1
|
Guo X, He Y, Zhang L, Lelong C, Jouaux A. Immune and stress responses in oysters with insights on adaptation. FISH & SHELLFISH IMMUNOLOGY 2015; 46:107-119. [PMID: 25989624 DOI: 10.1016/j.fsi.2015.05.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments.
Collapse
|
Review |
10 |
115 |
2
|
He K, Hain E, Timm A, Tarnowski M, Blaney L. Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:3101-3109. [PMID: 30373087 DOI: 10.1016/j.scitotenv.2018.10.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 05/12/2023]
Abstract
Globally, the occurrence of contaminants of emerging concern (CECs) in the environment has raised critical questions on ecological and human health, but few efforts have focused on the Chesapeake Bay, the largest estuary in the United States. Here, 43 antibiotics, 3 estrogenic hormones, and 5 ultraviolet-filters (UV-filters), which are active ingredients in a variety of personal care products, were measured in water, sediment, and oyster tissue from 14 sites along the Eastern Shore of the Chesapeake Bay in Maryland. Fluoroquinolone, macrolide, and sulfonamide antibiotics were detected in water samples. As both human- and animal-labeled antibiotics were found, wastewater effluent and agricultural runoff were identified as potential sources. The highest aqueous-phase concentrations were recorded for norfloxacin (94.1 ng/L), enrofloxacin (17.8 ng/L), sulfamethoxazole (14.8 ng/L), and clarithromycin (9.7 ng/L). Estrone and four UV-filters, namely 2-ethylhexyl-4-methoxycinnamate, benzophenone-3, homosalate, and octocrylene, were frequently detected in Chesapeake Bay water (93-100%), sediment (100%), and oyster tissue (79-100%). High sediment-phase concentrations of estrone (58.4 ng/g) and 17β-estradiol (11.5 ng/g) were detected at the mouth of the Manokin River. Homosalate and benzophenone-3 were present at concentrations as high as 187.9 and 113.7 ng/L in water, 74.2 and 10.8 ng/g in sediment, and 158.3 and 118.0 ng/g in oyster tissue, respectively. These results demonstrate the ubiquitous presence of CECs in the Chesapeake Bay, confirm UV-filter bioaccumulation in oysters, and suggest the need for improved CEC removal during municipal wastewater treatment and agricultural waste management within the Chesapeake Bay watershed.
Collapse
|
|
6 |
100 |
3
|
González-Fernández C, Tallec K, Le Goïc N, Lambert C, Soudant P, Huvet A, Suquet M, Berchel M, Paul-Pont I. Cellular responses of Pacific oyster (Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles. CHEMOSPHERE 2018; 208:764-772. [PMID: 29902761 DOI: 10.1016/j.chemosphere.2018.06.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
While the detection and quantification of nano-sized plastic in the environment remains a challenge, the growing number of polymer applications mean that we can expect an increase in the release of nanoplastics into the environment by indirect outputs. Today, very little is known about the impact of nano-sized plastics on marine organisms. Thus, the objective of this study was to investigate the toxicity of polystyrene nanoplastics (NPs) on oyster (Crassostrea gigas) gametes. Spermatozoa and oocytes were exposed to four NPs concentrations ranging from 0.1 to 100 mg L-1 for 1, 3 and 5 h. NPs coated with carboxylic (PS-COOH) and amine groups (PS-NH2) were used to determine how surface properties influence the effects of nanoplastics. Results demonstrated the adhesion of NPs to oyster spermatozoa and oocytes as suggested by the increase of relative cell size and complexity measured by flow-cytometry and confirmed by microscopy observations. A significant increase of ROS production was observed in sperm cells upon exposure to 100 mg L-1 PS-COOH, but was not observed with PS-NH2, suggesting a differential effect according to the NP-associated functional group. Altogether, these results demonstrate that the effects of NPs occur rapidly, are complex and are possibly associated with the cellular eco-corona, which could modify NPs behaviour and toxicity.
