1
|
Pantelaki I, Voutsa D. Organophosphate flame retardants ( OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:247-263. [PMID: 30173033 DOI: 10.1016/j.scitotenv.2018.08.286] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 05/06/2023]
Abstract
Nowadays, there is an increasing concern for organophosphate flame retardants (OPFRs) due to high production and use following the phase out and stringent regulation in the use of brominated flame retardants. OPFRs represent a group of compounds with a wide range in their polarity, solubility and persistence. OPFRs are widely used as flame retardants in various consumer products such as textiles, electronics, industrial materials and furniture to prevent the risk of fire. They are also utilized as plasticizers, antifoaming or anti-wear agents in lacquers, hydraulic fluids and floor polishing agents. The present review outlines the current state of knowledge regardimg the analytical methodology applied for their determination in wastewater and aquatic environment as well as their occurrence in water, wastewater, sediments and sludge. Knowledge gaps and future perspectives have been identified, which include the elucidation of sources, pathways and fate of OPFRs in aquatic environment and possible risks.
Collapse
|
Review |
6 |
203 |
2
|
Stapleton HM, Misenheimer J, Hoffman K, Webster TF. Flame retardant associations between children's handwipes and house dust. CHEMOSPHERE 2014; 116:54-60. [PMID: 24485814 PMCID: PMC4116470 DOI: 10.1016/j.chemosphere.2013.12.100] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 05/20/2023]
Abstract
Polybrominated diphenyl ether (PBDE), flame retardants (FRs) have been ubiquitously detected at high concentrations in indoor environments; however, with their recent phase-out, more attention is being focused on measurements of exposure to alternative FRs such as organophosphate FRs (OPFRs). In our previous research, we found that PBDE residues measured on children's handwipes were a strong predictor of serum PBDE levels. Here we build upon this research to examine longitudinal changes in PBDEs in indoor dust and children's handwipes, and explore the associations between handwipes and dust for alternative FRs. Children from our previous study were re-contacted after approximately two years and new samples of indoor dust and handwipes were collected. PBDE dust-levels were significantly correlated between two different sampling rounds separated by two years; however, PBDE levels in handwipes were not correlated, perhaps suggesting that the sources of PBDEs remained relatively constant in the home, but that behavioral differences in children are changing with age and influencing handwipe levels. OPFRs [i.e. tris(1,3-dichloroisopropyl) phosphate (TDCPP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP)], 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB, also known as TBB), di(2-ethylhexyl) tetrabromophthalate (BEH-TEBP, also known as TBPH), and 1,2,5,6,9,10-hexabromocyclododecane (HBCD) were also ubiquitously detected in house dust samples and geometric mean levels were similar to PBDE levels, or higher in the case of the OPFRs. Significant associations between handwipes and house dust were observed for these alternative FRs, particularly for EH-TBB (rs=0.54; p<0.001). Increasing house dust levels and age were associated with higher levels of FRs in handwipes, and high hand washing frequency (>5 times d(-1)) was associated with lower FR levels in handwipes. Overall these data suggest that exposure to these alternative FRs will be similar to PBDE exposure, and the influence of hand-to-mouth behavior in children's exposure needs to be further examined to better estimate exposure potential.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
192 |
3
|
Hoffman K, Daniels JL, Stapleton HM. Urinary metabolites of organophosphate flame retardants and their variability in pregnant women. ENVIRONMENT INTERNATIONAL 2014; 63:169-72. [PMID: 24316320 PMCID: PMC3932676 DOI: 10.1016/j.envint.2013.11.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/17/2013] [Accepted: 11/15/2013] [Indexed: 05/19/2023]
Abstract
Organophosphate flame retardants (OPFRs) are commonly added to consumer products to reduce their flammability. Based on levels of OPFRs in indoor environments, human exposure is likely chronic and ubiquitous. Animal studies suggest that exposure to some OPFRs may result in adverse health impacts, particularly for Tris (1,3-dichloropropyl) phosphate (TDCPP); however, human data on the impacts of exposure to OPFRs are lacking. To design human studies, more information is needed on the stability of measured OPFRs in human samples over time. In this study, we sought to assess the degree of temporal variability of urinary TDCPP and triphenyl phosphate (TPP) metabolites throughout pregnancy in a cohort of women from central North Carolina. Eight pregnant women provided multiple urine samples: 3 during the 18th week of pregnancy, 1 during the 28th week, and 1 shortly after the child's birth. Bis (1,3-dichloropropyl) phosphate (BDCPP) and diphenyl phosphate (DPP), the respective metabolites of TDCPP and TPP, were measured in urine samples using liquid chromatography-tandem mass spectrometry. BDCPP and DPP were each detected in 38 of 39 urine samples and were not normally distributed. Geometric mean BDCPP and DPP concentrations were 1.3ng/mL (interquartile range (IQR): 0.8, 2.7ng/mL) and 1.9ng/mL (IQR: 0.9, 3.5ng/mL), respectively. BDCPP and DPP were moderately to strongly reliable over one week (intraclass correlation coefficient (ICC)=0.5; 95% confidence interval (CI): 0.4, 0.7 and ICC=0.7; 95% CI: 0.5, 0.8, respectively), and over the entire pregnancy (ICC=0.5 95% CI: 0.3, 0.7 and ICC=0.6; 95% CI: 0.4, 0.7, respectively). These data suggest that exposures to TDCPP and TPP are widespread and variable for pregnant women, and that a single measure of BDCPP or DPP, taken in the second trimester, likely captures information on the rank order of exposure throughout pregnancy.
