1
|
Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw 2018; 18:e8. [PMID: 29503739 PMCID: PMC5833125 DOI: 10.4110/in.2018.18.e8] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022] Open
Abstract
Cytokines play a pivotal role in maintaining bone homeostasis. Osteoclasts (OCs), the sole bone resorbing cells, are regulated by numerous cytokines. Macrophage colony-stimulating factor and receptor activator of NF-κB ligand play a central role in OC differentiation, which is also termed osteoclastogenesis. Osteoclastogenic cytokines, including tumor necrosis factor-α, IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, IL-17, IL-23, and IL-34, promote OC differentiation, whereas anti-osteoclastogenic cytokines, including interferon (IFN)-α, IFN-β, IFN-γ, IL-3, IL-4, IL-10, IL-12, IL-27, and IL-33, downregulate OC differentiation. Therefore, dynamic regulation of osteoclastogenic and anti-osteoclastogenic cytokines is important in maintaining the balance between bone-resorbing OCs and bone-forming osteoblasts (OBs), which eventually affects bone integrity. This review outlines the osteoclastogenic and anti-osteoclastogenic properties of cytokines with regard to osteoimmunology, and summarizes our current understanding of the roles these cytokines play in osteoclastogenesis.
Collapse
|
Review |
7 |
339 |
2
|
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, Yamato H, Yotsumoto K, Tanaka U, Taketomi T, Uchiumi T, Le AD, Shi S, Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater 2021; 122:306-324. [PMID: 33359765 PMCID: PMC7897289 DOI: 10.1016/j.actbio.2020.12.046] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC)-derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
275 |
3
|
Lin K, Xia L, Li H, Jiang X, Pan H, Xu Y, Lu WW, Zhang Z, Chang J. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 2013; 34:10028-42. [PMID: 24095251 DOI: 10.1016/j.biomaterials.2013.09.056] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/16/2013] [Indexed: 01/08/2023]
Abstract
The regeneration capacity of the osteoporotic bones is generally lower than that of the normal bones. Current methods of bone defect treatment for osteoporosis are not always satisfactory. Recent studies have shown that the silicate based biomaterials can stimulate osteogenesis and angiogenesis due to the silicon (Si) ions released from the materials, and enhance bone regeneration in vivo. Other studies showed that strontium (Sr) plays a distinct role on inhibiting bone resorption. Based on the hypothesis that the combination of Si and Sr may have synergetic effects on osteoporotic bone regeneration, the porous Sr-substituted calcium silicate (SrCS) ceramic scaffolds combining the functions of Sr and Si elements were developed with the goals to promote osteoporotic bone defect repair. The effects of the ionic extract from SrCS on osteogenic differentiation of bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX), angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) were investigated. The in vitro results showed that Sr and Si ions released from SrCS enhanced cell viability, alkaline phosphatase (ALP) activity, and mRNA expression levels of osteoblast-related genes of rBMSCs-OVX and expression of vascular endothelial growth factor (VEGF) without addition of extra osteogenic and angiogenic reagents. The activation in extracellular signal-related kinases (ERK) and p38 signaling pathways were observed in rBMSCs-OVX cultured in the extract of SrCS, and these effects could be blocked by ERK inhibitor PD98059, and P38 inhibitor SB203580, respectively. Furthermore, the ionic extract of SrCS stimulated HUVECs proliferation, differentiation and angiogenesis process. The in vivo experiments revealed that SrCS dramatically stimulated bone regeneration and angiogenesis in a critical sized OVX calvarial defect model, and the enhanced bone regeneration might be attributed to the modulation of osteogenic differentiation of endogenous mesenchymal stem cells (MSCs) and the inhibition of osteoclastogenesis, accompanying with the promotion of the angiogenic activity of endothelial cells (ECs).
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
231 |
4
|
Wu Q, Zhou X, Huang D, Ji Y, Kang F. IL-6 Enhances Osteocyte-Mediated Osteoclastogenesis by Promoting JAK2 and RANKL Activity In Vitro. Cell Physiol Biochem 2017; 41:1360-1369. [PMID: 28278513 DOI: 10.1159/000465455] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Evidence suggests that IL-6 affects bone mass by modulating osteocyte communication towards osteoclasts. However, the mechanism by which IL-6 enhances osteocyte-mediated osteoclastogenesis is unclear. We aimed to investigate the inflammatory factors in serum after orthodontic surgery and their relationship between osteocytes and osteoclasts. METHODS Serum was obtained from 10 orthognathic surgery patients, and inflammatory factors were detected by ELISA. We treated the osteocyte-like cell line MLO-Y4 with recombinant mouse IL-6 and IL-6 receptor (IL-6R), and used quantitative RT-PCR and Western blotting to explore Receptor activator of nuclear factor-κB ligand (RANKL) expression at both the mRNA and protein level. MLO-Y4 cells were co-cultured with osteoclast precursor cells, and the formation of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining. To explore the role of JAK2 in the osteocyte-mediated osteoclastogenesis, AG490, a JAK2 inhibitor, was used to inhibit the JAK2-STAT3 pathway in osteocytes. RESULTS In our study, we found that IL-6 and RANKL were stimulated in serum 3-7 days after orthognathic surgery. Therefore, IL-6 and IL-6 receptor enhanced the expression of RANKL at both the mRNA and protein level in MLO-Y4. Furthermore, when MLO-Y4 cells were co-cultured with osteoclast precursor cells, it significantly stimulated osteoclastogenesis. Our study indicated that osteocytes could promote osteoclastic differentiation and the formation of TRAP-positive multinucleated cells after stimulation with IL-6 and IL-6R. Our results also indicated that treatment with IL-6 and IL-6R increased RANKL mRNA expression and the RANKL/OPG expression ratio. Meanwhile, the phosphorylation of Janus kinase 2 (JAK2) and Signal transducer and activator of transcription (STAT3) also correlated with RANKL levels. Furthermore, we investigated the effects of a specific JAK2 inhibitor, AG490, on the expression of RANKL in osteocyte-like MLO-Y4 cells and osteocyte-mediated osteoclastogenesis. The results showed that AG490 inhibited (p)-JAK2 and RANKL expression. Osteoclastic differentiation was decreased after pretreatment in MLO-Y4 with mouse IL-6/IL-6R and AG490; therefore, we concluded that IL-6 increased osteocyte-mediated osteoclastic differentiation by activating JAK2 and RANKL. CONCLUSION The effects of IL-6/il-6R and AG490 on osteocyte-mediated osteoclastogenesis contribute to our understanding of the role of inflammatory factors in the interaction between osteocytes and osteoclast precursors. IL-6 and RANKL are key factors for bone remodelling after the orthodontic surgery, and their roles in bone remodelling may be fundamental mechanisms accelerating tooth movement by orthodontic surgery.
