitation increases on the temporal stability of ecosystem productivity. Our study revealed that an interaction between drought and N addition reduced species diversity, species asynchrony, species stability, and thus ecosystem stability. These environmental change drivers (except for precipitation increase) induced a positive relationship between species asynchrony and diversity, whereas N addition interactively with drought and precipitation increase led to a negative relationship between diversity and species stability. Only N addition interactively with drought induced a positive species diversity-ecosystem stability relationship because lower species stability was overcome by increased species asynchrony. Our study is great importance to illustrate that production temporal stability tends to be inhibited with drought, though interactively with nutrient N addition. These findings highlight the primary role of asynchronous dynamics among species in modulating the effects of environmental change on diversity-stability relationships.
Collapse
|
|
1 |
|