1
|
Alkam T, Mamiya T, Kimura N, Yoshida A, Kihara D, Tsunoda Y, Aoyama Y, Hiramatsu M, Kim HC, Nabeshima T. Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice. Psychopharmacology (Berl) 2017; 234:1853-1869. [PMID: 28332006 DOI: 10.1007/s00213-017-4591-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
Increased risk of attention-deficit/hyperactivity disorder (AD/HD) is partly associated with the early developmental exposure to nicotine in tobacco smoke. Emerging reports link tobacco smoke exposure or prenatal nicotine exposure (PNE) with AD/HD-like behaviors in rodent models. We have previously reported that PNE induces cognitive behavioral deficits in offspring and decreases the contents of dopamine (DA) and its turnover in the prefrontal cortex (PFC) of offspring It is well known that the dysfunction of DAergic system in the brain is one of the core factors in the pathophysiology of AD/HD. Therefore, we examined whether the effects of PNE on the DAergic system underlie the AD/HD-related behavioral changes in mouse offspring. PNE reduced the release of DA in the medial PFC (mPFC) in mouse offspring. PNE reduced the number of tyrosine hydroxylase (TH)-positive varicosities in the mPFC and in the core as well as the shell of nucleus accumbens, but not in the striatum. PNE also induced behavioral deficits in cliff avoidance, object-based attention, and sensorimotor gating in offspring. These behavioral deficits were attenuated by acute treatment with atomoxetine (3 mg/kg, s.c.) or partially attenuated by acute treatment with MPH (1 mg/kg, s.c.). Taken together, our findings support the notion that PNE induces neurobehavioral abnormalities in mouse offspring by disrupting the DAergic system and improve our understanding about the incidence of AD/HD in children whose mothers were exposed to nicotine during their pregnancy.
Collapse
|
|
8 |
36 |
2
|
Foerster RM, Schneider WX. Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition 2017; 172:37-45. [PMID: 29223864 DOI: 10.1016/j.cognition.2017.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/08/2017] [Accepted: 12/02/2017] [Indexed: 11/18/2022]
Abstract
Many everyday tasks involve successive visual-search episodes with changing targets. Converging evidence suggests that these targets are retained in visual working memory (VWM) and bias attention from there. It is unknown whether all or only search-relevant features of a VWM template bias attention during search. Bias signals might be configured exclusively to task-relevant features so that only search-relevant features bias attention. Alternatively, VWM might maintain objects in the form of bound features. Then, all template features will bias attention in an object-based manner, so that biasing effects are ranked by feature relevance. Here, we investigated whether search-irrelevant VWM template features bias attention. Participants had to saccade to a target opposite a distractor. A colored cue depicted the target prior to each search trial. The target was predefined only by its identity, while its color was irrelevant. When target and cue matched not only in identity (search-relevant) but also in color (search-irrelevant), saccades went more often and faster directly to the target than without any color match (Experiment 1). When introducing a cue-distractor color match (Experiment 2), direct target saccades were most likely when target and cue matched in the search-irrelevant color and least likely in case of a cue-distractor color match. When cue and target were never colored the same (Experiment 3), cue-colored distractors still captured the eyes more often than different-colored distractors despite color being search-irrelevant. As participants were informed about the misleading color, the result argues against a strategical and voluntary usage of color. Instead, search-irrelevant features biased attention obligatorily arguing for involuntary top-down control by object-based VWM templates.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
23 |
3
|
Target-object integration, attention distribution, and object orientation interactively modulate object-based selection. Atten Percept Psychophys 2017; 78:1968-84. [PMID: 27198915 DOI: 10.3758/s13414-016-1126-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.