Collapse
|
Journal Article |
8 |
163 |
5
|
Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C, Fang B. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater 2017; 61:217-232. [PMID: 28807800 DOI: 10.1016/j.actbio.2017.08.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023]
Abstract
Bioactive ions released from bioceramics play important roles in bone regeneration; however, it is unclear how each ionic composition in complex bioceramics exerts its specific effect on bone regeneration. The aim of this study is to elucidate the functional effects of Sr and Si ions in bioceramics on the regeneration of osteoporotic bone. A model bioceramic with Sr- and Si-containing components (SMS) was successfully fabricated and the effects of ionic products from SMS bioceramics on the osteogenic, osteoclastic and angiogenic differentiation of rBMSCs-OVX and RANKL-induced osteoclasts were investigated. The results showed that SMS bioceramics could enhance ALP activity and expression of Col 1, OCN, Runx2, and angiogenic factors including VEGF and Ang-1. SMS bioceramics not only rebalanced the OPG/RANKL ratio of rBMSCs-OVX at early stage, but also repressed RANKL-induced osteoclast formation and expression of TRAP, DC-STAMP, V-ATPase a3, and NFATc1. The synergistic effects of Sr and Si ions were further investigated as compared with those of similar concentrations of Sr and Si ions alone. Sr and Si ions possessed synergistic effects on osteogenesis, osteoclastogenesis, and angiogenesis, attributed to the dominant effects of Sr ions on enhancing angiogenesis and repressing osteoclastogenesis, and the dominant effects of Si ions on stimulating osteogenesis. The in vivo study using critical-size mandibular defects of OVX rat models showed that SMS bioceramics could significantly enhance bone formation and mineralization compared with β-TCP bioceramics. Our results are the first to elucidate the specific effect of each ion from bioceramics on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration, paving the way for the design of functional biomaterials with complex compositions for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE Bioactive ions released from bioceramics play important roles for bone regeneration; however, it is unclear how each of ionic compositions in complex bioceramics exerts its specific effect on bone regeneration. The aim of present study is to elucidate the functional effects of Sr and Si ions in complex bioceramics on the regeneration of osteoporotic bone. A model bioceramic with Sr and Si-containing components (SMS) was successfully fabricated and the effects of ionic products from SMS bioceramics on the osteogenic, osteoclastic and angiogenic differentiation of rBMSCs-OVX and RANKL-induced osteoclasts were investigated. The results showed that SMS bioceramics could enhance ALP activity and expression of Col 1, OCN, Runx2 and angiogenic factors including VEGF and Ang-1. SMS bioceramics not only rebalanced the ratio of OPG/RANKL of OVX-BMSCs at early stage, but also repressed RANKL-induced osteoclast formation and expression of TRAP, DC-STAMP, V-ATPase a3, and NFATc1. The synergistic effects of Sr and Si ions were further investigated as compared with the similar concentration of Sr and Si ions alone. It was found that Sr and Si ions possessed synergistic effects on osteogenesis, osteoclastogenesis and angiogenesis, attributed to the dominant effects of Sr ions on enhancing angiogenesis and repressing osteoclastogenesis, and the dominant effects of Si ions on stimulating osteogenesis. The in vivo study using critical-size mandibular defects of OVX rat models showed that SMS bioceramics could significantly enhance bone formation and mineralization as compared with β-TCP bioceramics. It is suggested that SMS bioceramics may be a promising biomaterial for osteoporotic bone regeneration. To our knowledge, this is the first time to elucidate the specific effect of each ion from bioceramics on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration, paving the way to design functional biomaterials with complex compositions for tissue engineering and regenerative medicine.
