1
|
Mohtar SS, Tengku Malim Busu TNZ, Md Noor AM, Shaari N, Yusoff NA, Bustam Khalil MA, Abdul Mutalib MI, Mat HB. Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. BIORESOURCE TECHNOLOGY 2015; 192:212-8. [PMID: 26038325 DOI: 10.1016/j.biortech.2015.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 05/16/2023]
Abstract
The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.
Collapse
|
|
10 |
32 |
2
|
Zakaria MR, Hirata S, Hassan MA. Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. BIORESOURCE TECHNOLOGY 2015; 176:142-8. [PMID: 25460995 DOI: 10.1016/j.biortech.2014.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 05/09/2023]
Abstract
The present works investigate hydrothermal pretreatment of oil palm empty fruit bunch and oil palm frond fiber in a batch tube reactor system with temperature and time range from 170 to 250°C and 10 to 20min, respectively. The behavior of soluble sugars, acids, furans, and phenols dramatically changed over treatment severities as determined by HPLC. The cellulose-rich treated solids were analyzed by SEM, WAXD, and BET surface area. Enzymatic hydrolysis was performed from both pretreated slurries and washed solid, and data obtained suggested that tannic acid derived from lignin degradation was a potential cellulase inhibitor. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused structural changes on the cellulose-hemicellulose-lignin matrix, resulting in the opening and expansion of specific surface area and pore volume. The current results provided important factors that maximize conversion of cellulose to glucose from oil palm biomass by hydrothermal process.
Collapse
|
Evaluation Study |
10 |
26 |
3
|
Aditiya HB, Chong WT, Mahlia TMI, Sebayang AH, Berawi MA, Nur H. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 47:46-61. [PMID: 26253329 DOI: 10.1016/j.wasman.2015.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 06/04/2023]
Abstract
Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works.
Collapse
|
Review |
9 |
19 |
4
|
Suksong W, Kongjan P, Prasertsan P, Imai T, O-Thong S. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 214:166-174. [PMID: 27132224 DOI: 10.1016/j.biortech.2016.04.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD.
Collapse
|
|
9 |
18 |
5
|
Bukhari NA, Loh SK, Nasrin AB, Luthfi AAI, Harun S, Abdul PM, Jahim JM. Compatibility of utilising nitrogen-rich oil palm trunk sap for succinic acid fermentation by Actinobacillus succinogenes 130Z. BIORESOURCE TECHNOLOGY 2019; 293:122085. [PMID: 31499328 DOI: 10.1016/j.biortech.2019.122085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, the potential of oil palm trunk (OPT) sap as a sole substrate for succinic acid (SA) production was evaluated using Actinobacillus succinogenes 130Z. After OPT sap was characterised, the effects of adding carbonate, yeast extract (YE) and minerals to this medium were investigated in an attempt to develop a low-cost fermentation medium. The OPT sap alone, gave comparable SA yield and productivity (0.54 g/g and 0.35 g/L/h) to those supplemented with YE (0.50 g/g and 0.36 g/L/h) and minerals (0.55 g/g and 0.40 g/L/h). The findings showed that OPT sap has sufficient amount of nutrients for SA biosynthesis by A. succinogenes 130Z and could potentially reduce cost without requiring expensive nutrients supplementation.
Collapse
|
|
6 |
6 |
6
|
Hartoyo APP, Octaviani EA, Syamani FA, Mulsanti IW, Solikhin A. Potential of chitosan/carbon nanoparticles and chitosan/lignocellulose nanofiber composite as growth media for peatland paddy seeds. ENVIRONMENTAL RESEARCH 2022; 212:113235. [PMID: 35500851 DOI: 10.1016/j.envres.2022.113235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Indonesia has committed to restoring degraded peatlands by revegetating them with paddy plants using paludiculture systems. Nanofertilizers derived from chitosan and oil palm biomass can be used to enhance paddy growth. This study analyzed the potential growth media of chitosan nanocomposite films for paddy seeds grown in tropical peatland. Chitosan nanocomposites were synthesized by reinforcing chitosan with activated carbon nanoparticles (ACNPs), nonactivated carbon nanoparticles (n-ACNPs), and lignocellulose nanofibers (LCNFs). All carbon nanoparticles were reversibly aggregated, whereas LCNFs did not have a tendency to aggregate but were entangled. The highest specific surface area and pore volume are on EFB ACNPs, followed by OPT LCNFs and EFB n-ACNPs. Both nanocomposites' tensile strength and elastic modulus value were reduced with an average of 45.77% and 34.00%, respectively, because of the lack of nano- and micro-aggregates formation, good dispersion, and incompatibility. In a germination test, chitosan nanocomposites provided the best growth patterns for the Dendang paddy variety, whereas, in a greenhouse test, the nanocomposites had the best growth patterns for the Indragiri paddy variety. Chitosan/empty fruit bunch ACNP nanocomposites grown in a germinator had the highest growth normality (100.00%), highest maximum growth potential (100.00%), and highest height average (11.27 cm). In the greenhouse test, chitosan/oil palm trunk n-ACNPs achieved the highest growth natality (16.44%) and growth rate (65.74%). All chitosan nanocomposites had a synergetic biofertilizing effect on fungi and mycorrhiza. Chitosan nanocomposites can be used as a growth regulator for peatland paddy varieties and can accelerate peatland restoration in tropical areas.
