1
|
Kupers R, Ptito M. Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 2013; 41:36-52. [PMID: 23954750 DOI: 10.1016/j.neubiorev.2013.08.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
For human and non-human primates, vision is one of the most privileged sensory channels used to interact with the environment. The importance of vision is strongly embedded in the organization of the primate brain as about one third of its cortical surface is involved in visual functions. It is therefore not surprising that the absence of vision from birth, or the loss of vision later in life, has huge consequences, both anatomically and functionally. Studies in animals and humans, conducted over the past few decades, have demonstrated that the absence of vision causes massive structural changes that take place not only in the visually deprived cortex but also in other brain areas. These studies have further shown that the visually deprived cortex becomes responsive to a wide variety of non-visual sensory inputs. Recent studies even showed a role of the visually deprived cortex in cognitive processes. At the behavioral level, increases in acuity for auditory and tactile processes have been reported. The study of the congenitally blind brain also offers a unique model to gain better insights into the functioning of the normal sighted brain and to understand to what extent visual experience is necessary for the brain to develop its functional architecture. Finally, the study of the blind brain allows us to investigate how consciousness develops in the absence of vision. How does the brain of someone who has never had any visual perception form an image of the external world? In this paper, we discuss recent findings from animal studies as well as from behavioural and functional brain imaging studies in sighted and blind individuals that address these questions.
Collapse
|
Review |
12 |
165 |
2
|
Marzano C, Moroni F, Gorgoni M, Nobili L, Ferrara M, De Gennaro L. How we fall asleep: regional and temporal differences in electroencephalographic synchronization at sleep onset. Sleep Med 2013; 14:1112-1122. [PMID: 24051119 DOI: 10.1016/j.sleep.2013.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We hypothesized that the brain shows specific and predictable patterns of spatial and temporal differences during sleep onset (SO) reflecting a temporal uncoupling of electrical activity between different cortical regions and a dissociated wakelike and sleeplike electrocortical activity in different cortical areas. METHODS We analyzed full-scalp electroencephalographic (EEG) recordings of 40 healthy subjects to investigate spatial and temporal changes of EEG activity across the wake-sleep transition. We quantified EEG sleep recordings by a fast Fourier transform (FFT) algorithm and by a better oscillation (BOSC) detection method to the EEG signals, which measured oscillatory activity within a signal containing a nonrhythmic portion. RESULTS The most representative spatial change at SO is the frontalization of slow-wave activity (SWA), while the θ activity, which mostly shares a similar temporal and spatial pattern with SWA, exhibits a temporo-occipital diffusion. The time course of these oscillations confirms that the changes of the dominant waves coexist with topographic changes. The waking occipital prevalence of α oscillations is progressively replaced by an occipital prevalence of θ oscillations. On the other hand, more anterior areas show a wide synchronization pattern mainly expressed by slow waves just below 4 Hz and by spindle oscillations. CONCLUSIONS The whole pattern of results confirms that the centrofrontal areas showed an earlier synchronization (i.e., they fall asleep first). This finding implies a coexistence of wakelike and sleeplike electrical activity during sleep in different cortical areas. It also implies that the process of progressive brain disconnection from the external world as we fall asleep does not necessarily affect primary and higher-order cortices at the same time.
Collapse
|
|
12 |
80 |
3
|
Cleve M, Gussew A, Reichenbach JR. In vivo detection of acute pain-induced changes of GABA+ and Glx in the human brain by using functional 1H MEGA-PRESS MR spectroscopy. Neuroimage 2014; 105:67-75. [PMID: 25462698 DOI: 10.1016/j.neuroimage.2014.10.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 02/01/2023] Open
Abstract
In vivo(1)H MR spectroscopic detection of pain associated metabolic changes in the human brain may allow for an objective evaluation of the perceived pain intensity and assessment of the involved neurotransmitters. Ultimately, it may lead to a deeper understanding of the mechanisms that underlie neuronal pain processing. The present study reports results of time-resolved measurements of acute heat pain induced changes of the excitatory (Glx) and inhibitory (GABA+) neurotransmitter turnover in the anterior cingulate cortex (ACC) and occipital cortex (OC) by using (1)H MEGA-PRESS spectroscopy. In ACC and OC, the ratio Glx/tCr increased by median values of 21.5% (p < 0.001) and 15.7% (p < 0.001), respectively. At the same time, GABA+/tCr decreased by median values of 15.1% (p = 0.114) in ACC and 12.7% (p < 0.001) in OC. To our knowledge, this study demonstrates for the first time the possibility of quantifying pain-induced neurotransmitter changes in the brain by using functional (1)H MEGA-PRESS. The increase of Glx/tCr may be ascribed to an elevated glutamatergic turnover, while the decrease of GABA+/tCr may reflect reduced activity of the inhibitory system in ACC and OC during pain processing.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
66 |
4
|
Anderson CA, Lazard DS, Hartley DEH. Plasticity in bilateral superior temporal cortex: Effects of deafness and cochlear implantation on auditory and visual speech processing. Hear Res 2017; 343:138-149. [PMID: 27473501 DOI: 10.1016/j.heares.2016.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/01/2022]