Collapse
|
|
8 |
162 |
6
|
Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol 2020; 28:101309. [PMID: 31487581 PMCID: PMC6728880 DOI: 10.1016/j.redox.2019.101309] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022] Open
Abstract
The dysregulation of ROS production and osteoclastogenesis is involved in the progress of osteoporosis. To identify novel and effective targets to treat this disease, it is important to explore the underlying mechanisms. In our study, we firstly tested the effect of the Nrf2 activator RTA-408, a novel synthetic triterpenoid under clinical investigation for many diseases, on osteoclastogenesis. We found that it could inhibit osteoclast differentiation and bone resorption in a time- and dose-dependent manner. Further, RTA-408 enhanced the expression and activity of Nrf2 and significantly suppressed RANKL-induced reactive oxygen species (ROS) production. Nrf2 regulates the STING expression and STING induces the production of IFN-β. Here, we found that RTA-408 could suppress STING expression, but that it does not affect Ifnb1 expression. RANKL-induced degradation of IκBα and the nuclear translocation of P65 was suppressed by RTA-408. Although this compound was not found to influence STING-IFN-β signaling, it suppressed the RANKL-induced K63-ubiquitination of STING via inhibiting the interaction between STING and the E3 ubiquitin ligase TRAF6. Further, adenovirus-mediated STING overexpression rescued the suppressive effect of RTA-408 on NF-κB signaling and osteoclastogenesis. In vivo experiments showed that this compound could effectively attenuate ovariectomy (OVX)-induced bone loss in C57BL/6 mice by inhibiting osteoclastogenesis. Collectively, we show that RTA-408 inhibits NF-κB signaling by suppressing the recruitment of TRAF6 to STING, in addition to attenuating osteoclastogenesis and OVX-induced bone loss in vivo, suggesting that it could be a promising candidate for treating osteoporosis in the future.
Collapse
|
research-article |
5 |
112 |
7
|
An J, Hao D, Zhang Q, Chen B, Zhang R, Wang Y, Yang H. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption. Int Immunopharmacol 2016; 36:118-131. [PMID: 27131574 DOI: 10.1016/j.intimp.2016.04.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 01/13/2023]
Abstract
Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine.
Collapse
|
Review |
9 |
101 |
8
|
Takeshita S, Fumoto T, Naoe Y, Ikeda K. Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem 2014; 289:16699-710. [PMID: 24753250 DOI: 10.1074/jbc.m114.547919] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With advancing age bone marrow is progressively replaced with adipose tissue, accompanied by a concomitant decline in bone mass and strength. The mechanism underlying the increase in marrow fat and bone destruction remains elusive. We found that on the way of adipogenic differentiation of marrow stromal cells, receptor activator for NF-κB ligand (Rankl) expression was induced, concomitantly with a down-regulation of osteoprotegerin, which prompted us to hypothesize that cells at a preadipocyte stage express RANKL. This concept was supported by the findings that the early adipogenic transcription factors C/EBPβ and C/EBPδ, but not the late factor peroxisome proliferator-activated receptor γ, bind to the Rankl promoter and stimulate Rankl gene transcription. In fact, when cells isolated from the bone marrow of aging mice were analyzed by flow cytometry, we found that cells expressing the pre-adipocyte marker Pref-1 were RANKL-positive, and the number of these cells was increased with aging, with concomitant down-regulation of osteoprotegerin, and most importantly, that these RANKL(+)/Pref-1(+) marrow cells were capable of generating osteoclasts from bone marrow macrophages. Thus, the capacity of cells at a pre-adipocyte stage to express RANKL via C/EBPβ and C/EBPδ and to support osteoclastogenesis may account partly for the co-progression of fatty marrow and bone destruction with aging.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
98 |
9
|
Thummuri D, Jeengar MK, Shrivastava S, Nemani H, Ramavat RN, Chaudhari P, Naidu VGM. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res 2015; 99:63-73. [PMID: 26022736 DOI: 10.1016/j.phrs.2015.05.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/16/2015] [Accepted: 05/17/2015] [Indexed: 01/24/2023]
Abstract
Osteoclasts are multinuclear giant cells responsible for bone resorption in inflammatory bone diseases such as osteoporosis, rheumatoid arthritis and periodontitis. Because of deleterious side effects with currently available drugs the search continues for novel effective and safe therapies. Thymoquinone (TQ), the major bioactive component of Nigella sativa has been investigated for its anti-inflammatory, antioxidant and anticancer activities. However, its effects in osteoclastogenesis have not been reported. In the present study we show for the first time that TQ inhibits nuclear factor-KB ligand (RANKL) induced osteoclastogenesis in RAW 264.7 and primary bone marrow derived macrophages (BMMs) cells. RANKL induced osteoclastogenesis is associated with increased expression of multiple transcription factors via activation of NF-KB, MAPKs signalling and reactive oxygen species (ROS). Mechanistically TQ blocked the RANKL induced NF-KB activation by attenuating the phosphorylation of IkB kinase (IKKα/β). Interestingly, in RAW 264.7 cells TQ inhibited the RANKL induced phosphorylation of MAPKs and mRNA expression of osteoclastic specific genes such as TRAP, DC-STAMP, NFATc1 and c-Fos. In addition, TQ also decreased the RANKL stimulated ROS generation in macropahges (RAW 264.7) and H2O2 induced ROS generation in osteoblasts (MC-3T3-E1). Consistent with in vitro results, TQ inhibited lipopolysaccharide (LPS) induced bone resorption by suppressing the osteoclastogenesis. Indeed, micro-CT analysis showed that bone mineral density (BMD) and bone architecture parameters were positively modulated by TQ. Taken together our data demonstrate that TQ has antiosteoclastogenic effect by inhibiting inflammation induced activation of MAPKs, NF-KB and ROS generation followed by suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
95 |
10
|
Dudli S, Sing DC, Hu SS, Berven SH, Burch S, Deviren V, Cheng I, Tay BKB, Alamin TF, Ith MAM, Pietras EM, Lotz JC. ISSLS PRIZE IN BASIC SCIENCE 2017: Intervertebral disc/bone marrow cross-talk with Modic changes. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:1362-1373. [PMID: 28138783 PMCID: PMC5409869 DOI: 10.1007/s00586-017-4955-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/15/2017] [Indexed: 12/18/2022]
Abstract
STUDY DESIGN Cross-sectional cohort analysis of patients with Modic Changes (MC). OBJECTIVE Our goal was to characterize the molecular and cellular features of MC bone marrow and adjacent discs. We hypothesized that MC associate with biologic cross-talk between discs and bone marrow, the presence of which may have both diagnostic and therapeutic implications. BACKGROUND DATA MC are vertebral bone marrow lesions that can be a diagnostic indicator for discogenic low back pain. Yet, the pathobiology of MC is largely unknown. METHODS Patients with Modic type 1 or 2 changes (MC1, MC2) undergoing at least 2-level lumbar interbody fusion with one surgical level having MC and one without MC (control level). Two discs (MC, control) and two bone marrow aspirates (MC, control) were collected per patient. Marrow cellularity was analyzed using flow cytometry. Myelopoietic differentiation potential of bone marrow cells was quantified to gauge marrow function, as was the relative gene expression profiles of the marrow and disc cells. Disc/bone marrow cross-talk was assessed by comparing MC disc/bone marrow features relative to unaffected levels. RESULTS Thirteen MC1 and eleven MC2 patients were included. We observed pro-osteoclastic changes in MC2 discs, an inflammatory dysmyelopoiesis with fibrogenic changes in MC1 and MC2 marrow, and up-regulation of neurotrophic receptors in MC1 and MC2 bone marrow and discs. CONCLUSION Our data reveal a fibrogenic and pro-inflammatory cross-talk between MC bone marrow and adjacent discs. This provides insight into the pain generator at MC levels and informs novel therapeutic targets for treatment of MC-associated LBP.