Collapse
|
Journal Article |
8 |
18 |
4
|
Cavanagh P, Caplovitz GP, Lytchenko TK, Maechler MR, Tse PU, Sheinberg DL. The Architecture of Object-Based Attention. Psychon Bull Rev 2023; 30:1643-1667. [PMID: 37081283 DOI: 10.3758/s13423-023-02281-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
The allocation of attention to objects raises several intriguing questions: What are objects, how does attention access them, what anatomical regions are involved? Here, we review recent progress in the field to determine the mechanisms underlying object-based attention. First, findings from unconscious priming and cueing suggest that the preattentive targets of object-based attention can be fully developed object representations that have reached the level of identity. Next, the control of object-based attention appears to come from ventral visual areas specialized in object analysis that project downward to early visual areas. How feedback from object areas can accurately target the object's specific locations and features is unknown but recent work in autoencoding has made this plausible. Finally, we suggest that the three classic modes of attention may not be as independent as is commonly considered, and instead could all rely on object-based attention. Specifically, studies show that attention can be allocated to the separated members of a group-without affecting the space between them-matching the defining property of feature-based attention. At the same time, object-based attention directed to a single small item has the properties of space-based attention. We outline the architecture of object-based attention, the novel predictions it brings, and discuss how it works in parallel with other attention pathways.
Collapse
|
Review |
2 |
16 |
5
|
Abstract
Visual input typically includes a myriad of objects, some of which are selected for further processing. While these objects vary in shape and size, most evidence supporting object-based guidance of attention is drawn from paradigms employing two identical objects. Importantly, object size is a readily perceived stimulus dimension, and whether it modulates the distribution of attention remains an open question. Across four experiments, the size of the objects in the display was manipulated in a modified version of the two-rectangle paradigm. In Experiment 1, two identical parallel rectangles of two sizes (thin or thick) were presented. Experiments 2-4 employed identical trapezoids (each having a thin and thick end), inverted in orientation. In the experiments, one end of an object was cued and participants performed either a T/L discrimination or a simple target-detection task. Combined results show that, in addition to the standard object-based attentional advantage, there was a further attentional benefit for processing information contained in the thick versus thin end of objects. Additionally, eye-tracking measures demonstrated increased saccade precision towards thick object ends, suggesting that Fitts's Law may play a role in object-based attentional shifts. Taken together, these results suggest that object-based attentional selection is modulated by object width.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
12 |
6
|
Zhang X, Mlynaryk N, Japee S, Ungerleider LG. Attentional selection of multiple objects in the human visual system. Neuroimage 2017; 163:231-243. [PMID: 28951352 PMCID: PMC5774655 DOI: 10.1016/j.neuroimage.2017.09.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 11/28/2022] Open
Abstract
Classic theories of object-based attention assume a single object of selection but real-world tasks, such as driving a car, often require attending to multiple objects simultaneously. However, whether object-based attention can operate on more than one object at a time remains unexplored. Here, we used functional magnetic resonance imaging (fMRI) to address this question as human participants performed object-based attention tasks that required simultaneous attention to two objects differing in either their features or locations. Simultaneous attention to two objects differing in features (face and house) did not show significantly different responses in the fusiform face area (FFA) or parahippocampal place area (PPA), respectively, compared to attending a single object (face or house), but did enhance the response in the inferior frontal gyrus (IFG). Simultaneous attention to two circular arcs differing in locations did not show significantly different responses in the primary visual cortex (V1) compared to attending a single circular arc, but did enhance the response in the intraparietal sulcus (IPS). These results suggest that object-based attention can simultaneously select at least two objects differing in their features or locations, processes mediated by the frontal and parietal cortex, respectively.