Abstract
While many individuals can benefit substantially from cochlear implantation, the ability to perceive and understand auditory speech with a cochlear implant (CI) remains highly variable amongst adult recipients. Importantly, auditory performance with a CI cannot be reliably predicted based solely on routinely obtained information regarding clinical characteristics of the CI candidate. This review argues that central factors, notably cortical function and plasticity, should also be considered as important contributors to the observed individual variability in CI outcome. Superior temporal cortex (STC), including auditory association areas, plays a crucial role in the processing of auditory and visual speech information. The current review considers evidence of cortical plasticity within bilateral STC, and how these effects may explain variability in CI outcome. Furthermore, evidence of audio-visual interactions in temporal and occipital cortices is examined, and relation to CI outcome is discussed. To date, longitudinal examination of changes in cortical function and plasticity over the period of rehabilitation with a CI has been restricted by methodological challenges. The application of functional near-infrared spectroscopy (fNIRS) in studying cortical function in CI users is becoming increasingly recognised as a potential solution to these problems. Here we suggest that fNIRS offers a powerful neuroimaging tool to elucidate the relationship between audio-visual interactions, cortical plasticity during deafness and following cochlear implantation, and individual variability in auditory performance with a CI.
Collapse
|
Review |
8 |
51 |
5
|
Bathel A, Schweizer L, Stude P, Glaubitz B, Wulms N, Delice S, Schmidt-Wilcke T. Increased thalamic glutamate/glutamine levels in migraineurs. J Headache Pain 2018; 19:55. [PMID: 30019230 PMCID: PMC6049847 DOI: 10.1186/s10194-018-0885-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Increased cortical excitability has been hypothesized to play a critical role in various neurological disorders, such as restless legs syndrome, epilepsy and migraine. Particularly for migraine, local hyperexcitability has been reported. Levels of regional excitatory and inhibitory neurotransmitters are related to cortical excitability and hence may play a role in the origin of the disease. Consequently, a mismatch of the excitatory-inhibitory neurotransmitter network might contribute to local hyperexcitability and the onset of migraine attacks. In this study we sought to assess local levels of glutamate / glutamine (GLX) and gamma-aminobutyric acid (GABA) in the occipital cortex and right thalamus of migraineurs and healthy subjects. METHODS We measured interictally local biochemical concentrations in the occipital lobe and the right thalamus in patients with migraine (without aura) and healthy controls (HCs) using proton magnetic resonance spectroscopy at 3 T. GLX levels were acquired using PRESS and GABA levels using the GABA-sensitive editing sequence MEGA-PRESS. Regional GLX and GABA levels were compared between groups. RESULTS Statistical analyses revealed significantly increased GLX levels in both the primary occipital cortex and thalamus. However, we found no group differences in GABA levels for these two regions. Correlation analyses within the migraine group revealed no significant correlations between pain intensity and levels of GLX or GABA in either of the two brain regions. CONCLUSIONS Further research is needed to investigate the role of GABA/GLX ratios in greater depth and to measure changes in neurotransmitter levels over time, i.e. during migraine attacks and interictally.
Collapse
|
research-article |
7 |
43 |
6
|
Sasabayashi D, Takayanagi Y, Takahashi T, Koike S, Yamasue H, Katagiri N, Sakuma A, Obara C, Nakamura M, Furuichi A, Kido M, Nishikawa Y, Noguchi K, Matsumoto K, Mizuno M, Kasai K, Suzuki M. Increased Occipital Gyrification and Development of Psychotic Disorders in Individuals With an At-Risk Mental State: A Multicenter Study. Biol Psychiatry 2017; 82:737-745. [PMID: 28709499 DOI: 10.1016/j.biopsych.2017.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anomalies of brain gyrification have been reported in schizophrenia, possibly reflecting its neurodevelopmental pathology. However, it remains elusive whether individuals at risk for psychotic disorders exhibit deviated gyrification patterns, and whether such findings, if present, are predictive of transition to psychotic disorders. METHODS This multicenter magnetic resonance imaging study investigated brain gyrification and its relationship to later transition to psychotic disorders in a large sample of at-risk mental state (ARMS) individuals. T1-weighted magnetic resonance imaging scans were obtained from 104 ARMS individuals, of whom 21 (20.2%) exhibited the transition to psychotic disorders during clinical follow-up (mean = 4.9 years, SD = 2.6 years), and 104 healthy control subjects at 4 different sites. The local gyrification index (LGI) of the entire cortex was compared across the groups using FreeSurfer software. RESULTS Compared with the control subjects, ARMS individuals showed a significantly higher LGI in widespread cortical areas, including the bilateral frontal, temporal, parietal, and occipital regions, which was partly associated with prodromal symptomatology. ARMS individuals who exhibited the transition to psychotic disorders showed a significantly higher LGI in the left occipital region compared with individuals without transition. CONCLUSIONS These findings suggested that increased LGI in diverse cortical regions might represent vulnerability to psychopathology, while increased LGI in the left occipital cortex might be related to subsequent manifestation of florid psychotic disorders as a possible surrogate marker.