Collapse
|
|
7 |
83 |
4
|
Weng N, Wang WX. Variations of trace metals in two estuarine environments with contrasting pollution histories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:604-614. [PMID: 24747252 DOI: 10.1016/j.scitotenv.2014.03.110] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/23/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
In the present study, seasonal variations of metal concentrations were examined in two oyster species, Crassostrea hongkongensis and Crassostrea sikamea, and in seawater from a heavily contaminated estuary and a reference estuary. Strong temporal fluctuations of metal concentration were observed in oyster tissues as well as in seawater from both estuaries, especially for the contaminated estuary and for C. hongkongensis with higher accumulation ability. A closer inter-element correlation was observed for Cu, Zn, Cr and Ni in both the dissolved and particulate phases from the contaminated site, indicating that these metals originated from the same industrial sources. Seasonal variations of metals in oysters were not significantly related to their concentrations in seawater, but were related to the variations of condition index. Our results showed that the seasonal patterns of metal concentrations in oysters were largely controlled by the biological process, while the variation as well as the concentration were dependent on the contamination levels and bioaccumulation ability.
Collapse
|
|
11 |
56 |
5
|
Chen C, Chen L, Huang Q, Chen Z, Zhang W. Organotin contamination in commercial and wild oysters from China: Increasing occurrence of triphenyltin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2527-2534. [PMID: 30293005 DOI: 10.1016/j.scitotenv.2018.09.310] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Organotin contamination in marine environment has been a public concern for many years due to its adverse impacts on biota and human health. This study investigated levels, distribution and health risks of six organotin compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPhT), diphenyltin (DPhT) and monophenyltin (MPhT) in commercial and wild oysters in China. The total organotin in commercial oysters ranged from 251 to 1949 ng Sn g-1 dw (dry weight) >. Two endocrine disruptors TBT and TPhT were detected in these samples with the highest level of 68.1 ± 20.1 ng Sn g-1 dw and 747 ± 7.3 ng Sn g-1 dw, respectively. For wild oysters, the concentrations of total organotins varied from 33.3 to 2671 ng Sn g-1 dw. Butyltins were dominated by TBT with the mean level of 26.1 ± 30.0 ng Sn·g-1 dw and showed no significant spatial variation between the southern and northern coastal zones (p > 0.05). However, compared with the north, phenyltin levels especially TPhT were much higher in the south coastline (246-1484 ng Sn·g-1 dw) due to the wider use of TPhT-based biocides in local mariculture and agriculture. Health risk assessment indicated that a daily exposure of TPhT-contaminated oysters (including commercial and wild ones) may pose adverse threats to human particularly children as the risk quotients (RQ) were higher than 1. Organotin contamination (e.g., TPhT) still occurs in the South China's coastal zones after the TBT ban, which deserves future research and effective measures to protect the marine ecosystem and human health.
Collapse
|
|
6 |
54 |
6
|
Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. Int J Food Microbiol 2018; 284:73-83. [PMID: 30005929 DOI: 10.1016/j.ijfoodmicro.2018.06.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/24/2022]
Abstract
Oysters are frequently associated with norovirus outbreaks, but the presence of norovirus RNA in oysters does not necessarily imply a health risk to humans. There is a close link between human illness and consumption of oysters with high levels of norovirus RNA, but oysters with low levels of norovirus RNA are more unlikely to be associated with illness. Reliable and precise quantification methods are therefore important for outbreak investigations and risk assessments. This study optimised and validated RT droplet digital PCR (RT-ddPCR) assays for quantification of norovirus genogroups I and II in artificially contaminated oysters, and compared them with the standard method, RT real-time PCR (RT-qPCR). The two methods had comparable 95% limits of detection, but RT-ddPCR generally showed greater precision in quantification. Differences between fluorometric measurements and quantification with RT-ddPCR were determined on in vitro transcribed RNA with targets for norovirus genogroups I and II. Quantification by RT-ddPCR was on average 100 times lower than the fluorometric value for norovirus GI and 15.8 times lower than the fluorometric value for norovirus GII. The large inter-assay difference observed highlights the need for monitoring the RT efficiency in RT-ddPCR, especially when results from different assays are compared. Overall, this study suggests that RT-ddPCR can be a suitable method for precise quantification of norovirus genogroups I and II in oysters.