Collapse
|
research-article |
11 |
182 |
4
|
Giulivo M, Capri E, Kalogianni E, Milacic R, Majone B, Ferrari F, Eljarrat E, Barceló D. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:782-791. [PMID: 28215802 DOI: 10.1016/j.scitotenv.2017.02.056] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Classic (polybromodiphenyl ethers, PBDEs) and emerging halogenated flame retardants (HFRs) such as decabromodiphenyl ethane (DBDPE) and halogenated norbornenes, as well as organophosphate flame retardants (OPFRs) were analysed in 52 sediments and 27 fish samples from three European river basins, namely the Evrotas (Greece), the Adige (Italy) and the Sava (Slovenia, Croatia, Bosnia and Herzegovina and Serbia). This is the first time that FR levels have been reported in these three European river basins. The highest contamination was found in the Adige and Sava rivers, whereas lower values were obtained for the Evrotas. The levels in sediment samples ranged between 0.25 and 34.0ng/g dw, and between 0.31 and 549ng/g dw, for HFRs and OPFRs respectively. As regards levels in fish, concentrations ranged between 9.32 and 461ng/g lw and between 14.4 and 650ng/g lw, for HFRs and OPFRs, respectively. Thus, whereas OPFR values were higher in sediments, similar concentrations (in the Evrotas) and even lower concentrations than HFRs (Sava) were found for OPFRs in the fish samples, indicating the lower bioaccumulation potential of OPFRs. Biota to sediment accumulation factors (BSAFs) were calculated and higher values were obtained for HFRs compared to those assessed for OPFRs.
Collapse
|
|
8 |
168 |
5
|
Du Z, Wang G, Gao S, Wang Z. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: by disturbing expression of the transcriptional regulators. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:25-32. [PMID: 25661707 DOI: 10.1016/j.aquatox.2015.01.027] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 05/03/2023]
Abstract
As a result of the ban on some brominated flame retardants (BFRs), the use of organophosphate flame retardants (OPFRs) increases, and they are detected in multi-environment media at higher frequency and concentrations. However, the toxicity data of OPFRs, especially those on developmental toxicology are quite limited, which prevents an accurate evaluation of their environmental and health risk. Because a previous study reported that two aryl-OPFRs induced cardiotoxicity during zebrafish embryogenesis, we designed experiments to compare the heart developmental toxicity of a series of aryl-OPFRs with alkyl-OPFRs and explored possible internal mechanism. First, acute toxicity of 9 frequently used OPFRs were studied with zebrafish embryos (2-96 hpf). By comparing the LC50 and EC50 (pericardium edema) data, two aryl-OPFRs, triphenyl phosphate (TPhP) and cresyl diphenyl phosphate (CDP) showed greater heart developmental toxicity than the others. It was also found that the acute toxicity of OPFRs varied mainly depending on their hydrophobicity. Further study on the cardiotoxicity of TPhP and CDP showed that the cardiac looping progress can be impeded by 0.10mg/L TPhP or CDP exposure. Bradycardia and reduction of myocardium were also observed in 0.50 and 1.0mg/L TPhP groups and 0.10, 0.50, and 1.0mg/L CDP groups. 0-48 hpf is the vulnerable window of zebrafish cardiogenesis that can be easily affected by TPhP and CDP. RT-qPCR measurement on the expressions of key transcriptional regulators in cardiogenesis showed that BMP4, NKX2-5, and TBX5 were significantly inhibited at the exposure points of 12 hpf and 24 hpf which may be the internal factors related to the heart developmental toxicity. As zebrafish is a good model organism for human health study, the present results call for a greater attention to the health risk of fetus in pregnant women exposed to such OPFRs.
Collapse
|
|
10 |
158 |
6
|
Wang Y, Sun H, Zhu H, Yao Y, Chen H, Ren C, Wu F, Kannan K. Occurrence and distribution of organophosphate flame retardants ( OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1056-1064. [PMID: 29996402 DOI: 10.1016/j.scitotenv.2018.01.013] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Distribution of 12 organophosphate flame retardants (OPFRs) was determined in soil and outdoor settled dust samples collected from a multi-waste (electronic, plastic, and rubber wastes and abandoned household-appliances and vehicles) recycling area, that encompassed different modes of operation i.e. open (ORS) and semi-closed recycling (SCRS). Among the twelve OPFRs analyzed, eleven were detected at a frequency of 75%-100% in all soil and dust samples. In soil samples, ΣOPFR concentrations were significantly higher at ORS (122-2100ng/g) than at SCRS (58.5-316ng/g) and nearby farmlands (37.7-156ng/g). The ΣOPFR concentrations in dust samples were higher than those in soil samples with spatial distribution similar to that observed for soil, decreasing from ORS (1390-42,700ng/g) to SCRS (914-7940ng/g). Tris(2-chloroisopropyl) phosphate (TCIPP) was the major OPFRs in both soil (<MDL-1370ng/g) and dust (39.9-16,300ng/g) samples. Chlorinated OPFRs [TCIPP, tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP)] and aryl-OPFRs [triphenyl phosphate (TPHP), tris(methylphenyl) phosphate (TMPP)] exhibited spatial difference between ORS and SCRS. Principle component analysis (PCA) of OPFR concentrations revealed that TCIPP, TDCIPP, TPHP, TMPP originated from similar sources. TMPP was assessed to pose eco-toxicological risk (risk quotient values: RQs) in the soil ecosystem. The median estimated daily intake (EDI) of OPFRs via soil and outdoor settled dust ingestion (based on average ingestion rate) was 3.14×10-1ng/kgbw/day for adults at ORS. Our results suggest that waste recycling is an important source of chlorinated- and aryl-OPFRs in the environment.