Collapse
|
research-article |
8 |
94 |
11
|
Mladenović Ž, Johansson A, Willman B, Shahabi K, Björn E, Ransjö M. Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater 2014; 10:406-18. [PMID: 24016843 DOI: 10.1016/j.actbio.2013.08.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022]
Abstract
Several studies have suggested that silicon (Si) may be essential for the normal development of connective tissue and the skeleton. Positive effects of Si from the diet as well as from Si-containing biomaterials, such as bioactive glass 45S5 (BG), have been demonstrated. Studies have reported that Si stimulates osteoblast proliferation and differentiation. However, the effects of Si on osteoclasts have not been directly addressed. The purpose of the present in vitro study was to clarify if Si has regulatory effects on osteoclast formation and bone resorption. The effects of BG, BG dissolution extracts and Si containing cell culture medium were investigated in a mouse calvarial bone resorption assay and osteoclast formation assays (mouse bone marrow cultures and RAW264.7 cell cultures). We conclude from our results that Si causes significant inhibition of osteoclast phenotypic gene expressions, osteoclast formation and bone resorption in vitro. In conclusion, the present study suggests that Si has a dual nature in bone metabolism with stimulatory effects on osteoblasts and inhibitory effects on osteoclasts. This suggested property of Si might be interesting to further explore in future biomaterials for treatments of bone defects in patients.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
81 |
12
|
Shao H, Shen J, Wang M, Cui J, Wang Y, Zhu S, Zhang W, Yang H, Xu Y, Geng D. Icariin protects against titanium particle-induced osteolysis and inflammatory response in a mouse calvarial model. Biomaterials 2015; 60:92-9. [PMID: 25985156 DOI: 10.1016/j.biomaterials.2015.04.048] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/19/2015] [Accepted: 04/30/2015] [Indexed: 01/17/2023]
Abstract
Periprosthetic osteolysis and subsequent aseptic loosening are common in implant failure, a complication with revision surgery being the only established treatment. Wear particle-induced inflammation and extensive osteoclastogenesis play critical roles in periprosthetic osteolysis. A recent approach in limiting osteolysis is therefore focused on inhibiting osteoclastic bone resorption. This study aimed to investigate the potential impact of icariin, the major ingredient of Epimedium, on titanium particle-induced osteolysis in a mouse calvarial model. Eighty-four male C57BL/J6 mice were divided randomly into four groups. Mice in the sham group underwent sham surgery only, whereas animals in the vehicle, low- and high-concentration icariin groups received titanium particles. Mice in the low- and high-concentration icariin groups were gavage-fed with icariin at 0.1 or 0.3 mg/g/day, respectively, until sacrifice. Mice in the sham and vehicle groups received phosphate-buffered saline daily. After 2 weeks, mouse calvariae were collected for micro-computed tomography, histomorphometry and molecular analysis. Icariin significantly reduced particle-induced bone resorption compared with the vehicle group. Icariin also prevented an increase in receptor activator of nuclear factor kappa B ligand/osteoprotegerin ratio and subsequently suppressed osteoclast formation in titanium particle-charged calvariae. In addition, immunohistochemical analysis and enzyme-linked immunosorbent assay showed icariin significantly reduced expression and secretion of tumor necrosis factor-α, interleukin-1β and interleukin-6 in the calvariae of titanium-stimulated mice. Collectively, these results suggest that icariin represents a potential treatment for titanium particle-induced osteolysis and could be developed as a new therapeutic candidate for the prevention and treatment of aseptic loosening.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
81 |
13
|
Xu Z, Liu X, Wang H, Li J, Dai L, Li J, Dong C. Lung adenocarcinoma cell-derived exosomal miR-21 facilitates osteoclastogenesis. Gene 2018; 666:116-122. [PMID: 29730429 DOI: 10.1016/j.gene.2018.05.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Osteoclastogenesis is the rate-limiting step in tumor osteolytic metastasis. MicroRNAs play crucial roles in tumor progression and osteoclastogenesis regulation. Recent studies have demonstrated that exosomes are able to function as messengers that deliver microRNAs between cells. However, the effects of lung adenocarcinoma cell-derived exosomal miRNAs in osteoclastogenesis remain poorly understood. In this study, we found that exosomes derived from A549 cells facilitate osteoclastogenesis. As miR-21 was involved in tumorigenesis and osteoclastogenesis, we further proved the existence of miR-21 in A549 cell-derived exosomes and investigated its function. MiR-21 overexpression in A549 cells led to increased levels of miR-21 in exosomes and facilitated osteoclastogenesis. Conversely, miR-21 depletion in A549 cells down-regulated miR-21 in exosomes and alleviated osteoclastogenesis. Mechanical experiments demonstrated that exosomal miR-21 exerted its promoting effects on osteoclastogenesis via targeting Pdcd4, which is a known target of miR-21 and a regulator of osteoclastogenesis. Finally, clinical data showed that higher miR-21 levels were associated with a worse overall survival in lung adenocarcinoma patients. In conclusion, we found that lung adenocarcinoma derived exosomal miR-21 may facilitate osteoclastogenesis, which suggests that it is a potential therapeutic target of bone metastasis.