Collapse
|
Research Support, N.I.H., Intramural |
8 |
11 |
7
|
Boon PJ, Theeuwes J, Belopolsky AV. Updating visual-spatial working memory during object movement. Vision Res 2013; 94:51-7. [PMID: 24262811 DOI: 10.1016/j.visres.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 11/20/2022]
Abstract
Working memory enables temporary maintenance and manipulation of information for immediate access by cognitive processes. The present study investigates how spatial information stored in working memory is updated during object movement. Participants had to remember a particular location on an object which, after a retention interval, started to move. The question was whether the memorized location was updated with the movement of the object or whether after object movement it remained represented in retinotopic coordinates. We used saccade trajectories to examine how memorized locations were represented. The results showed that immediately after the object stopped moving, there was both a retinotopic and an object-centered representation. However, 200ms later, the activity at the retinotopic location decayed, making the memory representation fully object-centered. Our results suggest that memorized locations are updated from retinotopic to object-centered coordinates during, or shortly after object movement.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
10 |
8
|
Abstract
An important function of attention is to integrate features processed in distinct brain areas into a single coherent object representation. The immediate outcome of this binding process has been termed an event file, a transient memory structure that links features, context, and associated actions. A key result that supports the existence of event files is the partial repetition cost - slowed responses to a current event thought to reflect the updating of event file bindings in simple trial-to-trial repetition methods. In four experiments, using a procedure similar to Hommel (Visual Cognition, 5 (1/2), 183-216, 1998), we explored whether similar event file binding effects occurred when participants imagine rather than perceive a first event prior to responding to a following visual event. The results indicate that this effect does occur, implying that feature binding in imagery and perception may follow similar principles.
Collapse
|
Randomized Controlled Trial |
6 |
10 |
9
|
Abstract
Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when it is deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly, Driver, and Rafal (1994), and measured both the first saccade latency and the keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latencies exhibited higher sensitivity than did RTs for detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (nonpredictive and peripheral), and endogenous (predictive and central). We found that both RTs and saccade latencies exhibited effects of both space-based and object-based attentional selection. However, saccade latencies showed a more robust attentional modulation than RTs. For the exogenous cues, we observed a spatial inhibition of return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results revealed an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning.
Collapse
|
Journal Article |
8 |
10 |
10
|
Ku Y. Selective attention on representations in working memory: cognitive and neural mechanisms. PeerJ 2018; 6:e4585. [PMID: 29629245 PMCID: PMC5885971 DOI: 10.7717/peerj.4585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/18/2018] [Indexed: 12/22/2022] Open
Abstract
Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.
Collapse
|
Journal Article |
7 |
9 |
11
|
Marghetis T, Landy D, Goldstone RL. Mastering algebra retrains the visual system to perceive hierarchical structure in equations. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2016; 1:25. [PMID: 28180176 PMCID: PMC5256452 DOI: 10.1186/s41235-016-0020-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 11/10/2022]
Abstract
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Collapse
|
Journal Article |
9 |
9 |
12
|
Abstract
The extent to which visual inference is shaped by attentional goals is unclear. Voluntary attention may simply modulate the priority with which information is accessed by the higher cognitive functions involved in perceptual decision making. Alternatively, voluntary attention may influence fundamental visual processes, such as those involved in segmenting an incoming retinal signal into a structured scene of coherent objects, thereby determining perceptual organization. Here we tested whether the segmentation and integration of visual form can be determined by an observer's goals, by exploiting a novel variant of the classical Kanizsa figure. We generated predictions about the influence of attention with a machine classifier and tested these predictions with a psychophysical response classification technique. Despite seeing the same image on each trial, observers' perception of illusory spatial structure depended on their attentional goals. These attention-contingent illusory contours directly conflicted with other, equally plausible visual forms implied by the geometry of the stimulus, revealing that attentional selection can determine the perceived layout of a fragmented scene. Attentional goals, therefore, not only select precomputed features or regions of space for prioritized processing, but under certain conditions also greatly influence perceptual organization, and thus visual appearance.