Collapse
|
Multicenter Study |
8 |
39 |
7
|
Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach. Neuroimage 2015; 140:110-7. [PMID: 26608246 DOI: 10.1016/j.neuroimage.2015.11.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/05/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI).
Collapse
|
Journal Article |
10 |
34 |
8
|
Goldstein MR, Peterson MJ, Sanguinetti JL, Tononi G, Ferrarelli F. Topographic deficits in alpha-range resting EEG activity and steady state visual evoked responses in schizophrenia. Schizophr Res 2015; 168:145-52. [PMID: 26159669 DOI: 10.1016/j.schres.2015.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 01/16/2023]
Abstract
Deficits in both resting alpha-range (8-12Hz) electroencephalogram (EEG) activity and steady state evoked potential (SSVEP) responses have been reported in schizophrenia. However, the topographic specificity of these effects, the relationship between resting EEG and SSVEP, as well as the impact of antipsychotic medication on these effects, have not been clearly delineated. The present study sought to address these questions with 256 channel high-density EEG recordings in a group of 13 schizophrenia patients, 13 healthy controls, and 10 non-schizophrenia patients with psychiatric diagnoses currently taking antipsychotic medication. At rest, the schizophrenia group demonstrated decreased alpha EEG power in frontal and occipital areas relative to healthy controls. With SSVEP stimulation centered in the alpha band (10Hz), but not with stimulation above (15Hz) or below (7Hz) this range, the occipital deficit in alpha power was partially reverted. However, the frontal deficit persisted and contributed to a significantly reduced topographic relationship between occipital and frontal alpha activity for resting EEG and 10Hz SSVEP alpha power in schizophrenia patients. No significant differences were observed between healthy and medicated controls or between medicated controls and schizophrenia. These findings suggest a potential intrinsic deficit in frontal eyes-closed EEG alpha oscillations in schizophrenia, whereby potent visual stimulation centered in that frequency range results in an increase in the occipital alpha power of these patients, which however does not extend to frontal regions. Future research to evaluate the cortical and subcortical mechanisms of these effects is warranted.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
31 |
9
|
Reduced cortical folding in multi-modal vestibular regions in persistent postural perceptual dizziness. Brain Imaging Behav 2019; 13:798-809. [PMID: 29860587 PMCID: PMC6538588 DOI: 10.1007/s11682-018-9900-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Persistent postural perceptual dizziness (PPPD) is a common functional vestibular disorder that is triggered and sustained by a complex interaction between physiological and psychological factors affecting spatial orientation and postural control. Past functional neuroimaging research and one recent structural (i.e., voxel-based morphometry-VBM) study have identified alterations in vestibular, visuo-spatial, and limbic brain regions in patients with PPPD and anxiety-prone normal individuals. However, no-one thus far has employed surface based morphometry (SBM) to explore whether cortical morphology in patients with PPPD differs from that of healthy people. We calculated SBM measures from structural MR images in 15 patients with PPPD and compared them to those from 15 healthy controls matched for demographics, personality traits known to confer risk for PPPD as well as anxiety and depressive symptoms that are commonly comorbid with PPPD. We tested for associations between SBM measures and dizziness severity in patients with PPPD. Relative to controls, PPPD patients showed significantly decreased local gyrification index (LGI) in multi-modal vestibular regions bilaterally, specifically the posterior insular cortices, supra-marginal gyri, and posterior superior temporal gyri (p < 0.001). Within the PPPD group, dizziness severity positively correlated with LGI in visual areas and negatively with LGI in the right superior parietal cortex. These findings demonstrate abnormal cortical folding in vestibular cortices and correlations between dizziness severity and cortical folding in visual and somatosensory spatial association areas in PPPD patients, which provides new insights into the pathophysiological mechanisms underlying this disorder.