Collapse
|
|
7 |
151 |
7
|
Zhang X, Zou W, Mu L, Chen Y, Ren C, Hu X, Zhou Q. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants ( OPFRs) in China. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:686-693. [PMID: 27484948 DOI: 10.1016/j.jhazmat.2016.07.055] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/25/2016] [Accepted: 07/22/2016] [Indexed: 05/25/2023]
Abstract
Although organophosphate flame retardants (OPFRs) have been shown to accumulate in abiotic and biotic environmental compartments, data about OPFRs concentrations in various foods are limited and are none in humans through diets. In this work, the concentrations of 6 typical OPFRs were investigated in 50 rice samples, 75 commonly consumed foods and 45 human hair samples from China. The dietary intakes of OPFRs for adult people via food ingestion were estimated. The concentrations of ΣOPFRs in foods ranged from 0.004ng/g to 287ng/g. OPFRs were detected in 53.3% of the human hair samples. The highest OPFRs concentrations were found in rice and vegetables. Tri(2-chloroethyl)phosphate(TCEP), tris(2-chloroisopropyl)phosphate(TCIPP), and tri(2-ethyltexyl)phosphate(TEHP) were predominant in all food samples. OPFRs concentrations in foods were not significantly affected by the packaging materials. The mean dietary intakes of ΣOPFRs for adult males and females were 539 and 601ng/kg body weight/day, respectively. The greatest contribution to these values is from rice, accounting for approximately 60% of the total intake, particularly from rice protein. Rice ingestion was considered a potential major pathway for human exposure to OPFRs, and regional differences in the levels of OPFRs in foods and dietary differences should be given more attention in the future.
Collapse
|
|
9 |
127 |
8
|
He C, Wang X, Thai P, Baduel C, Gallen C, Banks A, Bainton P, English K, Mueller JF. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:670-679. [PMID: 29339336 DOI: 10.1016/j.envpol.2017.12.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/14/2017] [Accepted: 12/06/2017] [Indexed: 05/15/2023]
Abstract
Concentrations of nine organophosphate flame retardants (OPFRs) and eight polybrominated diphenyl ethers (PBDEs) were measured in samples of indoor dust (n = 85) and air (n = 45) from Australian houses, offices, hotels, and transportation (buses, trains, and aircraft). All target compounds were detected in indoor dust and air samples. Median ∑9OPFRs concentrations were 40 μg/g in dust and 44 ng/m3 in indoor air, while median ∑8PBDEs concentrations were 2.1 μg/g and 0.049 ng/m3. Concentrations of FRs were higher in rooms that contained carpet, air conditioners, and various electronic items. Estimated daily intakes in adults are 14000 pg/kg body weight/day and 330 pg/kg body weight/day for ∑9OPFRs and ∑8PBDEs, respectively. Our results suggest that for the volatile FRs such as tris(2-chloroethyl) phosphate (TCEP) and TCIPP, inhalation is expected to be the more important intake pathway compared to dust ingestion and dermal contact.
Collapse
|
|
7 |
116 |
9
|
Wang Y, Yao Y, Han X, Li W, Zhu H, Wang L, Sun H, Kannan K. Organophosphate di- and tri-esters in indoor and outdoor dust from China and its implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134502. [PMID: 31693950 DOI: 10.1016/j.scitotenv.2019.134502] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate (OP) esters are emerging environmental contaminants, but little is known about their occurrence in dust. In this study, 19 OP triesters and their 11 diester degradation products were measured in indoor dust and outdoor dust collected from China. ∑OP triester concentrations in indoor dust (median: 2380 ng/g dry weight [dw]) were an order of magnitude higher than those in outdoor dust (446 ng/g dw). The median concentrations of ∑OP diesters in indoor and outdoor dust were 260 and 96.8 ng/g dw, respectively. Dust samples collected from eastern and southern China contained higher concentrations of ∑OP di- and tri-esters than those from the other regions. Dust from the most urbanized areas in China including Beijing, Shanghai, and Guangzhou exhibited the highest concentrations of ∑OP di- (>1000 ng/g dw) and triesters (>4000 ng/g dw). We also found notable concentrations of emerging aryl-OP triesters in dust (3.85-10.6 ng/g dw). Significant correlations existed between the concentrations of bis(2-ethylhexyl) phosphate (BEHP) and tris(2-ethylhexyl) phosphate (TEHP) (rho = 0.672-0.691, p < 0.01), as well as DPHP and triphenyl phosphate (TPHP) (rho = 0.537-0.766, p < 0.01) in dust samples, indicating that OP diesters originated from the degradation of triesters. High molar concentration ratios of DEP to triethyl phosphate (TEP) and DPHP to TPHP/ethylhexyl diphenyl phosphate (EHDPP) suggested that these OP triesters degrade readily. Significant correlations were found between the concentrations of ∑OP di- (R2 = 0.390, p < 0.05) and tri-esters (R2 = 0.475, p < 0.01) in paired indoor-outdoor dust samples, which suggested that indoor dust was the source of OP esters to the outdoor environment. The estimated daily intake (EDI) of ∑OP diesters through dust ingestion was 0.21 ng/kg bw/d for adults and 2.59 ng/kg bw/d for children. The exposure levels of OP diesters, DEP and DPHP, were comparable to those of their parent triester compounds.