Collapse
|
|
6 |
9 |
13
|
Spatial attention is necessary for object-based attention: Evidence from temporal-order judgments. Atten Percept Psychophys 2016; 79:753-764. [PMID: 28028777 DOI: 10.3758/s13414-016-1265-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attentional selection is a dynamic process that relies on multiple types of representations. That object representations contribute to attentional selection has been known for decades; however, most evidence for this contribution has been gleaned from studies that have relied on various forms of spatial cueing (some endogenous and some exogenous). It has thus remained unclear whether object-based attentional selection is a direct result of spatial cuing, or whether it still emerges without any spatial marker. Here we used a novel method-the temporal-order judgment (TOJ)-to examine whether object-based guidance emerges in the absence of spatial cuing. Participants were presented with two rectangles oriented either horizontally or vertically. Following a 150-ms preview time, two target stimuli were presented on the same or on different objects, and participants were asked to report which of the two stimuli had appeared first. The targets consisted of stimuli that formed a percept of a "hole" or a "hill." First, we demonstrated that the "hill" target was indeed processed faster, as evidenced by a positive perceived simultaneity (PSS) measure. We then demonstrated that if two targets appeared with equal probabilities on the same and on different objects, the PSS values, although positive, were not modulated by the objects. In a subsequent set of experiments, we showed that objects can modulate attentional allocation-however, only when they are biased by a spatial (endogenous) cue. In other words, in the absence of a spatial cue or bias, object representations do not guide attentional selection. In addition to providing new constraints for theories of object-based attentional guidance, these experiments introduce a novel paradigm for measuring object-based attentional effects.
Collapse
|
|
9 |
9 |
14
|
Daffron JL, Davis G. Target templates specify visual, not semantic, features to guide search: A marked asymmetry between seeking and ignoring. Atten Percept Psychophys 2016; 78:2049-65. [PMID: 27055459 PMCID: PMC5013145 DOI: 10.3758/s13414-016-1094-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Top-down search templates specify targets' properties, either to guide attention toward the target or, independently, to accelerate the recognition of individual search items. Some previous studies have concluded that target templates can specify semantic categories to guide attention, though dissociating the effects of semantic versus visual features has proven difficult. In the present experiments, we examined the roles of target templates in search performance, by measuring the "two-template costs" incurred when observers did not know which of two types of targets would be presented. For target templates, these costs only varied with set size when a template could specify a target's features. Any semantic influences did not affect the guidance of attention, only the recognition of individual items. In contrast, templates for rejection-specifying the properties of irrelevant nontargets-do appear to specify semantic properties to guide attention away from those items, without affecting recognition. These qualitative differences between the two types of templates suggest that the processes of seeking and ignoring are fundamentally different.
Collapse
|
research-article |
9 |
8 |
15
|
Balaban H, Drew T, Luria R. Neural evidence for an object-based pointer system underlying working memory. Cortex 2019; 119:362-372. [PMID: 31195317 DOI: 10.1016/j.cortex.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
To accomplish even rudimentary tasks, our cognitive system must update its representation of the changing environment. This process relies on visual working memory (VWM), which can actively modify its representations. We argue that this ability depends on a pointer system, such that each representation is stably and uniquely mapped to a specific stimulus. Without these pointers, VWM representations are inaccessible and therefore unusable. In three Electroencephalogram (EEG) experiments, we examined whether the pointers are allocated in an object-based, featural, or spatial manner: three factors that were confounded in previous studies. We used a feature change-detection task, in which objects moved and could separate into independently-moving parts. Despite the movement and separation being completely task-irrelevant, we found that the separation invalidated the pointers. This happened in a shape task, where the separation changed both the objects and the task-relevant features, but importantly, also in a color task, where the separation destroyed the objects while leaving the task-relevant features intact. Furthermore, even in a color task where all items had identical shapes, object-separation invalidated the pointers. This suggests that objects and not task-relevant features underlie the pointer system. Finally, when each object-part could be individuated already before the separation, the pointers were maintained, suggesting that the pointers are specifically tied to objects rather than locations. These results shed new light on the pointers which underlie VWM performance, demonstrating that the pointer system is object-based regardless of the task requirements.