Collapse
|
Journal Article |
6 |
28 |
10
|
Association of TLR4 with Alzheimer's disease risk and presymptomatic biomarkers of inflammation. Alzheimers Dement 2019; 15:951-960. [PMID: 31175027 DOI: 10.1016/j.jalz.2019.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION A coding variant in the TLR4 receptor (rs4986790), previously associated with longevity and Alzheimer's disease (AD) risk reduction, was examined in a population isolate (Québec Founder Population [QFP]) and in presymptomatic individuals with a parental history of AD (Pre-Symptomatic Evaluation of Novel or Experimental Treatment for Alzheimer's Disease [PREVENT-AD]). METHODS Genotyping was performed using the Illumina HumanHap 550k (QFP) and the Illumina Omni2.5 beadchips (PREVENT-AD). Cognition was assessed using the Repeatable Battery for Assessment of Neuropsychological Status (RBANS). Whole-brain cortical thickness data were analyzed using CIVET 1.12. Cerebrospinal fluid concentrations of cytokines were obtained by using Milliplex. RESULTS The minor allele of the rs4986790 polymorphism (G) is associated with a reduced risk of developing AD in the QFP, as well as higher visuospatial and constructional abilities, higher cortical thickness in visual-related regions, and stable cerebrospinal fluid IL-1β levels in the PREVENT-AD cohort. DISCUSSION The rs4986790 G coding variant in the TLR4 gene appears to reduce AD risk through the modulation of IL-1β synthesis and secretion in the presymptomatic phase of the disease.
Collapse
|
Journal Article |
6 |
25 |
11
|
Caspers S, Axer M, Caspers J, Jockwitz C, Jütten K, Reckfort J, Grässel D, Amunts K, Zilles K. Target sites for transcallosal fibers in human visual cortex - A combined diffusion and polarized light imaging study. Cortex 2015; 72:40-53. [PMID: 25697048 DOI: 10.1016/j.cortex.2015.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 01/28/2023]
Abstract
Transcallosal fibers of the visual system have preferential target sites within the occipital cortex of monkeys. These target sites coincide with vertical meridian representations of the visual field at borders of retinotopically defined visual areas. The existence of preferential target sites of transcallosal fibers in the human brain at the borders of early visual areas was claimed, but controversially discussed. Hence, we studied the distribution of transcallosal fibers in human visual cortex, searching for an organizational principle across early and higher visual areas. In-vivo high angular resolution diffusion imaging data of 28 subjects were used for probabilistic fiber tracking using a constrained spherical deconvolution approach. The fiber architecture within the target sites was analyzed at microscopic resolution using 3D polarized light imaging in a post-mortem human hemisphere. Fibers through a seed in the splenium of the corpus callosum reached the occipital cortex via the forceps major and the tapetum. We found target sites of these transcallosal fibers at borders of cytoarchitectonically defined occipital areas not only between early visual areas V1 and V2, V3d and V3A, and V3v and V4, but also between higher extrastriate areas, namely V4 (ventral) and posterior fusiform area FG1 as well as posterior fusiform area FG2 and lateral occipital cortex. In early visual areas, the target sites coincided with the vertical meridian representations of retinotopic maps. The spatial arrangement of the fibers in the 'border tuft' region at the V1/V2 border was found to be more complex than previously observed in myeloarchitectonic studies. In higher visual areas, our results provided additional evidence for a hemi-field representation in human area V4. The fiber topography in posterior fusiform gyrus indicated that additional retinotopic areas might exist, located between the recently identified retinotopic representations phPITv/phPITd and PHC-1/PHC-2 in lateral occipital cortex and parahippocampal gyrus.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
23 |
12
|
Lee JS, Kang W, Kang Y, Kim A, Han KM, Tae WS, Ham BJ. Alterations in the Occipital Cortex of Drug-Naïve Adults With Major Depressive Disorder: A Surface-Based Analysis of Surface Area and Cortical Thickness. Psychiatry Investig 2021; 18:1025-1033. [PMID: 34666430 PMCID: PMC8542746 DOI: 10.30773/pi.2021.0099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in surface-based morphometric methods have allowed researchers to separate cortical volume into cortical thickness (CTh) and surface area (SA). Although CTh alterations in major depressive disorder (MDD) have been observed in numerous studies, few studies have described significant SA alterations. Our study aimed to measure patients' SAs and to compare it with their CTh to examine whether SA exhibits alteration patterns that differ from those of CTh in drug-naïve patients with MDD. METHODS A total of 71 drug-naïve MDD patients and 111 healthy controls underwent structural magnetic resonance imaging, and SA and CTh were analyzed between the groups. RESULTS We found a smaller SA in the left superior occipital gyrus (L-SOG) in drug-naïve patients with MDD. In the CTh analysis, the bilateral fusiform gyrus, left middle occipital gyrus, left temporal superior gyrus, and right posterior cingulate showed thinner cortices in patients with MDD, while the CTh of the bilateral SOG, right straight gyrus, right posterior cingulate, and left lingual gyrus were increased. CONCLUSION Compared with the bilateral occipito-temporal changes in CTh, SA alterations in patients with MDD were confined to the L-SOG. These findings may improve our understanding of the neurobiological mechanisms of SA alteration in relation to MDD.