Collapse
|
Journal Article |
7 |
77 |
14
|
Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci 2018; 75:2519-2528. [PMID: 29670999 PMCID: PMC9809143 DOI: 10.1007/s00018-018-2817-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in bone remodeling. Defects in osteoclasts result in unbalanced bone remodeling and are linked to many bone diseases including osteoporosis, rheumatoid arthritis, primary bone cancer, and skeletal metastases. Receptor activator of NF-kappaB ligand (RANKL) is a classical inducer of osteoclast formation. In the presence of macrophage-colony-stimulating factor, RANKL and co-stimulatory signals synergistically regulate osteoclastogenesis. However, recent discoveries of alternative pathways for RANKL-independent osteoclastogenesis have led to a reassessment of the traditional mechanisms that regulate osteoclast formation. In this review, we provide an overview of signaling pathways and other regulatory elements governing osteoclastogenesis. We also identify how osteoclastogenesis is altered in pathological conditions and discuss therapeutic targets in osteoclasts for the treatment of skeletal diseases.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
76 |
15
|
Strauss FJ, Nasirzade J, Kargarpoor Z, Stähli A, Gruber R. Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies. Clin Oral Investig 2019; 24:569-584. [PMID: 31879804 PMCID: PMC6988133 DOI: 10.1007/s00784-019-03156-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Objective To systematically assess the effects of platelet-rich fibrin (PRF) on in vitro cellular behavior. Methods A systematic electronic search using MEDLINE database was performed. In vitro studies using PRF were considered and articles published up to June 31, 2018 were screened. Eligible studies were selected based on the use of human PRF. Results In total, 1746 titles were identified with the search terms, from these 37 met the inclusion criteria and were chosen for data extraction. In addition, 16 new studies, mainly published in 2019, were also included in the analysis resulting in 53 studies. No meta-analysis could be performed due to the heterogeneity of study designs. Included studies show that PRF enhances proliferation, migration, adhesion, and osteogenic differentiation on a variety of cell types along with cell signaling activation. Furthermore, PRF reduces inflammation, suppresses osteoclastogenesis, and increases the expression of various growth factors in mesenchymal cells. Summary and conclusions Despite some notable differences of the studies, the overall findings suggest a positive effect of PRF on cell proliferation, migration, adhesion, differentiation, and inflammation pointing towards a therapeutic potential in regenerative dentistry. Clinical relevance PRF serves as a reservoir of bioactive molecules to support wound healing and bone regeneration. Although the cellular mechanisms by which PRF supports the clinical outcomes remain unclear, in vitro research provides possible explanations. This systematic review aims to provide an update of the existing research on how PRF affects basic physiological processes in vitro. The overall findings suggest that PRF induces cell proliferation, migration, adhesion, and differentiation along with possessing anti-inflammatory properties further supporting its therapeutic potential in wound healing and bone regeneration.
Collapse
|
Systematic Review |
6 |
74 |
16
|
Yuan FL, Xu RS, Jiang DL, He XL, Su Q, Jin C, Li X. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. Bone 2015; 75:128-37. [PMID: 25708053 DOI: 10.1016/j.bone.2015.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 12/24/2022]
Abstract
Osteoclasts, the primary bone resorbing cells, are responsible for destructive bone diseases such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis. Many plant-derived traditional medicines that might suppress the formation and/or function of osteoclasts are promising treatments for osteoclast-related diseases. In this study, we investigated the effects of leonurine hydrochloride (LH) on receptor activator NF-κB ligand (RANKL)-induced osteoclastogenesis and ovariectomy-induced bone loss. LH is a synthetic chemical compound based on the structure of leonurine, which is found in motherwort and has been reported to exhibit phytoestrogenic activity. In RAW 264.7 cells and mouse bone marrow monocytes (BMMs), LH suppressed RANKL-induced osteoclastogenesis and actin ring formation in a dose-dependent manner. LH targeted RANKL-induced osteoclastogenesis and bone resorption at an early stage. Molecular analysis demonstrated that LH attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation and degradation of IκBα and NF-κB p65 nuclear translocation. LH inhibited the RANK-TRAF6 association triggered by RANKL binding and the phosphatidylinositol 3-kinase (PI3K)/Akt axis, without significantly affecting the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and AP-1 signaling pathways. LH attenuated the RANKL-stimulated expression of osteoclast-related genes including NFATc1, tartrate resistant acid phosphatase (TRAP), cathepsin K, and osteoclast-associated receptor (OSCAR). Consistent with the in vitro results, LH administration attenuated osteoclast activity, thus preventing bone loss caused by estrogen deficiency in mice. In this study, LH suppressed RANKL-induced osteoclastogenesis via RANK-TRAF6, NF-κB, and PI3K/Akt signaling. These data provide the first evidence that LH might be a promising therapeutic compound to treat osteoclast-related diseases, such as osteoporosis.