Collapse
|
Journal Article |
7 |
47 |
7
|
Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature. Int J Food Microbiol 2021; 345:109152. [PMID: 33725529 DOI: 10.1016/j.ijfoodmicro.2021.109152] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 01/26/2023]
Abstract
Photodynamic inactivation (PDI) is a promising method with multiple targets to inactivate bacteria on food using visible light. Inactivation potency of the curcumin-mediated blue light-emitting diode (LED) PDI against the pathogen Vibrio parahaemolyticus on cooked oysters and its effects on the storage quality were investigated by the microbiological, physical, chemical and histological methods during storage at 4 °C, 10 °C and 25 °C. Results showed that the PDI treatment obviously inhibited the recovery of V. parahaemolyticus on oysters during storage, and the maximal difference attained >1.0 Log10 CFU/g (> 90%) compared to control stored at 10 °C and 25 °C. Meanwhile, it displayed a potent ability (p < 0.05) to restrain the decrease of pH values, reduce the production of total volatile basic nitrogen (TVB-N), suppress the lipids oxidation, as well as retard the changes of color difference of the oysters. In addition, the PDI effectively maintained the integrity and initial attachments of muscle fibers, and hence decreased the loss of water in myofibrillar space and the texture softening of oysters during storage. On this basis, this study facilitates the understanding of the potency of bacterial inactivation and food preservation of PDI, and hence pave the way for its application in food industry.
Collapse
|
Journal Article |
4 |
45 |
8
|
Bom FC, Sá F. Concentration of microplastics in bivalves of the environment: a systematic review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:846. [PMID: 34839390 DOI: 10.1007/s10661-021-09639-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The aim of this review was to identify the current knowledge regarding the concentration of microplastics in bivalves in the marine, estuarine, and freshwater environments. For this purpose, researches were conducted from September 2020 to February 2021 in the Scopus, Web of Science, and Google scholar databases, following a meticulous selection of articles. To comprehensively understand the selected articles, an extensive review was carried out in order to identify the methodologies employed, sampling sites, species evaluated, characteristics of the microplastics (concentrations, shapes, sizes, and polymers) and their relationship with the concentration of this particles in the environment. A total of 93 articles were selected, with an exponential growth in the number of articles from April 2014 to February 2021. Worldwide, 80 articles were realized in the Northern Hemisphere and thirteen in the Southern Hemisphere. The samplings of organisms were carried out in 36 countries, besides one in Antarctica. The concentration of microplastics were studied in 70 species, with mussels Mytilus spp. and the oysters Crassostrea spp. being the main genus studied. Due to the different methodologies used to digest the tissues of organisms and identify microplastics and species, it is difficult to make comparisons between the results of different studies. In addition, data on the concentrations of microplastics in the environment, as well as their composition and characteristics, are needed, enabling the verification of relationships with the concentrations identified in organisms, which does not occur in most studies. Thus, we suggest an increase in the number of studies to be realized in the southern hemisphere, future studies use the same methodology of digestion, the polymer identification of microplastics and samplings of the surrounding environment, enabling a greater comparison between studies.