Collapse
|
research-article |
4 |
15 |
13
|
Silberstein RB, Levy F, Pipingas A, Farrow M. First-Dose Methylphenidate-Induced Changes in Brain Functional Connectivity Are Correlated With 3-Month Attention-Deficit/Hyperactivity Disorder Symptom Response. Biol Psychiatry 2017; 82:679-686. [PMID: 28465019 DOI: 10.1016/j.biopsych.2017.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) symptoms are most commonly treated with stimulant medication such as methylphenidate (MPH); however, approximately 25% of patients show little or no symptomatic response. We examined the extent to which initial changes in brain functional connectivity (FC) associated with the first MPH dose in boys newly diagnosed with ADHD predict MPH-associated changes in ADHD inattentiveness and hyperactivity symptoms at 3 months. METHODS Brain FC was estimated using steady-state visual evoked potential partial coherence before and 90 minutes after the administration of the first MPH dose to 40 stimulant drug-naïve boys newly diagnosed with ADHD while they performed the AX version of the continuous performance task. The change in parent-rated inattention and hyperactivity scores over the first 3 months of MPH medication was correlated with the initial 90-minute MPH-mediated FC changes. RESULTS Hyperactivity improvements at 3 months were associated with first-dose MPH-mediated FC reductions restricted to frontal-prefrontal sites following the appearance of the "A" and at frontal and right temporal sites during the appearance of the "X." Corresponding 3-month inattention score improvement was associated with initial MPH-mediated FC reductions restricted to occipitoparietal sites following the appearance of the "A." CONCLUSIONS These findings are discussed in the context of MPH effects on the default mode network and the possible role of the default mode network in MPH-mediated improvements in inattention and hyperactivity symptom scores.
Collapse
|
|
8 |
12 |
14
|
Paudel N, Chakraborty A, Anstice N, Jacobs RJ, Hegarty JE, Harding JE, Thompson B. Neonatal Hypoglycaemia and Visual Development: A Review. Neonatology 2017; 112:47-52. [PMID: 28253512 PMCID: PMC5472486 DOI: 10.1159/000456705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many newborn babies experience low blood glucose concentrations, a condition referred to as neonatal hypoglycaemia (NH). The effect of NH on visual development in infancy and childhood is of interest because the occipital lobes, which include the primary visual cortex and a number of extrastriate visual areas, may be particularly susceptible to NH-induced injury. In addition, a number of case series have suggested that NH can affect eye and optic nerve development. OBJECTIVE To review the existing literature concerning the effect of NH on the visual system. METHODS A PubMed, Embase, Medline, and Google Scholar literature search was conducted using prespecified MeSH terms. RESULTS The literature reviewed revealed no clear evidence for an effect of NH on the development of the eye and optic nerve. Furthermore, occipital and occipital-parietal lobe injuries following NH often occurred in conjunction with comorbid conditions and were not clearly linked to subsequent visual dysfunction, possibly due to difficulties in measuring vision in young children and a lack of studies at older ages. A recent, large-scale, prospective study of NH outcomes at 2 years of age found no effect of mild-to-moderate NH on visual development. CONCLUSION The effect of NH on visual development is unclear. It is currently unknown whether NH affects visual function in mid-to-late childhood when many visual functions reach adult levels.
Collapse
|
Review |
8 |
12 |
15
|
A selective impairment of perception of sound motion direction in peripheral space: A case study. Neuropsychologia 2015; 80:79-89. [PMID: 26586155 DOI: 10.1016/j.neuropsychologia.2015.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in both central (straight ahead), and right and left peripheral auditory space (50° to the left and right of straight ahead). Compared to control subjects, the patient was impaired in her perception of direction of auditory motion in peripheral auditory space, and the deficit was more pronounced on the right side. However, there was no impairment in her perception of the direction of auditory motion in central space. Furthermore, detection of motion and discrimination of static location were normal in both central and peripheral space. The patient also performed normally in a wide battery of non-spatial audiological tests. Our data are consistent with previous neuropsychological and neuroimaging results that link posterior temporal cortex and parietal cortex with the processing of auditory motion. Most importantly, however, our data break new ground by suggesting a division of auditory motion processing in terms of speed and direction and in terms of central and peripheral space.
Collapse
|
Journal Article |
10 |
9 |
16
|
Abstract
In this study we longitudinally investigated the rate of microstructural alterations in the occipital cortex in different stages of Huntington's disease (HD) by applying an automated atlas-based approach to diffusion MRI data. Twenty-two premanifest (preHD), 10 early manifest HD (early HD) and 24 healthy control subjects completed baseline and two year follow-up scans. The preHD group was stratified based on the predicted years to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. Clinical and behavioral measures were collected per assessment time point. An automated atlas-based DTI analysis approach was used to obtain the mean, axial and radial diffusivities of the occipital cortex. We found that the longitudinal rate of diffusivity change in the superior occipital gyrus (SOG), middle occipital gyrus (MOG), and inferior occipital gyrus (IOG) was significantly higher in early HD compared to both preHD and controls (all p's ≤ 0.005), which can be interpreted as an increased rate of microstructural degeneration. Furthermore, the change rate in the diffusivity of the MOG could significantly discriminate between preHD-B compared to preHD-A and the other groups (all p's ≤ 0.04). Finally, we found an inverse correlation between the Stroop Word Reading task and diffusivities in the SOG and MOG (all p's ≤ 0.01). These findings suggest that measures obtained from the occipital cortex can serve as sensitive longitudinal biomarkers for disease progression in preHD-B and early HD. These could in turn be used to assess potential effects of proposed disease modifying therapies.