Collapse
|
|
3 |
1 |
7
|
Bajra BD, Lubis MES, Yudanto BG, Panjaitan FR, Rizki IF, Mulyono ME, Kusumah MS. Determination of black soldier fly larvae performance for oil palm based waste reduction and biomass conversion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118269. [PMID: 37245310 DOI: 10.1016/j.jenvman.2023.118269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Oil palm biomass, such as empty fruit bunches and palm kernel meal, has low digestibility. Thus, a suitable bioreactor is urgently needed to efficiently convert oil palm biomass into high-value products. The polyphagous black soldier fly (BSF, Hermetia illucens) has gained global attention for its role in biomass conversion. However, there is scarce information on the ability of the BSF to sustainably manage highly lignocellulosic matter, such as oil palm empty fruit bunches (OPEFB). Therefore, this study aimed to investigate the performance of the black soldier fly larvae (BSFL) in oil palm biomass management. Several formulations were fed to the BSFL five days after hatching (DAH), and the effects on oil palm biomass-based substrate waste reduction and biomass conversion were analyzed. Furthermore, the resulting growth parameters correlating to the treatments were evaluated, including feed conversion rate (FCR), survival rates, and developmental rates. The most optimal results were obtained by mixing 50% of palm kernel meal (PKM) with 50% of coarse oil palm empty fruit bunches (OPEFB), resulting in an FCR of 3.98 ± 0.08 and a survival rate of 87% ± 4.16. Moreover, this treatment is a promising method for waste reduction (11.7% ± 6.76), with a bioconversion efficiency (corrected for residue) of 71.5% ± 1.12. In conclusion, the study findings indicate that incorporating PKM into OPEFB substrate can substantially alter BSFL growth, reduce oil palm waste, and optimize biomass conversion.
Collapse
|
|
2 |
1 |
8
|
Terry LM, Wee MXJ, Chew JJ, Khaerudini DS, Darsono N, Aqsha A, Saptoro A, Sunarso J. Catalytic co-pyrolysis of oil palm trunk and polypropylene with Ni-Mo/TiO 2 and Ni/Al 2O 3: Oil composition and mechanism. ENVIRONMENTAL RESEARCH 2023; 224:115550. [PMID: 36841526 DOI: 10.1016/j.envres.2023.115550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Pyrolysis oil from oil palm biomass can be a sustainable alternative to fossil fuels and the precursor for synthesizing petrochemical products due to its carbon-neutral properties and low sulfur and nitrogen content. This work investigated the effect of applying mesoporous acidic catalysts, Ni-Mo/TiO2 and Ni/Al2O3, in a catalytic co-pyrolysis of oil palm trunk (OPT) and polypropylene (PP) from 500 to 700 °C. The obtained oil yields varied between 12.67 and 19.50 wt.% and 12.33-17.17 wt.% for Ni-Mo/TiO2 and Ni/Al2O3, respectively. The hydrocarbon content in oil significantly increased up to 54.07-58.18% and 37.28-68.77% after adding Ni-Mo/TiO2 and Ni/Al2O3, respectively. The phenolic compounds content was substantially reduced to 8.46-20.16% for Ni-Mo/TiO2 and 2.93-14.56% for Ni/Al2O3. Minor reduction in oxygenated compounds was noticed from catalytic co-pyrolysis, though the parametric effects of temperature and catalyst type remain unclear. The enhanced deoxygenation and cracking of phenolic and oxygenated compounds and the PP decomposition resulted in increased hydrocarbon production in oil during catalytic co-pyrolysis. Catalyst addition also promoted the isomerization and oligomerization reactions, enhancing the formation of cyclic relative to aliphatic hydrocarbon.
Collapse
|
|
2 |
1 |
9
|
Mohd Idris MN, Hashim H. Integrating palm oil biomass waste utilization in coal-fired power plants for meeting near-term emission targets. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113118. [PMID: 34216903 DOI: 10.1016/j.jenvman.2021.113118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Biomass co-firing with coal can be adopted in the electricity sector to promote greenhouse gas reduction, renewable energy production, and resource efficiency improvement toward environmental sustainability. This realization, however, requires effective management of supply chain issues, such as the collection of biomass feedstock, the transportation of biomass, and the localization of biomass processing plants to deliver the co-firing scales needed. This work addresses these issues by providing a techno-economic assessment conducted in a spatially-explicit manner to investigate the opportunity for scaling up the co-firing deployment at the national scale. The modeling approach is applied to the case of Malaysia's coal and palm oil biomass industries. The number of cases involving the impact of energy decarbonization targets, economic policy instrument, and supply chain cost parameter variations on the co-firing scales deployed are assessed. The findings show that densified biomass feedstock can substitute significant shares of coal capacities to deliver up to 29 MtCO2/year of carbon dioxide reduction. Nevertheless, this would cause a surge in the electricity system cost by up to 2 billion USD/year due to the substitution of up to 40% of the coal plant capacities. In facilitating the maximal deployment of co-firing at the national scale, more than 100 solid biofuel production plants would need to be built to support a maximum of 41 TWh/year of co-firing capacity. Actions to minimize the specific cost elements of the biomass co-firing supply chain are thus needed in the near term to increase the effectiveness of economic policy instrument to promote co-firing and reduce environmental emissions.