Collapse
|
|
6 |
8 |
16
|
Feature-based attention is not confined by object boundaries: Spatially global enhancement of irrelevant features. Psychon Bull Rev 2021; 28:1252-1260. [PMID: 33687666 DOI: 10.3758/s13423-021-01897-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/08/2022]
Abstract
Theories of visual attention differ in what they identify as the core unit of selection. Feature-based theories emphasize basic visual features (e.g., color, motion), demonstrated through enhancement of attended features throughout the visual field, while object-based theories propose that attention enhances all features belonging to the same object. These theories make distinct predictions about the processing of features that are not attended primarily: Object-based theories predict that such secondary, task-irrelevant features are enhanced within object boundaries, while feature-based theories predict enhancement of irrelevant features across locations, regardless of objecthood. To test these two accounts, we had participants attend a set of colored dots among distractor dots (moving coherently upward or downward) to detect brief luminance decreases, while simultaneously detecting speed changes in other sets of dots in the opposite visual field. In the first experiment, we demonstrate that participants have higher speed detection rates in the dot array that matched the motion direction of the attended color array, although motion direction was task-irrelevant. In a second experiment, we manipulated the probability that speed changes occurred in the matching motion direction and found that enhancement of the irrelevant motion direction persisted even when it was detrimental for task performance, suggesting that spatially global effects of feature-based attention cannot easily be flexibly adjusted. Overall, these results indicate that features that are not primarily attended are enhanced globally, surpassing object boundaries.
Collapse
|
|
4 |
8 |
17
|
Pomè A, Thompson D, Burr DC, Halberda J. Location- and object-based attention enhance number estimation. Atten Percept Psychophys 2021; 83:7-17. [PMID: 33156512 PMCID: PMC7875840 DOI: 10.3758/s13414-020-02178-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/29/2023]
Abstract
Humans and non-humans can extract an estimate of the number of items in a collection very rapidly, raising the question of whether attention is necessary for this process. Visual attention operates in various modes, showing selectivity both to spatial location and to objects. Here, we tested whether each form of attention can enhance number estimation, by measuring whether presenting a visual cue to increase attentional engagement will lead to a more accurate and precise representation of number, both when attention is directed to location and when it is directed to objects. Results revealed that enumeration of a collection of dots in the location previously cued led to faster, more precise, and more accurate judgments than enumeration in un-cued locations, and a similar benefit was seen when the cue and collection appeared on the same object. This work shows that like many other perceptual tasks, numerical estimation may be enhanced by the spread of active attention inside a pre-cued object.
Collapse
|
research-article |
4 |
7 |
18
|
Merkel C, Hopf JM, Schoenfeld MA. Spatio-temporal dynamics of attentional selection stages during multiple object tracking. Neuroimage 2017; 146:484-491. [PMID: 27810524 DOI: 10.1016/j.neuroimage.2016.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022] Open
Abstract
Subjects can visually track several moving items simultaneously, a fact that is difficult to explain by classical attention models. Previous work revealed that building a global shape based on the spatial position of the tracked items improves performance. Here we investigated the involved neural processes and the role of attention. A task-irrelevant probe stimulus was presented during multiple objects tracking at a fixed spatial location. Depending on the tracked item's trajectories the probe appeared either outside, inside, or on the edge of aforementioned global shape. Event-related potentials to the probe stimulus revealed two subsequent stages of attentional selection during multiple object tracking. After 100ms attention was deployed on the edge/boundary of the figure formed by the tracked items. In the following 80ms, attention spread from the outline to the full figure. These findings clarify the eminent contribution of attentional mechanisms in multiple objects tracking.
Collapse
|
|
8 |
7 |
19
|
Attention can operate on object representations in visual sensory memory. Atten Percept Psychophys 2021; 83:3069-3085. [PMID: 34036534 DOI: 10.3758/s13414-021-02323-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Numerous studies have shown that attention can be allocated to various types of objects, such as low-level objects developed by perceptual organization and high-level objects developed by semantic associations. However, little is known about whether attention can also be affected solely by object representations in the brain, after the disappearance of physical objects. Here, we used a modified double-rectangle paradigm to investigate how attention is affected by object representation in visual sensory memory when the physical objects disappear for a short period of time before the target onset. By manipulating the interstimulus interval (ISI) between the offset of the objects and the onset of the target, an object-based attention effect, with shorter reaction times (RTs) for within-object relative to between-object conditions, was observed in the short-ISI (within 500 ms in Experiments 1a, 1b, 2, and 3) conditions while disappearing in the long-ISI (800 ms in Experiment 4) conditions. This result demonstrated that the mere presence of object representation in visual sensory memory, or the sensory memory-maintained object, can serve as an object unit that attention can operate on. This provides evidence for the relationship between object-based attention and visual sensory memory: object representation in visual sensory memory could affect attentional allocation, or attention can operate on a sensory memory-maintained object.