Collapse
|
Review |
4 |
41 |
9
|
Zhu J, Zhang Q, Huang Y, Jiang Y, Li J, Michal JJ, Jiang Z, Xu Y, Lan W. Long-term trends of microplastics in seawater and farmed oysters in the Maowei Sea, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116450. [PMID: 33477062 DOI: 10.1016/j.envpol.2021.116450] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Microplastic pollution in marine environments and organisms has received a great deal of international attention. However, the long-term field studies of microplastics are rare. Here, we assessed annual variation in microplastic abundance in the Maowei Sea, a classic mariculture bay in southern China, and analyzed the long-term accumulation in oyster tissues. U-shaped time trends of microplastics in water were observed from January to December in 2018 in the estuarine region, inner bay, and mouth bay sites, representing an inverse relationship with the local rainfall patterns. The common microplastic particles in Maowei Sea are PET/PE fibers, and polystyrene foams, which are mainly related to textile pollution and fishery activities. After one year of continuous monitoring, we did not find accumulation of microplastics in the whole soft tissues of oyster after 10% KOH digestion. No significant correlation of microplastic abundances between water and oysters was observed. The microplastic abundance in oyster was correlated with some environmental variables (i.e. salinity, pH, nutrients and total organic carbon) of the surrounding water following Spearman correlation analysis. The microplastic levels in oysters could probably be influenced by the environmental variables.
Collapse
|
|
4 |
39 |
10
|
Silva IP, Carneiro CDS, Saraiva MAF, Oliveira TASD, Sousa OVD, Evangelista-Barreto NS. Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil. MARINE POLLUTION BULLETIN 2018; 131:757-762. [PMID: 29887003 DOI: 10.1016/j.marpolbul.2018.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 04/05/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to verify the antimicrobial susceptibility profile and virulence factors of Vibrio parahaemolyticus isolated from water and bivalve mollusks. A high percentage of V. parahaemolyticus was isolated in natura, processed bivalves tissues, and surrounding water (75%, 20%, and 59%, respectively). The most potential virulence phenotype in V. parahaemolyticus isolates was amylase production (97%) followed by DNase (83%), phospholipase (70%), β-hemolytic activity (57%). The tdh and trh genes were not detected. Besides, a high antimicrobial resistance was observed for ampicillin (97%), minimum inhibitory concentration [MIC] = 400 μg and cephalothin (93%, MIC ≤ 100 μg). The absence of expression of tdh and trh virulence genes excluded the toxigenic potential of V. parahaemolyticus isolates; however, the high prevalence of antimicrobial resistance among the environmental strains is a risk to human health.
Collapse
|
|
7 |
37 |
11
|
Ivanina AV, Hawkins C, Sokolova IM. Interactive effects of copper exposure and environmental hypercapnia on immune functions of marine bivalves Crassostrea virginica and Mercenaria mercenaria. FISH & SHELLFISH IMMUNOLOGY 2016; 49:54-65. [PMID: 26700170 DOI: 10.1016/j.fsi.2015.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Estuarine organisms such as bivalves are commonly exposed to trace metals such as copper (Cu) and hypercapnia (elevated CO2 levels) in their habitats, which may affect their physiology and immune function. This study investigated the combined effects of elevated CO2 levels (∼800-2000 μatm PCO2, such as predicted by the near-future scenarios of global climate change) and Cu (50 μg l(-1)) on immune functions of the sediment dwelling hard clams Mercenaria mercenaria and an epifaunal bivalve, the eastern oyster Crassostrea virginica. Clams and oysters were exposed for 4 weeks to different CO2 and Cu levels, and tissue Cu burdens and immune parameters were assessed to test the hypothesis that hypercapnia will enhance Cu uptake due to the higher bioavailability of free Cu(2+) and increase the immunomodulatory effects of Cu. Exposure to Cu stimulated key immune parameters of clams and oysters leading to increased number of circulating hemocytes, higher phagocytosis and adhesion ability of hemocytes, as well as enhanced antiparasitic and antibacterial properties of the hemolymph reflected in higher activities of lysozyme and inhibitors of cysteine proteases. Lysozyme activation by Cu exposure was most prominent in normocapnia (∼400 μatm PCO2) and an increase in the levels of the protease inhibitors was strongest in hypercapnia (∼800-2000 μatm PCO2), but other immunostimulatory effects of Cu were evident in all PCO2 exposures. Metabolic activity of hemocytes of clams and oysters (measured as routine and mitochondrial oxygen consumption rates) was suppressed by Cu exposure likely reflecting lower rates of ATP synthesis and/or turnover. However, this metabolic suppression had no negative effects of the studied immune functions of hemocytes such as phagocytosis or adhesion capacity. Hypercapnia (∼800-2000 μatm PCO2) slightly but significantly enhanced accumulation of Cu in hemocytes, consistent with higher Cu(2+) bioavailability in CO2-acidified water, but had little effect on cellular and humoral immune traits of clams and oysters. These findings indicate that low levels of Cu contamination may enhance immunity of estuarine bivalves while moderate hypercapnia (such as predicted by the near future scenarios of the global climate change) does not strongly affect their immune parameters.