Collapse
|
|
4 |
1 |
10
|
Hau EH, Chew LY, Yeo SK, Owatworakit A, Teh SS, Mah SH. Oil palm leaf protein hydrolysate and its novel peptides as alternative plant-based α-glucosidase inhibitors. Int J Biol Macromol 2025; 291:138897. [PMID: 39701231 DOI: 10.1016/j.ijbiomac.2024.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Diabetes, particularly type II, is a global health concern, with current treatments like α-glucosidase inhibitors often causing gastrointestinal side effects. This study explored the antihyperglycemic potential of crude protein hydrolysate from oil palm leaves (OPL) as a plant-based α-glucosidase inhibitor. OPL protein hydrolysate was extracted under acidic, neutral, and alkaline conditions, and their α-glucosidase inhibitory activity was assessed. OPL hydrolysate obtained under neutral conditions for 2 h showed the highest inhibitory activity, comparable to the standard drug, acarbose. Bioassay-guided fractionation of the most potent extract revealed that peptides from sub-fractions C1 and C9 exhibited stronger inhibition, with IC50 values of 66.3 and 62.0 μg/mL, respectively. Seven novel peptides were identified from these fractions, and molecular docking confirmed stable interactions between these peptides and the α-glucosidase enzyme via hydrogen bonds and salt bridges. These findings suggest that OPL protein hydrolysate is a plant-based promising natural α-glucosidase inhibitor with potential as an antidiabetic agent. Future studies should focus on in vivo validation of its efficacy and safety for therapeutic use.
Collapse
|
|
1 |
|
11
|
Ong ES, Rabbani AH, Habashy MM, Abdeldayem OM, Al-Sakkari EG, Rene ER. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118160. [PMID: 34562690 DOI: 10.1016/j.envpol.2021.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
By the year 2050, it is estimated that the demand for palm oil is expected to reach an enormous amount of 240 Mt. With a huge demand in the future for palm oil, it is expected that oil palm by-products will rise with the increasing demand. This represents a golden opportunity for sustainable biohydrogen production using oil palm biomass and palm oil mill effluent (POME) as the renewable feedstock. Among the different biological methods for biohydrogen production, dark fermentation and photo-fermentation have been widely studied for their potential to produce biohydrogen by using various waste materials as feedstock, including POME and oil palm biomass. However, the complex structure of oil palm biomass and POME, such as the lignocellulosic composition, limits fermentable substrate available for conversion to biohydrogen. Therefore, proper pre-treatment and suitable process conditions are crucial for effective biohydrogen generation from these feedstocks. In this review, the characteristics of palm oil industrial waste, the process used for biohydrogen production using palm oil industrial waste, their pros and cons, and the influence of various factors have been discussed, as well as a comparison between studies in terms of types of reactors, pre-treatment strategies, the microbial culture used, and optimum operating condition have been presented. Through biological production, hydrogen production rates up to 52 L-H2/L-medium/h and 6 L-H2/L-medium/h for solid and liquid palm oil industrial waste, respectively, can be achieved. In short, the continuous supply of palm oil production by-product and relatively, the low cost of the biological method for hydrogen production indicates the potential source of renewable energy.
Collapse
|
Review |
4 |
|
12
|
Ouyang D, Liu T, Astimar AA, Lau HLN, Teh SS, Nursyairah J, Liu D, Zhao X. Model-based process intensification of dilute acid pre-hydrolysis of oil palm empty fruit bunch biomass for pretreatment and furfural production. BIORESOURCE TECHNOLOGY 2023; 372:128626. [PMID: 36642202 DOI: 10.1016/j.biortech.2023.128626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
A novel process for simultaneous production of furfural and pretreatment of oil palm empty fruit bunch (EFB) by dilute acid pre-hydrolysis was developed based on non-isothermal kinetic modeling. Mass transfer analysis suggested that the internal diffusion could be neglected as diffusion time of sulfuric acid in EFB particles was significantly shorter than the pre-hydrolysis period, whereas the heating stage could not be neglected due to a significant part of xylan was solubilized at the stage. A strategy for increasing furfural yield was developed by intermittent discharging of steam, resulting in 71.4 % furfural yield. The pretreated solids showed good enzymatic digestibility. 136.3 g/L glucose corresponding to 81.6 % yield was obtained by high-solid loading hydrolysis. 95.4 g furfural and 212 g glucose could be obtained from 1 kg dry EFB. Therefore, non-isothermal effects on polysaccharide hydrolysis and pentose decomposition should be considered carefully for an efficient process design of EFB biorefining.
Collapse
|
|
2 |
|