Collapse
|
Journal Article |
4 |
6 |
20
|
Does the presence of more features in a bound representation in working memory require extra object-based attention? Mem Cognit 2021; 49:1583-1599. [PMID: 34046872 DOI: 10.3758/s13421-021-01183-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/08/2022]
Abstract
Recent studies have examined the role of attention in retaining bound representations in working memory (WM) and found that object-based attention plays a pivotal role. However, no study has investigated whether maintaining bound representations with more features in WM requires extra object-based attention. We investigated this by examining whether a secondary task consuming object-based attention was more disruptive to the maintenance of bindings in WM when more features were stored per object. We instructed participants to memorize three bound representations in a WM task while manipulating the number of features (two vs. three features) contained in each representation. Moreover, we manipulated whether a secondary task consuming object-based attention was interpolated into the maintenance phase of WM. If extra object-based attention was required after the addition of an extra feature in the bound representation, the secondary task would result in a greater disruption of the three- rather than two-featured binding. In two experiments, we found that the added secondary task significantly impaired the binding performance, but the performance of the two- and three-featured bindings was disrupted to the same extent. These results suggest that the presence of more features in a bound representation in WM does not require extra object-based attention.
Collapse
|
|
4 |
6 |
21
|
Abstract
Attentional mechanisms in perception can operate over locations, features, or objects. However, people direct attention not only towards information in the external world, but also to information maintained in working memory. To what extent do perception and memory draw on similar selection properties? Here we examined whether principles of object-based attention can also hold true in visual working memory. Experiment 1 examined whether object structure guides selection independently of spatial distance. In a memory updating task, participants encoded two rectangular bars with colored ends before updating two colors during maintenance. Memory updates were faster for two equidistant colors on the same object than on different objects. Experiment 2 examined whether selection of a single object feature spreads to other features within the same object. Participants memorized two sequentially presented Gabors, and a retro-cue indicated which object and feature dimension (color or orientation) would be most relevant to the memory test. We found stronger effects of object selection than feature selection: accuracy was higher for the uncued feature in the same object than the cued feature in the other object. Together these findings demonstrate effects of object-based attention on visual working memory, at least when object-based representations are encouraged, and suggest shared attentional mechanisms across perception and memory.
Collapse
|
|
4 |
6 |
22
|
Hu S, Liu D, Song F, Wang Y, Zhao J. The influence of object similarity on real object-based attention: The disassociation of perceptual and semantic similarity. Acta Psychol (Amst) 2020; 205:103046. [PMID: 32143062 DOI: 10.1016/j.actpsy.2020.103046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Abstract
Perceptual and semantic similarity have an impact on object-based attention for the geometric objects. However, no previous studies have disassociated perceptual properties from the semantic ones of real objects that combine perceptual and semantic properties. It is unclear whether the perceptual and semantic similarity of real objects jointly or independently guides attentional deployment. The aim of the present study was to explore the influence of object similarity on object-based attention by using a variant of the two-rectangle paradigm and disassociating the perceptual and semantic similarity of real objects. The results indicated that when the semantic of objects was similar, the object-based effect was larger for the perceptually dissimilar condition than for the perceptually similar condition, because of slower response to invalid different-object location in a dissimilar condition. Moreover, when the perception of objects was similar, the object-based effect was larger for the semantically dissimilar condition than for the semantically similar condition, due to slower response to invalid different-object location in a dissimilar condition. These results suggest that perceptual and semantic similarity can independently guide attentional allocation to real objects and the similarity may constrain the object-based attention in a way of grouping. The current study implies that the attentional prioritization hypothesis is more flexible and effective to explain the real object-based attention and also has some implication to advertising design.