Collapse
|
|
9 |
36 |
12
|
Flannery J, Keaveney S, Rajko-Nenow P, O'Flaherty V, Doré W. Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters. WATER RESEARCH 2013; 47:5222-31. [PMID: 23850211 DOI: 10.1016/j.watres.2013.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/14/2013] [Accepted: 06/02/2013] [Indexed: 05/20/2023]
Abstract
Norovirus (NoV), the leading cause of adult non-bacterial gastroenteritis can be commonly detected in wastewater but the extent of NoV removal provided by wastewater treatment plants (WWTPs) is unclear. We monitored a newly commissioned WWTP with UV disinfection on a weekly basis over a six month period for NoV using RT-qPCR and for FRNA bacteriophage GA using both RT-qPCR (total concentration) and a plaque assay (infectious concentration). Mean concentrations of NoV GI and GII in influent wastewater were reduced by 0.25 and 0.41 log10 genome copies 100 ml(-1), respectively by the WWTP. The mean concentration of total FRNA bacteriophage GA was reduced by 0.35 log genome copies 100 ml(-1) compared to a reduction of infectious FRNA bacteriophage GA of 2.13 log PFU 100 ml(-1). A significant difference between concentrations of infectious and total FRNA bacteriophage GA was observed in treated, but not in untreated wastewaters. We conclude that RT-qPCR in isolation underestimates the reduction of infectious virus during wastewater treatment. We further compared the concentrations of infectious virus in combined sewer overflow (CSO) and UV treated effluents using FRNA bacteriophage GA. A greater percentage (98%) of infectious virus is released in CSO discharges than UV treated effluent (44%). Following a CSO discharge, concentrations of NoV GII and infectious FRNA bacteriophage GA in oysters from less than the limit of detection to 3150 genome copies 100 g(-1) and 1050 PFU 100 g(-1) respectively.
Collapse
|
|
12 |
35 |
13
|
Lowther JA, Gustar NE, Powell AL, O'Brien S, Lees DN. A One-Year Survey of Norovirus in UK Oysters Collected at the Point of Sale. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:278-287. [PMID: 29722006 PMCID: PMC6096945 DOI: 10.1007/s12560-018-9338-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/27/2018] [Indexed: 05/31/2023]
Abstract
Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a food safety risk and a potential contributor to the overall burden of gastroenteritis in the community. The United Kingdom (UK) has comprehensive national baseline data on the prevalence, levels, and seasonality of norovirus in oysters in production areas resulting from a previous two-year study (2009-2011). However, previously, data on final product as sold to the consumer have been lacking. As part of a wider project to establish the overall burden of foodborne norovirus in the UK, this study aimed to address this data gap. A one-year survey of oysters collected from the point-of-sale to the consumer was carried out from March 2015 to March 2016. A total of 630 samples, originating in five different European Union Member States, were collected from 21 regions across the UK using a randomised sampling plan, and tested for norovirus using a method compliant with ISO 15216-1, in addition to Escherichia coli as the statutory indicator of hygiene status. As in the previous production area study, norovirus RNA was detected in a high proportion of samples (68.7%), with a strong winter seasonality noted. Some statistically significant differences in prevalences and levels in oysters from different countries were noted, with samples originating in the Netherlands showing lower prevalences and levels than those from either the UK or Ireland. Overall, levels detected in positive samples were considerably lower than seen previously. Investigation of potential contributing factors to this pattern of results was carried out. Application of normalisation factors to the data from the two studies based on both the numbers of norovirus illness reports received by national surveillance systems, and the national average environmental temperatures during the two study periods resulted in a much closer agreement between the two data sets, with the notably different numbers of illness reports making the major contribution to the differences observed in norovirus levels in oysters. The large majority of samples (76.5%) contained no detectable E. coli; however, in a small number of samples (2.4%) levels above the statutory end product standard (230 MPN/100 g) were detected. This study both revealed the high prevalence of norovirus RNA in oysters directly available to the UK consumer, despite the high level of compliance with the existing E. coli-based health standards, while also highlighting the difficulty in comparing the results of surveys carried out in different time periods, due to variability in risk factors.