Collapse
|
|
10 |
72 |
17
|
Weng Y, Wang H, Li L, Feng Y, Xu S, Wang Z. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol 2020; 40:101849. [PMID: 33486152 PMCID: PMC7823053 DOI: 10.1016/j.redox.2020.101849] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is the sixth most prevalent diseases around the globe, which is closely related to many systemic diseases and affects general health. As the leading cause of tooth loss, periodontitis is characterized by irreversible alveolar bone loss and activated osteoclastogenic process, which might be closely related to the activated intracellular reactive oxygen species (ROS) in osteoclasts. Here, we demonstrated triggering receptor expressed on myeloid cells 2 (Trem2) as a key regulator of osteoclastogenesis with the regulation of intracellular ROS signals in periodontitis. In the present study, the expression of Trem2 was significantly upregulated in human alveolar bones diagnosed with chronic periodontitis, as assessed by RNA-seq. In the mice model of periodontitis, the alveolar bone resorption was impeded in the presence of the conditional knockout of Trem2 in osteoclasts. Furthermore, we identified Trem2/DAP12/Syk-dependent cascade as a vital intracellular signaling for the amplification of reactive oxygen species (ROS) signals in osteoclastogenesis, while the accumulation of soluble Aβ42 oligomers (Aβo) in periodontitis microenvironment further strengthened the signals and enhanced osteoclastogenesis through direct interactions with Trem2. Collectively, Trem2 mediated ROS signal amplification cascade was crucial in the process of osteoclastogenesis in periodontitis, suggesting the potential of Trem2 as a target for the prevention and treatment of bone destruction in periodontitis.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
71 |
18
|
Jin Y, Li J, Wang Y, Ye R, Feng X, Jing Z, Zhao Z. Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells. Angle Orthod 2016; 85:87-94. [PMID: 24810489 DOI: 10.2319/123113-955.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To evaluate the function of Piezo1, an evolutionarily conserved mechanically activated channel, in periodontal ligament (PDL) tissue homeostasis under compressive loading. MATERIALS AND METHODS Primary human PDL cells (hPDLCs) were isolated, cultured, and then subjected to 2.0 g/cm(2) static compressive loading for 0.5, 3, 6, and 12 hours, respectively. The expressions of Piezo1 and osteoclastogenesis marker gene were assessed by semiquantitative reverse transcription-polymerase chain reaction. In addition, Piezo1 inhibitor, GsMTx4, was used to block the function of Piezo1, and tumor necrosis factor-α was also used as a positive control. After 12 hours of compressive loading the PDLCs were co-cultured with murine monocytic cell line RAW264.7. Immunofluorescence, western blot, enzyme-linked immunosorbent assay, and tartrate-resistant acid phosphatase staining were also used to test the potency of PDLCs to induce osteoclastogenesis and the activation of nuclear factor (NF)-κB. RESULTS Piezo1, cyclooxygenase-2, receptor activator of NF-κB ligand, and prostaglandin E2 were significantly upregulated under static compressive stimuli. GsMTx4 repressed osteoclastogenesis in the mechanical stress-pretreated PDLCs-RAW264.7 co-culture system. Furthermore, NF-κB signaling pathway was involved in the mechanical stress-induced osteoclastogenesis. CONCLUSIONS Piezo1 exerts a transduction role in mechanical stress-induced osteoclastogenesis in hPDLCs.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
67 |
19
|
Van Raemdonck K, Umar S, Palasiewicz K, Volkov S, Volin MV, Arami S, Chang HJ, Zanotti B, Sweiss N, Shahrara S. CCL21/CCR7 signaling in macrophages promotes joint inflammation and Th17-mediated osteoclast formation in rheumatoid arthritis. Cell Mol Life Sci 2020; 77:1387-1399. [PMID: 31342120 PMCID: PMC10040247 DOI: 10.1007/s00018-019-03235-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
In rheumatoid arthritis (RA), synovial tissue abundantly expresses CCL21, a chemokine strongly associated with RA susceptibility. In this study, we aimed to characterize the functional significance of CCL21/CCR7 signaling in different phases of RA pathogenesis. We determined that CCR7 is a hallmark of RA M1 synovial fluid (SF) macrophages, and its expression in RA monocytes and in vitro differentiated macrophages is closely associated with disease activity score (DAS28). In early stages of RA, monocytes infiltrate the synovial tissue. However, blockade of SF CCL21 or CCR7 prevents RA SF-mediated monocyte migration. CCR7 expression in the newly migrated macrophages can be accentuated by LPS and IFNγ and suppressed by IL-4 treatment. We also uncovered that CCL21 stimulation increases the number of M1-polarized macrophages (CD14+CD86+), resulting in elevated transcription of IL-6 and IL-23. These CCL21-induced M1 cytokines differentiate naïve T cells to Th17 cells, without affecting Th1 cell polarization. In the erosive stages of disease, CCL21 potentiates RA osteoclastogenesis through M1-driven Th17 polarization. Disruption of this intricate crosstalk, by blocking IL-6, IL-23, or IL-17 function, impairs the osteoclastogenic capacity of CCL21. Consistent with our in vitro findings, we establish that arthritis mediated by CCL21 expands the joint inflammation to bone erosion by connecting the differentiation of M1 macrophages with Th17 cells. Disease progression is further exacerbated by CCL21-induced neovascularization. We conclude that CCL21 is an attractive novel target for RA therapy, as blockade of its function may abrogate erosive arthritis modulated by M1 macrophages and Th17 cell crosstalk.