Collapse
|
Journal Article |
6 |
8 |
17
|
Chandley MJ, Szebeni A, Szebeni K, Wang-Heaton H, Garst J, Stockmeier CA, Lewis NH, Ordway GA. Markers of elevated oxidative stress in oligodendrocytes captured from the brainstem and occipital cortex in major depressive disorder and suicide. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110559. [PMID: 35452747 DOI: 10.1016/j.pnpbp.2022.110559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Major depressive disorder (MDD) and suicide have been associated with elevated indices of oxidative damage in the brain, as well as white matter pathology including reduced myelination by oligodendrocytes. Oligodendrocytes highly populate white matter and are inherently susceptible to oxidative damage. Pathology of white matter oligodendrocytes has been reported to occur in brain regions that process behaviors that are disrupted in MDD and that may contribute to suicidal behavior. The present study was designed to determine whether oligodendrocyte pathology related to oxidative damage extends to brain areas outside of those that are traditionally considered to contribute to the psychopathology of MDD and suicide. Relative telomere lengths and the gene expression of five antioxidant-related genes, SOD1, SOD2, GPX1, CAT, and AGPS were measured in oligodendrocytes laser captured from two non-limbic brain areas: occipital cortical white matter and the brainstem locus coeruleus. Postmortem brain tissues were obtained from brain donors that died by suicide and had an active MDD at the time of death, and from psychiatrically normal control donors. Relative telomere lengths were significantly reduced in oligodendrocytes of both brain regions in MDD donors as compared to control donors. Three antioxidant-related genes (SOD1, SOD2, GPX1) were significantly reduced and one was significantly elevated (AGPS) in oligodendrocytes from both brain regions in MDD as compared to control donors. These findings suggest that oligodendrocyte pathology in MDD and suicide is widespread in the brain and not restricted to brain areas commonly associated with depression psychopathology.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
7 |
18
|
Mancini V, Rochas V, Seeber M, Grent-'t-Jong T, Rihs TA, Latrèche C, Uhlhaas PJ, Michel CM, Eliez S. Oscillatory Neural Signatures of Visual Perception Across Developmental Stages in Individuals With 22q11.2 Deletion Syndrome. Biol Psychiatry 2022; 92:407-418. [PMID: 35550793 DOI: 10.1016/j.biopsych.2022.02.961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous behavioral studies have highlighted the contribution of visual perceptual deficits to the nonverbal cognitive profile of individuals with 22q11.2 deletion syndrome. However, the neurobiological processes underlying these widespread behavioral alterations are yet to be fully understood. Thus, in this paper, we investigated the role of neural oscillations toward visuoperceptual deficits to elucidate the neurobiology of sensory impairments in deletion carriers. METHODS We acquired 125 high-density electroencephalography recordings during a visual grating task in a group of 62 deletion carriers and 63 control subjects. Stimulus-elicited oscillatory responses were analyzed with 1) time-frequency analysis using wavelets decomposition at sensor and source level, 2) intertrial phase coherence, and 3) Granger causality connectivity in source space. Additional analyses examined the development of neural oscillations across age bins. RESULTS Deletion carriers had decreased theta-band (4-8 Hz) and gamma-band (58-68 Hz) spectral power compared with control subjects in response to the visual stimuli, with an absence of age-related increase of theta- and gamma-band responses. Moreover, adult deletion carriers had decreased gamma- and theta-band responses but increased alpha/beta desynchronization (10-25 Hz) that correlated with behavioral performance. Granger causality estimates reflected an increased frontal-occipital connectivity in the beta range (22-40 Hz). CONCLUSIONS Deletion carriers exhibited decreased theta- and gamma-band responses to visual stimuli, while alpha/beta desynchronization was preserved. Overall, the lack of age-related changes in deletion carriers implicates developmental impairments in circuit mechanisms underlying neural oscillations. The dissociation between the maturation of theta/gamma- and alpha/beta-band responses may indicate a selective impairment in supragranular cortical layers, leading to compensatory top-down connectivity.