Collapse
|
research-article |
7 |
34 |
14
|
Lee JH, Birch GF, Cresswell T, Johansen MP, Adams MS, Simpson SL. Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): A biokinetic model for zinc. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:46-54. [PMID: 26261879 DOI: 10.1016/j.aquatox.2015.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
Past studies disagree on the extent to which dissolved or dietary uptake contribute to metal bioaccumulation in the filter-feeding Sydney rock oyster (Saccostrea glomerata) in urbanized estuaries. Although most data support the assumption that fine sediments are a major route of metal uptake in these bivalves, some studies based in the Sydney estuary, Australia, have indicated a poor correlation. In the present study, seawater, sediment and microalgae were radiolabelled with (65)Zn tracer and exposed to S. glomerata to assess the influence of dissolved and dietary sources to Zn bioaccumulation. Oysters in the dissolved-phase uptake experiment (5, 25 and 50 μg L(-1) (65)Zn for 4 d followed by 21 days of depuration) readily accumulated (65)Zn for all three concentrations with an uptake rate constant of 0.160±0.006 L dry weight g(-1) d(-1). Oysters in the dietary assimilation experiment (1h pulse-feed of either (65)Zn-radiolabelled suspended fine-fraction (<63 μm) sediment or the microalgae Tetraselmis sp.) accumulated (65)Zn, with assimilation efficiencies of 59 and 67% for fine sediment and microalgae, respectively. The efflux rates were low for the three experiments (0.1-0.5% d(-1)). A bioaccumulation kinetic model predicts that uptake of Zn will occur predominantly through the dietary ingestion of contaminated fine sediment particles and microalgae within the water column, with considerably greater metal bioaccumulation predicted if oysters ingested microalgae preferentially to sediments. However, the model predicts that for dissolved Zn concentrations greater than 40 μg L(-1), as observed during precipitation events, the uptake of the dissolved phase may contribute ≥50% to accumulation. Overall, the results of the present study suggest that all three sources may be important exposure routes to S. glomerata under different environmental conditions, but contributions from dietary exposure will often dominate.
Collapse
|
|
10 |
33 |
15
|
Campos CJA, Kershaw S, Morgan OC, Lees DN. Risk factors for norovirus contamination of shellfish water catchments in England and Wales. Int J Food Microbiol 2016; 241:318-324. [PMID: 27837721 DOI: 10.1016/j.ijfoodmicro.2016.10.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/07/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022]
Abstract
This study examines the relationships between concentrations of human noroviruses (NoV) genogroups I (GI) and II (GII) and Escherichia coli monitored in oysters from 31 commercial harvesting areas on the coast of England and Wales from May 2009 to April 2011 and demographic, hydrometric, climatic and pollution source characteristics of upstream river catchments using multiple regression techniques. The predictive environmental factors for E. coli contamination in the oysters were rainfall (cumulative 7days before sampling) while the predictive factors for NoV (GI+GII) were water temperature, catchment area and the combined volume of continuous sewage discharges in the catchment. Oysters from cold waters (<5°C) had significantly higher NoV content than those from warmer waters (>10°C). The association with water temperature may be consequential on the seasonal prevalence of the virus in the community or linked with oyster metabolic function. In a group of 10 study sites, mean concentrations of NoV increased as the number of stormwater spills at those sites also increased. The results of this study could be used to evaluate the likely impact of sewerage infrastructure improvements in catchments at risk of NoV contamination and to help identify sites suitable for shellfish farming.