Collapse
|
Randomized Controlled Trial |
5 |
6 |
23
|
Perceptual completion of partly occluded contours during childhood. J Exp Child Psychol 2017; 167:49-61. [PMID: 29154030 DOI: 10.1016/j.jecp.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/31/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
An early functional onset of perceptual completion has been extensively documented during the first several months after birth. However, there is no indication for the developmental time periods at which these skills become fully developed. We used a version of an object-based attention task in which children and adults performed a same-different size judgment of two features appearing at two of four possible ends of overlapping objects. Single-object over two-object superiority (i.e., faster judgments when the features appeared on the same object than when they appeared on different objects) was observed for a complete object as early as at 4 years of age. However, it is only at 5 years of age that such a single-object advantage was obtained also for an occluded object, and even then the advantage of the single-object and occluded-object conditions over the two-object condition was observed only when the two features in the two-object condition were spatially distant, demonstrating the critical role of spatial proximity in perceptual organization during childhood. The results suggest that perceptual completion during infancy and early childhood demonstrates some rudimentary perceptual skills that become more firmly established with age.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
6 |
24
|
Abstract
Decades of research have provided evidence that object representations contribute to attentional selection. However, most evidence for object-based attentional allocation is drawn from studies employing the two-rectangle paradigm where the target distribution is biased towards the cued object. It is thus unclear whether object-based attentional selection is from object representations or a consequence of spatial attention based on statistical imbalances. Here, we investigate the extent to which target frequency modulates object-based attention by systematically manipulating the frequency of target appearance in a particular spatial location within objects to equate spatial allocation, bias specific spatial locations, or bias objects. In four experiments, participants were presented with a variant of the two-rectangle paradigm in which one end of a rectangle was cued and performed a target discrimination task. Critically, the target location probabilities were parametrically manipulated. The target could appear equally in all ends within the objects (valid, invalid within-object, invalid between-object, diagonal) (Experiment 1) or with overall equality between objects but biased towards the invalid locations (Experiment 2). The target could also appear in three locations (valid, invalid within-object, invalid between-object) distributed equally between objects but biased towards the invalid between-object location (Experiment 3) or with an overall bias towards the invalid between-object location (Experiment 4). We observed that while objects bias attention, spatial biases are prioritized over object representations. Combined results suggest that object-based contribution to attentional guidance is the result of both spatial probabilities and object representations.
Collapse
|
|
5 |
6 |
25
|
Phasic pupillary responses modulate object-based attentional prioritization. Atten Percept Psychophys 2021; 83:1491-1507. [PMID: 33506353 PMCID: PMC8084782 DOI: 10.3758/s13414-020-02232-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/18/2022]
Abstract
Visual attention studies have demonstrated that the shape of space-based selection can be governed by salient object contours: when a portion of an enclosed space is cued, the selected region extends to the full enclosure. Although this form of object-based attention (OBA) is well established, one continuing investigation focuses on whether this selection is obligatory or under voluntary control. We attempt to dissociate between these alternatives by interrogating the locus coeruleus-norepinephrine (LC-NE) system – known to fluctuate with top-down attention – during a classic two-rectangle paradigm in a sample of healthy human participants (N = 36). An endogenous spatial pre-cue directed voluntary space-based attention (SBA) to one end of a rectangular frame. We manipulated the reliability of the cue, such that targets appearing at an uncued location within the frame occurred at low or moderate frequencies. Phasic pupillary responses time-locked to the cue display served to noninvasively measure LC-NE activity, reflecting top-down processing of the spatial cue. If OBA is controlled analogously to SBA, then object selection should emerge only when it is behaviorally expedient and when LC-NE activity reflects a high degree of top-down attention to the cue display. Our results bore this out. Thus, we conclude that OBA was voluntarily controlled, and furthermore show that phasic norepinephrine may modulate attentional strategy.
Collapse
|
|
4 |
5 |