Collapse
|
|
5 |
98 |
10
|
Lai NLS, Kwok KY, Wang XH, Yamashita N, Liu G, Leung KMY, Lam PKS, Lam JCW. Assessment of organophosphorus flame retardants and plasticizers in aquatic environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:288-294. [PMID: 30856439 DOI: 10.1016/j.jhazmat.2019.03.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The concentrations and spatial distribution of 14 organophosphorus flame retardants (OPFRs) and plasticizers were studied in aquatic environments of China, namely, the Pearl River Delta (PRD), South China Sea (SCS) and Yellow River Estuary (YRE), as well as Tokyo Bay (TB) in Japan. These locations were characterized by different levels of socioeconomic development and human activities. The spatial pattern of OPFRs revealed their ubiquity along the coasts of China and Japan; the concentrations ranged from 15 to 1790, 1 to 147, 253 to 1720, and 107 to 284 ng L-1 in the PRD, SCS, YRE and TB, respectively. The most frequently detected OPFR was triethyl phosphate (TEP), followed by triphenylphosphine oxide (TPPO) and tris(2-chloroethyl) phosphate (TCEP). A positive relationship (R2 = 0.668, p = 0.004) was observed between OPFR contamination and socioeconomic activity, measured by gross domestic product (GDP) per capita, for the studied cities in China and Japan. The results suggest that an increase in manufacturing and construction activities in the studied areas may aggravate coastal contamination with OPFRs. The potential threat to aquatic organisms from exposure to TCEP, a suspected carcinogen, was revealed by the hazard quotient (HQ) and probabilistic assessments. Further investigation of OPFR exposure in the aquatic environment of China is urgently required.
Collapse
|
|
6 |
96 |
11
|
Kile ML, Scott RP, O'Connell SG, Lipscomb S, MacDonald M, McClelland M, Anderson KA. Using silicone wristbands to evaluate preschool children's exposure to flame retardants. ENVIRONMENTAL RESEARCH 2016; 147:365-72. [PMID: 26945619 PMCID: PMC4821754 DOI: 10.1016/j.envres.2016.02.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Silicone wristbands can be used as passive sampling tools for measuring personal environmental exposure to organic compounds. Due to the lightweight and simple design, the wristband may be a useful technique for measuring children's exposure. In this study, we tested the stability of flame retardant compounds in silicone wristbands and developed an analytical approach for measuring 41 flame retardants in the silicone wristband in order to evaluate exposure to these compounds in preschool-aged children. To evaluate the robustness of using wristbands to measure flame retardants, we evaluated the stability of 3 polybrominated diphenyl ethers (BDEs), and 2 organophosphate flame retardants (OPFRs) in wristbands over 84 days and did not find any evidence of significant loss over time at either 4 or -20°C (p>0.16). We recruited a cohort of 92 preschool aged children in Oregon to wear the wristband for 7 days in order to characterize children's acceptance of the technology, and to characterize their exposure to flame retardants. Seventy-seven parents returned the wristbands for analysis of 35 BDEs, 4 OPFRs, and 2 other brominated flame retardants although 5 were excluded from the exposure assessment due to protocol deviations (n=72). A total of 20 compounds were detected above the limit of quantitation, and 11 compounds including 4 OPFRs and 7 BDEs were detected in over 60% of the samples. Children's gender, age, race, recruitment site, and family context were not significantly associated with returning wristbands or compliance with protocols. Comparisons between flame retardant data and socio-demographic information revealed significant differences in total exposures to both ΣBDEs and ΣOPFRs based on age of house, vacuuming frequency, and family context. These results demonstrate that preschool children in Oregon are exposed to BDEs that are no longer being produced in the United States and to OPFRs that have been used as an alternative to polybrominated compounds. Silicone wristbands were well tolerated by young children and were useful for characterizing personal exposure to flame retardants that were not bound to particulate matter.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
87 |
12
|
Aznar-Alemany Ò, Aminot Y, Vilà-Cano J, Köck-Schulmeyer M, Readman JW, Marques A, Godinho L, Botteon E, Ferrari F, Boti V, Albanis T, Eljarrat E, Barceló D. Halogenated and organophosphorus flame retardants in European aquaculture samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:492-500. [PMID: 28865267 DOI: 10.1016/j.scitotenv.2017.08.199] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 05/13/2023]
Abstract
This work monitors flame retardants in sediment, mussel and water samples from European fish farms. Polybrominated diphenyl ethers (PBDEs) were detected in 95% of the sediment and mussel samples with mean levels of 8.60±22.6ngg-1 dw in sediments and 0.07±0.18ngg-1 dw in mussels. BDE-209 was the main contributor for the sediments and BDE-47 was found in about 60% of the samples of both matrices. Pentabromoethylbenzene (PBEB) and hexabromobenzene (HBB) were detected in 42% of the sediments, but not in mussels. Decabromodiphenyl ethane (DBDPE) was found in about 55% of the samples of both matrices. The same happened for dechloranes in mussels, but they were detected in 92% of the sediments. Syn-DP and anti-DP were always the main contributors. Methoxylated PBDEs (MeO-PBDEs) were detected in all mussels and some sediments, mainly 6-MeO-BDE-47 and 2'-MeO-BDE-68. Organophosphorus flame retardants (OPFRs) were found in all matrices with concentrations of 0.04-92.8ngg-1 dw in sediment, 0.50-102ngg-1 dw in mussel and 0.43-867ngl-1 in water. Only OPFRs were analysed in water samples as halogenated flame retardants and MeO-PBDEs are highly unlikely to be detected in water due to their physicochemical properties. Flame retardants have no application in fish farming so results should reflect the impact of human activity on the farm locations. A large majority of the most contaminated samples were collected from sampling spots that were at urban shores or in enclosed water bodies not completely open to the sea.