Collapse
|
|
3 |
6 |
19
|
Sanches M, Abuhaiba SI, d'Almeida OC, Quendera B, Gomes L, Moreno C, Guelho D, Castelo-Branco M. Diabetic brain or retina? Visual psychophysical performance in diabetic patients in relation to GABA levels in occipital cortex. Metab Brain Dis 2017; 32:913-921. [PMID: 28361261 DOI: 10.1007/s11011-017-9986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 03/03/2017] [Indexed: 10/19/2022]
Abstract
Visual impairment is one of the most feared complications of Type 2 Diabetes Mellitus. Here, we aimed to investigate the role of occipital cortex γ-aminobutyric acid (GABA) as a predictor of visual performance in type 2 diabetes. 18 type 2 diabetes patients were included in a longitudinal prospective one-year study, as well as 22 healthy age-matched controls. We collected demographic data, HbA1C and used a novel set of visual psychophysical tests addressing color, achromatic luminance and speed discrimination in both groups. Psychophysical tests underwent dimension reduction with principle component analysis into three synthetic variables: speed, achromatic luminance and color discrimination. A MEGA-PRESS magnetic resonance brain spectroscopy sequence was used to measure occipital GABA levels in the type 2 diabetes group. Retinopathy grading and retinal microaneurysms counting were performed in the type 2 diabetes group for single-armed correlations. Speed discrimination thresholds were significantly higher in the type 2 diabetes group in both visits; mean difference (95% confidence interval), [0.86 (0.32-1.40) in the first visit, 0.74 (0.04-1.44) in the second visit]. GABA from the occipital cortex predicted speed and achromatic luminance discrimination thresholds within the same visit (r = 0.54 and 0.52; p = 0.02 and 0.03, respectively) in type 2 diabetes group. GABA from the occipital cortex also predicted speed discrimination thresholds one year later (r = 0.52; p = 0.03) in the type 2 diabetes group. Our results suggest that speed discrimination is impaired in type 2 diabetes and that occipital cortical GABA is a novel predictor of visual psychophysical performance independently from retinopathy grade, metabolic control or disease duration in the early stages of the disease.
Collapse
|
Observational Study |
8 |
6 |
20
|
Cazala F, Fonteille V, Moulier V, Pélégrini-Issac M, De Beaurepaire C, Abondo M, Bodon-Bruzel M, Cano J, Cochez F, Fouli T, Thevenon C, Dauba B, Pugeat M, Stoléru S. Brain responses to pictures of children in men with pedophilic disorder: a functional magnetic resonance imaging study. Eur Arch Psychiatry Clin Neurosci 2019; 269:713-729. [PMID: 30094544 DOI: 10.1007/s00406-018-0933-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Structural and functional neuroimaging techniques have recently been used to investigate the mechanisms of sexual attraction to children, a hallmark of pedophilic disorder, and have reported many contradictory or non-replicated findings. Here, our purpose was to identify through functional magnetic resonance imaging the brain responses of 25 male outpatients with pedophilic disorder to visual stimuli depicting children (VSc) and to compare them with 24 male healthy controls matched on sexual orientation (to female or male adults), age, and handedness. No region was differentially activated across the two groups in response to VSc. However, as shown by a random-effects statistical analysis (cluster-level pFWE-corrected < 0.05), in patients with pedophilia, but not in controls, the presentation of VSc induced a bilateral activation in the lateral occipital and temporal cortices, in particular in the right inferior temporal gyrus, as well as an activation in the declive of the cerebellar vermis. In addition, in patients the level of bilateral activation in the above-mentioned regions was positively correlated with ratings of perceived sexual arousal elicited by VSc. These results implicate these regions as possible candidate areas mediating sexual arousal in patients with pedophilic disorder.
Collapse
|
|
6 |
4 |
21
|
Teng C, Postle BR. Understanding occipital and parietal contributions to visual working memory: Commentary on Xu (2020). VISUAL COGNITION 2021; 29:401-408. [PMID: 34335071 DOI: 10.1080/13506285.2021.1883171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In her commentary, Xu (2020) admonishes the reader that "To have a full understanding of the cognitive mechanisms underlying VWM [visual working memory], both behavioral and neural evidence needs to be taken into account. This is a must, and not a choice, for any study that attempts to capture the nature of VWM" (p. 11). Although we don't disagree with this statement, our overall assessment of this commentary is that it, itself, fails to satisfy several "musts" and, consequently, does not pose a serious challenge for the sensory recruitment framework for understanding visual working memory. These "musts" include accurately characterizing the framework being critiqued, not favoring verbal models and intuition at the expense of formal quantitative models, and providing even-handed interpretation of the work of others. We'll conclude with a summary of how the sensory recruitment framework can be incorporated into a broader working model of visual working memory.
