Saeki I, Kondo K, Furukoshi Y, Watanabe Y, Niwa T. Design of taste-masked swellable drug particles using dry-coating technology with mechanical curing.
Eur J Pharm Biopharm 2021;
160:9-22. [PMID:
33472100 DOI:
10.1016/j.ejpb.2020.12.019]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
A novel dry coating technique for fine particles that does not require any liquids has been developed. Swellable ordered-mixed drug particles (Swell-OM-spheres, SOS), using a modified starch as the core particle and a drug coating layer have been previously developed. In the present work, SOS particles were further processed to generate 100-μm taste-masking particles using an all dry coating processes. SOS particles were coated with a gastric-soluble powder using a mechanical powder processor. The coated particles (CPs) were subsequently heated while rotating in the same powder processor, completing film formation by a process termed dynamic curing. As a control, conventional film formation (static curing) was performed using a drying oven. The CPs obtained by these two curing processes had distinct appearances, but exhibited equivalent dissolution suppression effects in a medium at pH 6.8 (the pH of the oral cavity). The suppression effect was further improved by adding a plasticizer to the coating powder, even though a lower heating temperature was required. Orally disintegrating tablets incorporating these CPs exhibited excellent taste-masking performance, i.e., suppressing taste in saliva while accelerating dissolution in gastric juice. The dissolution behavior indicated that the CPs can provide an ON/OFF switching function in drug release.
Collapse