Collapse
|
|
7 |
75 |
13
|
Peng C, Tan H, Guo Y, Wu Y, Chen D. Emerging and legacy flame retardants in indoor dust from East China. CHEMOSPHERE 2017; 186:635-643. [PMID: 28818590 DOI: 10.1016/j.chemosphere.2017.08.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
To understand human exposure to dust-associated flame retardants in the biggest metropolitan area (city of Shanghai) of East China, our study determined a suite of legacy and emerging flame retardants in dust from dwellings, cars, and university computer labs. The results exhibited a consistent dominance of organophosphate flame retardants (OPFRs) over polybrominated diphenyl ethers (PBDEs) and other alternative flame retardants (AFRs) regardless of microenvironments. In addition to OPFRs, some alternative flame retardants, such as decabromodiphenyl ethane (DBDPE), 2-ethylhexyltetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)-3,4,5,6-tetrabromobenzoate (BEH-TEBP), and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), were also frequently detected. Among them, DBDPE exhibited concentrations comparable to those of PBDEs. Comparison with international studies indicated that concentrations of ∑PBDEs (0.2-12.3 μg/g dry weight or dw) and ∑OPFRs (3.8-165.5 μg/g dw) from Shanghai dwellings (bedroom and living room) were generally in the middle of concentration ranges reported worldwide, whereas elevated DBDPE concentrations (0.1-9.5 μg/g dw) was observed compared with most other countries or regions. OPFR compositions in house dust from this study also differed from those from many other countries. This suggested inter-regional differences in market demands on the quantities and types of flame retardants. Human intake estimation suggested elevated exposure for toddlers when compared with adults, although the daily intake estimations of individual flame retardants were generally 2-4 orders of magnitude lower than the reference doses. The findings from this preliminary study developed a baseline for future evaluation of the sources and fate of emerging flame retardants and related human exposure risks in East China.
Collapse
|
|
8 |
67 |
14
|
Yadav IC, Devi NL, Li J, Zhang G. Organophosphate ester flame retardants in Nepalese soil: Spatial distribution, source apportionment and air-soil exchange assessment. CHEMOSPHERE 2018; 190:114-123. [PMID: 28985534 DOI: 10.1016/j.chemosphere.2017.09.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Despite soil being the major terrestrial environmental reservoir and one of the significant sinks for many hydrophobic organic compounds including organophosphate ester flame retardants (OPFRs), limited information is available about concentration and fate of OPFRs contamination in urban soil in general and especially in case of Nepal. This study investigates the environmental concentration, spatial distribution and source apportionment of eight OPFRs in surface soil (n = 28) from four major cities of Nepal with special interest on air-soil exchange. Overall, significantly high concentrations of ∑8OPFR were measured in soil ranging from 25-27,900 ng/g dw (median 248 ng/g dw). In terms of compositional pattern, tris(methyl phenyl) phosphate (TMPP) was the most abundant phosphorus chemical in soil, followed by tris(2-chloroisopropyl) phosphate (TCIPP), and accounted for 35-49% and 8-25% of ∑8OPFRs, respectively. The high level of these OPFRs was attributed to local sources as opposed to transboundary influence from remote areas. A Spearman's rank correlation analysis exhibited weak correlation of ∑8OPFRs with TOC (Rho = 0.117, p < 0.05) and BC (Rho = 0.007, p < 0.05), suggesting little or no influence of TOC and BC on the concentration of ∑8OPFRs. The fugacity fraction (ff) results indicated a strong influence of soil contamination on atmospheric level of OPFRs via volatilization.
Collapse
|
|
7 |
66 |
15
|
Yu X, Yin H, Peng H, Lu G, Liu Z, Dang Z. OPFRs and BFRs induced A549 cell apoptosis by caspase-dependent mitochondrial pathway. CHEMOSPHERE 2019; 221:693-702. [PMID: 30669111 DOI: 10.1016/j.chemosphere.2019.01.074] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Organophosphate flame retardants (OPFRs) and brominated flame retardants (BFRs) are frequently detected in indoor environment at high levels, posing health risks to humans. However, the potential cytotoxicity mediated by OPFRs and BFRs in relevant human cell models is limited. In current study, non-small cell lung cancer A549 cell was employed to investigate toxicity mechanisms of typical OPFRs (i.e., tris (2-chloroethyl) phosphate (TCEP), tris-(2-chloropropyl) phosphate (TCPP), tricresy phosphate (TCP), triphenyl phosphate (TPHP) and BFRs (i.e., 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 3,3', 5,5'-tetrabromobisphenol A (TBBPA)). It was found that BDE-47 exhibited the strongest cytotoxicity, followed by TBBPA, TPHP, TCP, TCPP and TCEP. OPFRs and BFRs could cause the reduction of cell viability of A549 cell in both dose- and time-dependent manner after exposure for 24 and 48 h. Simultaneously, excessive generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, cell apoptosis and overload of intracellular free Ca2+ demonstrated that cytotoxicity induced by OPFRs and BFRs were mediated by oxidative stress. Of note, the survival rate of cell significantly increased when pretreated with Ac-DEVD-CHO, suggesting that caspase-3 dependent mitochondrial pathway may have played a primary role in the process of A549 cell apoptosis.