Collapse
|
|
5 |
65 |
20
|
Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S. MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1084-96. [PMID: 25123438 DOI: 10.1016/j.bbagrm.2014.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 01/08/2023]
Abstract
DC-STAMP is a key regulating molecule of osteoclastogenesis and osteoclast precursor (OCP) fusion. Emerging lines of evidence showed that microRNAs play crucial roles in bone metabolism and osteoclast differentiation, but no microRNA has yet been reported to be directly related to OCPs fusion. Through a microarray, we found that the expression of miR-7b in RAW264.7 cells was significantly decreased after induction with M-CSF and RANKL. The overexpression of miR-7b in RAW264.7 cells attenuated the number of TRAP-positive cells number and the formation of multinucleated cells, whereas the inhibition of miR-7b enhanced osteoclastogenesis. Through a dual luciferase reporter assay, we confirmed that miR-7b directly targets DC-STAMP. Other fusogenic molecules, such as CD47, ATP6v0d2, and OC-STAMP, were detected to be down-regulated in accordance with the inhibition of DC-STAMP. Because DC-STAMP also participates in osteoclast differentiation through the ITAM-ITIM network, multiple osteoclast-specific genes in the ITAM-ITIM network were detected to identify how DC-STAMP is involved in this process. The results showed that molecules associated with the ITAM-ITIM network, such as NFATc1 and OSCAR, which are crucial in osteoclastogenesis, were consistently altered due to DC-STAMP inhibition. These findings suggest that miR-7b inhibits osteoclastogenesis and cell-cell fusion by directly targeting DC-STAMP. In addition, the inhibition of DC-STAMP and its downstream signals changed the expression of other fusogenic genes and key regulating genes, such as Nfatc1, c-fos, Akt, Irf8, Mapk1, and Traf6. In conclusion, our findings indicate that miR-7b may be a potential therapeutic target for the treatment of osteoclast-related bone disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
64 |
21
|
Behera J, George AK, Voor MJ, Tyagi SC, Tyagi N. Hydrogen sulfide epigenetically mitigates bone loss through OPG/RANKL regulation during hyperhomocysteinemia in mice. Bone 2018; 114:90-108. [PMID: 29908298 PMCID: PMC6084464 DOI: 10.1016/j.bone.2018.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is a novel gasotransmitter produced endogenously in mammalian cells, which works by mediating diverse physiological functions. An imbalance in H2S metabolism is associated with defective bone homeostasis. However, it is unknown whether H2S plays any epigenetic role in bone loss induced by hyperhomocysteinemia (HHcy). We demonstrate that diet-induced HHcy, a mouse model of metabolite induced osteoporosis, alters homocysteine metabolism by decreasing plasma levels of H2S. Treatment with NaHS (H2S donor), normalizes the plasma level of H2S and further alleviates HHcy induced trabecular bone loss and mechanical strength. Mechanistic studies have shown that DNMT1 expression is higher in the HHcy condition. The data show that activated phospho-JNK binds to the DNMT1 promoter and causes epigenetic DNA hyper-methylation of the OPG gene. This leads to activation of RANKL expression and mediates osteoclastogenesis. However, administration of NaHS could prevent HHcy induced bone loss. Therefore, H2S could be used as a novel therapy for HHcy mediated bone loss.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
55 |
22
|
Li J, Deng C, Liang W, Kang F, Bai Y, Ma B, Wu C, Dong S. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS. Bioact Mater 2021; 6:3839-3850. [PMID: 33898880 PMCID: PMC8050801 DOI: 10.1016/j.bioactmat.2021.03.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is caused by an osteoclast activation mechanism. People suffering from osteoporosis are prone to bone defects. Increasing evidence indicates that scavenging reactive oxygen species (ROS) can inhibit receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis and suppress ovariectomy-induced osteoporosis. It is critical to develop biomaterials with antioxidant properties to modulate osteoclast activity for treating osteoporotic bone defects. Previous studies have shown that manganese (Mn) can improve bone regeneration, and Mn supplementation may treat osteoporosis. However, the effect of Mn on osteoclasts and the role of Mn in osteoporotic bone defects remain unclear. In present research, a model bioceramic, Mn-contained β-tricalcium phosphate (Mn-TCP) was prepared by introducing Mn into β-TCP. The introduction of Mn into β-TCP significantly improved the scavenging of oxygen radicals and nitrogen radicals, demonstrating that Mn-TCP bioceramics might have antioxidant properties. The in vitro and in vivo findings revealed that Mn2+ ions released from Mn-TCP bioceramics could distinctly inhibit the formation and function of osteoclasts, promote the differentiation of osteoblasts, and accelerate bone regeneration under osteoporotic conditions in vivo. Mechanistically, Mn-TCP bioceramics inhibited osteoclastogenesis and promoted the regeneration of osteoporotic bone defects by scavenging ROS via Nrf2 activation. These results suggest that Mn-containing bioceramics with osteoconductivity, ROS scavenging and bone resorption inhibition abilities may be an ideal biomaterial for the treatment of osteoporotic bone defect.
Mn-containing bioceramics with osteoconductivity, ROS scavenging and bone resorption inhibition abilities were prepared. Mn-containing bioceramics inhibited osteoclastogenesis by scavenging ROS via Nrf2 activation in vitro. Mn-containing bioceramics acted as antioxidant biomaterials accelerated bone defect regeneration in osteoporotic rats. Mn-containing bioceramics can be further applied as a biomaterial for treating osteoporotic bone defects.