Collapse
|
|
4 |
4 |
22
|
Yin Q, Johnson EL, Tang L, Auguste KI, Knight RT, Asano E, Ofen N. Direct brain recordings reveal occipital cortex involvement in memory development. Neuropsychologia 2020; 148:107625. [PMID: 32941883 PMCID: PMC7704894 DOI: 10.1016/j.neuropsychologia.2020.107625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/25/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
Processing of low-level visual information shows robust developmental gains through childhood and adolescence. However, it is unknown whether low-level visual processing in the occipital cortex supports age-related gains in memory for complex visual stimuli. Here, we examined occipital alpha activity during visual scene encoding in 24 children and adolescents, aged 6.2-20.5 years, who performed a subsequent memory task while undergoing electrocorticographic recording. Scenes were classified as high- or low-complexity by the number of unique object categories depicted. We found that recognition of high-complexity, but not low-complexity, scenes increased with age. Age was associated with decreased alpha power and increased instantaneous alpha frequency during the encoding of subsequently recognized high- compared to low-complexity scenes. Critically, decreased alpha power predicted improved recognition of high-complexity scenes in adolescents. These findings demonstrate how the functional maturation of the occipital cortex supports the development of memory for complex visual scenes.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
2 |
23
|
Xie X, Zu M, Zhang L, Bai T, Wei L, Huang W, Ji GJ, Qiu B, Hu P, Tian Y, Wang K. A common variant of the NOTCH4 gene modulates functional connectivity of the occipital cortex and its relationship with schizotypal traits. BMC Psychiatry 2020; 20:363. [PMID: 32646407 PMCID: PMC7346398 DOI: 10.1186/s12888-020-02773-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schizotypal traits are considered as inheritable traits and the endophenotype for schizophrenia. A common variant in the NOTCH4 gene, rs204993, has been linked with schizophrenia, but the neural underpinnings are largely unknown. METHODS In present study, we compared the differences of brain functions between different genotypes of rs204993 and its relationship with schizotypal traits among 402 Chinese Han healthy volunteers. The brain function was evaluated with functional connectivity strength (FCS) using the resting-state functional magnetic resonance image(rs-fMRI). The schizotypal traits were measured by the schizotypal personality questionnaire (SPQ). RESULTS Our results showed that carriers with the AA genotype showed reduced FCS in the left occipital cortex when compared with carriers with the AG and GG genotypes, and the carriers with the AG genotype showed reduced FCS in the left occipital cortex when compared with carriers with the GG genotype. The FCS values in the left occipital lobe were negatively associated with the SPQ scores and its subscale scores within the carriers with the GG genotype, but not within the carriers with AA or AG genotype. CONCLUSION Our results suggested that the common variant in the NOTCH4 gene, rs204993, modulates the function of the occipital cortex, which may contribute to schizotypal traits. These findings provide insight for genetic effects on schizotypal traits and its potential neural substrate.
Collapse
|
research-article |
5 |
2 |
24
|
Roelke A, Vorstius C, Radach R, Hofmann MJ. Fixation-related NIRS indexes retinotopic occipital processing of parafoveal preview during natural reading. Neuroimage 2020; 215:116823. [PMID: 32289457 DOI: 10.1016/j.neuroimage.2020.116823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 11/19/2022] Open
Abstract
While word frequency and predictability effects have been examined extensively, any evidence on interactive effects as well as parafoveal influences during whole sentence reading remains inconsistent and elusive. Novel neuroimaging methods utilize eye movement data to account for the hemodynamic responses of very short events such as fixations during natural reading. In this study, we used the rapid sampling frequency of near-infrared spectroscopy (NIRS) to investigate neural responses in the occipital and orbitofrontal cortex to word frequency and predictability. We observed increased activation in the right ventral occipital cortex when the fixated word N was of low frequency, which we attribute to an enhanced cost during saccade planning. Importantly, unpredictable (in contrast to predictable) low frequency words increased the activity in the left dorsal occipital cortex at the fixation of the preceding word N-1, presumably due to an upcoming breach of top-down modulated expectation. Opposite to studies that utilized a serial presentation of words (e.g. Hofmann et al., 2014), we did not find such an interaction in the orbitofrontal cortex, implying that top-down timing of cognitive subprocesses is not required during natural reading. We discuss the implications of an interactive parafoveal-on-foveal effect for current models of eye movements.
Collapse
|
|
5 |
1 |
25
|
Danckert J, Striemer C, Rossetti Y. Blindsight. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:297-310. [PMID: 33832682 DOI: 10.1016/b978-0-12-821377-3.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For over a century, research has demonstrated that damage to primary visual cortex does not eliminate all capacity for visual processing in the brain. From Riddoch's (1917) early demonstration of intact motion processing for blind field stimuli, to the iconic work of Weiskrantz et al. (1974) showing reliable spatial localization, it is clear that secondary visual pathways that bypass V1 carry information to the visual brain that in turn influences behavior. In this chapter, we briefly outline the history and phenomena associated with blindsight, before discussing the nature of the secondary visual pathways that support residual visual processing in the absence of V1. We finish with some speculation as to the functional characteristics of these secondary pathways.
Collapse
|
|
4 |
0 |