Collapse
|
|
6 |
65 |
16
|
Liagkouridis I, Cousins AP, Cousins IT. Physical-chemical properties and evaluative fate modelling of 'emerging' and 'novel' brominated and organophosphorus flame retardants in the indoor and outdoor environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:416-26. [PMID: 25933174 DOI: 10.1016/j.scitotenv.2015.02.106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/31/2015] [Accepted: 02/24/2015] [Indexed: 05/22/2023]
Abstract
Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical-chemical properties or their environmental transport and fate. Here we make best estimates of the physical-chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called 'novel' and 'emerging' brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical-chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (Pov), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on Pov and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy.
Collapse
|
|
10 |
60 |
17
|
Chen M, Gan Z, Qu B, Chen S, Dai Y, Bao X. Temporal and seasonal variation and ecological risk evaluation of flame retardants in seawater and sediments from Bohai Bay near Tianjin, China during 2014 to 2017. MARINE POLLUTION BULLETIN 2019; 146:874-883. [PMID: 31426231 DOI: 10.1016/j.marpolbul.2019.07.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Seawater and sediment samples were collected from 2014 to 2017 at Bohai Bay near Tianjin, China. The median concentration of ΣOPFRs was 2202 ng/l in the seawater from 2017. ΣAlkyl-OPFRs was the predominant constitution in the seawater with a median contribution of nearly 80%, and ΣCl-OPFRs was the major component in the sediment. Regarding BFRs, BDE-209 was the principal one in the sediment. The levels of TEP, TCEP and TBEP in sediments displayed significantly seasonal variations. The summer concentration of TEP was higher than that in both the spring and autumn, and concerning TCEP and TBEP, their lowest concentration occurred in summer. The concentration of ΣOPFRs experienced a rapid increasing during 2014-2016 due to more emissions of OPFRs. The ecological risk evaluation of OPFRs and BFRs suggested a moderate and high risk to the investigated marine region under the high exposure scenario, respectively.
Collapse
|
|
6 |
51 |
18
|
Park H, Choo G, Kim H, Oh JE. Evaluation of the current contamination status of PFASs and OPFRs in South Korean tap water associated with its origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1505-1512. [PMID: 29710648 DOI: 10.1016/j.scitotenv.2018.04.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
We investigated the concentrations of perfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs) in 44 tap water samples, collected from eight major cities in South Korea served by four representative watersheds, to evaluate the water contamination status. The total concentrations of PFASs and OPFRs ranged from 1.44 to 224ng/L (median=11.9ng/L), and 74.0 to 342ng/L (median=151ng/L), respectively. The predominant compounds in tap water were perfluorohexane sulfonate (PFHxS), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), tris(2-chloroethyl) phosphate (TCEP), tris(chloroisopropyl) phosphate (TCIPP), and tris(2-butoxyethyl) phosphate (TBOEP). Tap water originating from the Nakdong River within an industrial complex showed a notably higher PFHxS proportion to total PFASs. In addition, significantly higher PFAS levels were found in river-originating tap water than in lake/reservoir-originating tap water (Mann-Whitney U test, p<0.05). Meanwhile, major OPFRs showed no clear difference in distribution by region, and no significant difference in major OPFR levels was observed according to tap water origin. Finally, the average human exposure via tap water consumption was estimated for PFASs (46.8ng/person/day) and OPFRs (254ng/person/day).
Collapse
|
|
7 |
49 |
19
|
Aznar-Alemany Ò, Sala B, Plön S, Bouwman H, Barceló D, Eljarrat E. Halogenated and organophosphorus flame retardants in cetaceans from the southwestern Indian Ocean. CHEMOSPHERE 2019; 226:791-799. [PMID: 30965250 DOI: 10.1016/j.chemosphere.2019.03.165] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
PBDEs, HBCD, DBDPE, PBEB and HBB, dechloranes and OPFRs, as well as natural MeO-PBDEs were monitored in muscle tissue of three dolphin species from the southwestern Indian Ocean (Delphinus delphis, Sousa plumbea and Tursiops aduncus) collected between 2012 and 2015. The mean PBDE concentration was 416 ± 333 ng g-1 lw. BDE-47 was found in all samples and was almost half the total PBDE contamination. BDE-209, BDE-100 and BDE-99 were present in ≥85% of the samples. HBCD was detected in just two samples at 20 and 330 ng g-1 lw. PBEB and HBB were not detected, while DBDPE was in all samples but always below its limit of quantification. Dec 602 was the only quantifiable dechlorane at 232 ± 549 ng g-1 lw. Mean OPFR concentration was 10452 ± 11301 ng g-1 lw. TBOEP was found in all samples making up most of the total OPFR contamination. MeO-PBDEs were detected in all samples at 114 ± 137 ng g-1 lw. Data on flame retardants in biota and environmental samples from the southwestern Indian Ocean are scarce and, as a result, comparisons are difficult. However, data from other marine predators in the region, such as penguins, suggest that further studies are needed to determine if these concentrations are the consequence of a high local contamination or widespread thoughout the Indian Ocean.