Collapse
|
Journal Article |
4 |
54 |
23
|
Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. Biochem Biophys Res Commun 2018; 508:138-144. [PMID: 30473217 DOI: 10.1016/j.bbrc.2018.11.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
Abstract
Age-related skeletal changes is closely associated with imbalanced bone remodeling characterized by elevated osteocyte apoptosis and osteoclast activation. Since osteocytes are the commander of bone remodeling, attenuating increased osteocyte apoptosis may improve age-related bone loss. Exosomes, derived from mesenchymal stem cells, hold promising potential for cell-free therapy due to multiple abilities, such as promoting proliferation and suppressing apoptosis. We aimed to explore the effect of exosomes derived from adipose mesenchymal stem cell (ADSCs-exo) on osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. The osteocyte-like cell line MLO-Y4 was used as a model, and apoptosis was induced by hypoxia and serum deprivation (H/SD). Our results showed that ADSCs-exo noticeably reduced H/SD-induced apoptosis in MLO-Y4 cells via upregulating the radio of Bcl-2/Bax, diminishing the production of reactive oxygen species and cytochrome c, and subsequent activation of caspase-9 and caspase-3. Additionally, ADSCs-exo lowered the expression of RANKL both at the mRNA and protein levels, as well as the ratio of RANKL/OPG at the gene level. As determined by tartrate-resistant acid phosphatase staining, reduced osteoclastogenesis was further validated in bone marrow monocytes cultured under conditioned medium from exosome-treated MLO-Y4. Together, ADSCs-exo could antagonize H/SD induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis, indicating the therapeutic potential of ADSCs-exo in age-related bone disease.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
51 |
24
|
Niu H, Ma Y, Wu G, Duan B, Wang Y, Yuan Y, Liu C. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Biomaterials 2019; 216:119216. [PMID: 31138454 DOI: 10.1016/j.biomaterials.2019.05.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Synchronization of material resorption and new bone formation is vital to achieve harmonious bone regeneration in the treatment of large bone defects. To exposit the resorption/osteogenesis properties in the guided bone repairing, rhBMP-2-loaded trimodal macro/micro/nano-porous bioactive glass scaffolds (TMS-rhBMP-2) were set as substrate model. We penetratingly investigated the particular function of hierarchical structure and incorporated rhBMP-2 in the resorption/osteogenesis, and dissected the cellular interplay throughout the regenerative procedure. The results suggested that rhBMP-2 significantly facilitated osteoclastogenesis-mediated scaffold degradation and strikingly up-regulated mesenchymal stem cells (MSCs)-involved osteogenesis in vitro. Further gene microarray and related proteins expression indicated that in the presence of rhBMP-2, MSCs rather than differentiated MSCs could exert synergistic effects on osteoclastogenesis, osteoclasts maturation and resorptive function; meanwhile, rhBMP-2-induced MSCs osteogenesis was also strengthened by the osteoclasts. In vivo micro-CT, X-ray, kinetic and histological analyses qualitatively and quantitively demonstrated the optimized coupling of bioresorption/osteogenesis and the most rapid regeneration in TMS-rhBMP-2. Consequently, with rhBMP-2 acted as ignitor and MSCs/osteoclasts interaction as booster, a harmonious bone regeneration was obtained. Besides, long-term magnetic resonance imaging (MRI) in virtue of Gd3+ suggested that the degradation products mainly distributed in liver and spleen, verifying the accumulation/discharge profiles and safety application of TMS-rhBMP-2 system in vivo. This study will not merely provide guidance for the design of clinical bone repairing materials, but shed substantial light on the multicell-mediated tissue regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
48 |
25
|
Stattic inhibits RANKL-mediated osteoclastogenesis by suppressing activation of STAT3 and NF-κB pathways. Int Immunopharmacol 2018; 58:136-144. [PMID: 29587202 DOI: 10.1016/j.intimp.2018.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
Tofacitinib, a small molecule JAK inhibitor, has been widely used to reduce inflammation and inhibit progression of bone destruction in rheumatoid arthritis. STAT3, a downstream signaling molecule of JAK, plays a key role in the activation of signaling in response to inflammatory cytokines. Thus, targeting STAT3 may be an inspiring strategy for treating osteoclast-related diseases such as rheumatoid arthritis. In this study, we first investigated the effects of Stattic, a STAT3 inhibitor, on receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. Stattic inhibited osteoclast differentiation and bone resorption in RANKL-induced RAW264.7 cells in a dose-dependent manner. Stattic also suppressed RANKL-induced upregulation of osteoclast-related genes tartrate-resistant acid phosphatase, matrix metalloproteinase 9, cathepsin K, RANK, tumor necrosis factor receptor-associated factor 6, and osteoclast-associated receptor in RAW264.7 cells. Moreover, Stattic exhibited an inhibitory effect on cell proliferation and cell cycle progression at higher dosages. At the molecular level, Stattic inhibited RANKL-induced activation of STAT3 and NF-κB pathways, without significantly affecting MAPK signaling. In addition, Stattic inhibited RANKL-induced expression of osteoclast-related transcription factors c-Fos and NFATc1. Importantly, Stattic also prevented bone loss caused by ovariectomy. Together, our data confirm that Stattic restricts osteoclastogenesis and bone loss by disturbing RANKL-induced STAT3 and NF-κB signaling. Thus, Stattic represents a novel type of osteoclast inhibitor that could be useful for conditions such as osteoporosis and rheumatoid arthritis.
Collapse
|
Journal Article |
7 |
47 |