Collapse
|
|
6 |
46 |
20
|
Khairy MA, Lohmann R. Organophosphate flame retardants in the indoor and outdoor dust and gas-phase of Alexandria, Egypt. CHEMOSPHERE 2019; 220:275-285. [PMID: 30590294 DOI: 10.1016/j.chemosphere.2018.12.140] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 05/28/2023]
Abstract
Little is known about the presence of organophosphate flame retardants (OPFRs) as a substitute for polybrominated diphenyl ethers in developing countries. This study investigated - for the first time - concentrations, sources and exposure levels of OPFRs in the indoor and outdoor environments of Alexandria, Egypt, in dust and gas-phase samples. Passive samplers were deployed (n = 78) to determine gaseous concentrations, and various dust samples were collected from apartments (n = 25), working places (n = 14), cars (n = 18), and outdoors (OD, n = 30). Indoor concentrations (air: 7.0-64 pg/m3; dust: 150-1850 ng/g) were significantly higher than outdoor (2.0-16 pg/m3 and 83-475 ng/g) concentrations. Tris-1,3-dichloropropyl phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPHP) dominated in all samples with more indoor variabilities. Profiles of OPFRs in OD and floor dust (collected from carpets and floors) were similar but differed from elevated fine dust (collected 1 m above the floor from all available surfaces), possibly due to the influence of carryover of OD by shoes. Despite the high uncertainty in dust - air partitioning coefficients, log transformed values showed significant linear relationships with log octanol - air-partitioning coefficients in all microenvironments, indicating an equilibrium partitioning between dust and vapor. Exposure assessment indicated the importance of the dermal exposure route for adults and ingestion route for children.
Collapse
|
|
6 |
43 |
21
|
Ji X, Li N, Ma M, Rao K, Wang Z. In vitro estrogen-disrupting effects of organophosphate flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138484. [PMID: 32330712 DOI: 10.1016/j.scitotenv.2020.138484] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate flame retardants (OPFRs), as substitutes for polybrominated diphenyl ethers (PBDEs), are frequently detected in the environment and biota due to their widespread use. Thus, there is a need to investigate their potential estrogen-disrupting effects and possible mechanisms of action in an effort to obtain a better risk assessment. In this study, we characterized the activities on estrogen receptor α (ERα) and the estrogen-disrupting potential of fourteen OPFRs, TMP, TEP, TPP, TnBP, TiBP, THP, TPhP, TCP, DPK, MDPP, IDPP, CDP, IPPDP and MPhP, using three in vitro assays representing different specific modes of action (MoAs). In the yeast two-hybrid assay, no OPFRs induced agonistic activity, but TiBP, DPK, TPhP, MDPP, CDP and IPPDP were shown to be hydrophobicity-dependent antagonists and to compete with E2 for binding to ERα. In the MVLN cell assay, TPhP was the only OPFR among the 14 tested that was able to activate ERα-estrogen responsive element (ERE) pathways. The results from the E-SCREEN assay showed that all tested OPFRs except TMP had estrogenic properties, and G protein-coupled receptor 30 (GPR30) was involved in the estrogenicity of eight OPFRs, TiBP, THP, TPhP, TCP, MDPP, IPPDP, CDP and MPhP. It was also found that in the E-SCREEN assay, the estrogenicity of alkyl-OPFRs but not aryl-OPFRs was closely correlated to hydrophobicity. Our research suggested that most OPFRs were estrogen disruptors, but their related mechanisms were complex and might involve ERα-mediated and/or ERα-independent pathways. Further in vitro studies concerning the estrogenic effects and involved mechanisms of OPFRs, as well as comprehensive evaluations of OPFRs including health and ecological assessments are needed to determine whether they are safe substitutes for PBDEs.
Collapse
|
|
5 |
30 |
22
|
Tang J, Lin M, Ma S, Yang Y, Li G, Yu Y, Fan R, An T. Identifying Dermal Uptake as a Significant Pathway for Human Exposure to Typical Semivolatile Organic Compounds in an E-Waste Dismantling Site: The Relationship of Contaminant Levels in Handwipes and Urine Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14026-14036. [PMID: 34596389 DOI: 10.1021/acs.est.1c02562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermal exposure to semivolatile organic compounds (SVOCs) has recently attracted widespread attention; understanding these exposures is particularly important for people whose skin is frequently exposed to different pollution surfaces. In this study, handwipes were collected from exposed occupational workers and local residents near a typical electronic waste (e-waste) dismantling area; urine samples were also sampled. The wipes were analyzed for three typical SVOCs: polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and organophosphate flame retardants (OPFRs). The median levels of PAHs, OPFRs, and PBDEs in handwipes from e-waste dismantlers were 96.0, 183, and 238 ng, respectively. The analytes were higher in the handwipes collected from workers than those from residents, indicating that they were subjected to greater dermal exposure during primitive e-waste dismantling activities. Among the three SVOCs, the strongest correlation was found between triphenyl phosphate (TPhP) in handwipes and diphenyl phosphate (DPhP) in paired urine; the next strongest correlations were between PAHs and PBDEs and their corresponding urinary metabolites. The results showed that TPhP contributed the highest exposure to e-waste dismantlers via dermal exposure. Our research highlights the importance of dermal exposure to TPhP, which should be considered in future exposure risk assessments.
Collapse
|
|
4 |
26 |
23
|
Zhang S, Ireland D, Sipes NS, Behl M, Collins EMS. Screening for neurotoxic potential of 15 flame retardants using freshwater planarians. Neurotoxicol Teratol 2019; 73:54-66. [PMID: 30943442 PMCID: PMC9524722 DOI: 10.1016/j.ntt.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Asexual freshwater planarians are an attractive invertebrate model for high-throughput neurotoxicity screening, because they possess multiple quantifiable behaviors to assess distinct neuronal functions. Planarians uniquely allow direct comparisons between developing and adult animals to distinguish developmentally selective effects from general neurotoxicity. In this study, we used our automated planarian screening platform to compare the neurotoxicity of 15 flame retardants (FRs), consisting of representative phased-out brominated (BFRs) and replacement organophosphorus FRs (OPFRs). OPFRs have emerged as a proposed safer alternative to BFRs; however, limited information is available on their health effects. We found 11 of the 15 FRs (3/6 BFRs, 7/8 OPFRs, and Firemaster 550) caused adverse effects in both adult and developing planarians with similar nominal lowest-effect-levels for BFRs and OPFRs. This suggests that replacement OPFRs are comparably neurotoxic to the phased-out compounds. BFRs were primarily systemically toxic, whereas OPFRs, except Tris(2-chloroethyl) phosphate, shared a behavioral phenotype in response to noxious heat at sublethal concentrations, indicating specific neurotoxic effects. We found this behavioral phenotype was correlated with cholinesterase inhibition, thus linking behavioral outcomes to molecular targets. By directly comparing effects on adult and developing planarians, we further found that one BFR (3,3',5,5'-Tetrabromobisphenol A) caused a developmental selective defect. Together, these results demonstrate that our planarian screening platform yields high content data from various behavioral and morphological endpoints, allowing us to distinguish selective neurotoxic effects and effects specific to the developing nervous system. Ten of these 11 bioactive FRs were previously found to be bioactive in other models, including cell culture and alternative animal models (nematodes and zebrafish). This level of concordance across different platforms emphasizes the urgent need for further evaluation of OPFRs in mammalian systems.
Collapse
|
research-article |
6 |
24 |
24
|
Wang C, Wang P, Zhao J, Fu M, Zhang L, Li Y, Yang R, Zhu Y, Fu J, Zhang Q, Jiang G. Atmospheric organophosphate esters in the Western Antarctic Peninsula over 2014-2018: Occurrence, temporal trend and source implication. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115428. [PMID: 32889514 DOI: 10.1016/j.envpol.2020.115428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 05/13/2023]
Abstract
Organophosphate esters (OPEs) were comprehensively investigated in the air samples collected using high-volume samplers near the Chinese Great Wall Station in the Western Antarctic Peninsula over the period of 2014-2018. The concentrations of ∑8OPEs (gaseous + particle phases) ranged from 33.9 to 404 pg/m3 with a geometric mean of 119 ± 12.0 pg/m3. Tris [(2R)-1-chloro-2-propyl] phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP) dominated in the gaseous phase, while tris-n-butyl phosphate (TnBP) was the most abundant OPEs in the particle phase, followed by TCIPP and TCEP. An apparently temporal trend was observed for atmospheric ∑8OPEs over the five years, with a doubling time of about 3.8 years, which indicated continuous inputs of OPEs into the sampling area. The particle-bound ∑8OPEs accounted for 45% of the total, generally lower than that reported in the Arctic. Gas-particle partitioning modeling suggested that the partitioning of OPEs with higher logKOA values approached the steady state in the Antarctic air. The back-trajectory modeling showed that high levels of OPEs were usually associated with air inputs from the northwest of the peninsula. This suggested that long-range transport from South America, which was confirmed by the no temperature dependencies of OPEs concentrations (excluding TnBP). Nevertheless, a steady high level of particle-bound TnBP implied local sources in the Western Antarctic Peninsula, which required further investigation in future works.
Collapse
|
|
5 |
23 |
25
|
He J, Wang Z, Zhao L, Ma H, Huang J, Li H, Mao X, Huang T, Gao H, Ma J. Gridded emission inventory of organophosphorus flame retardants in China and inventory validation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118071. [PMID: 34479160 DOI: 10.1016/j.envpol.2021.118071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation and adverse effects of organophosphorus flame retardants (OPFRs) on human health have become a global concern. China produces the largest amount of OPFRs globally and has the highest global market share. However, little is known about its emission level and environmental cycling, thereby causing uncertainties in the assessment of the environmental and health impacts of OPFRs. We developed a gridded annual OPFRs emission inventory at 1/4° longitude by 1/4° latitude resolution over China from 2014 to 2018. The results show that the annual OPFRs emissions increased from approximately 670 tons/yr in 2014 to 1000 tons/yr in 2018 in China. Higher OPFR emissions were identified in Jiangxi, Shandong, Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). In total, 2400 tons of OPFRs were released into the atmosphere during the multi-year period, in which production accounting for 56.6% of total OPFR emissions in China. An atmospheric transport model, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP), was employed to verify the gridded emission inventory and elucidate the atmospheric environmental fate of OPFRs. Modeled OPFRs in the air and soil agreed reasonably well with observed data, suggesting that the developed inventory was, to a large extent, reliable. The modeled atmospheric and surface soil concentrations of OPFRs across China ranged from 0 to 119 ng/m3 and 0 to 428 ng/g, respectively. East China is subjected to more intense OPFR contamination than the rest of the country. The results provide a valuable dataset and assessment of OPFRs, which may aid policy-makers and the scientific community in developing emission control strategies and evaluating the health and environmental consequences of OPFRs in China.
Collapse
|
|
4 |
23 |