Collapse
|
Journal Article |
9 |
31 |
16
|
Weng N, Wang WX. Seasonal fluctuations of metal bioaccumulation and reproductive health of local oyster populations in a large contaminated estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:175-185. [PMID: 30995571 DOI: 10.1016/j.envpol.2019.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/17/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Despite of much evidence of trace metal pollution in the Pearl River Estuary (PRE), the seasonal dynamics of metal bioavailability as well as the potential impacts of metal pollution on the local marine organisms in this estuary is poorly understood. In the present study, the accumulation of trace metals and reproductive states of three populations of oyster Crassostrea hongkongensis, a keystone bivalve species in the PRE, were for the first time investigated throughout a one-year field study. Significant temporal fluctuations of metal accumulation were observed in the somatic tissues of oysters, suggesting seasonal variations of metal bioavailability in the PRE. A major feature of the seasonal variations was the increased levels of metal bioaccumulation in the summer season for the contaminated sites nearby the major river inlets. High riverine inputs accompanied by relatively lower salinity in summer may greatly contribute to such variations. Furthermore, oyster populations from two contaminated sites had a poor reproductive condition in comparison with the reference oyster population, as reflected by a significant decrease of gonad-somatic index (GSI) and gonad cover area (GCA), as well as an obvious change of sex ratios. Gonadal metal accumulation of Cu, Zn, Ni, Co and Pb in the contaminated oysters was much higher than that in the relatively uncontaminated oysters. Especially, the concentrations of these metals in the gonad during the breeding season had significantly negative correlations with the gonad condition indexes (GSI and GCA). Our results suggested strong seasonal fluctuations of bioavailability of trace metals in this highly contaminated estuary as well as an adverse effect of metal pollution on the reproduction of local oyster populations.
Collapse
|
|
6 |
31 |
17
|
Liu X, Wang WX. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:281-290. [PMID: 26657374 DOI: 10.1016/j.scitotenv.2015.11.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The Jiulong Estuary in Southern China suffers from serious metal pollution, leading to the appearance of 'colored' oysters in this estuary. In this study, two species of oysters Crassostrea hongkongensis and Crassostrea angulata were transplanted to three sites in the Jiulong Estuary over a two-month period. The time-series changes of various biomarkers were measured, coupled with simultaneous quantification of metal bioaccumulation (Ag, Cd, Cr, Cu, Ni and Zn). Cu and Zn accumulation increased linearly and reached up to 2% and 1.5% dry tissue weight by the end of exposure. Negative correlations between the tissue Cu or Zn accumulation and catalase or superoxide dismutase activities strongly indicated that Cu and Zn in 'colored' oysters induced the adjustments of oyster antioxidant systems. Metallothionein (MT) detoxification was insufficient for sequestering all the absorbed metals and its concentrations in the oysters were suppressed following an initial increase, primarily due to the high metal accumulation in the tissues. Interestingly, gradual recoveries of lysosomal membrane stability after the initial strong inhibitions were observed in both oysters. We also documented an increasing 'watering' of oyster tissues presumably as a result of rupturing of tissue cells under metal stress. This study demonstrated the complexity of biomarker responses under field condition, therefore the time changes of biomarker responses to metals need to be considered in evaluating the biological impacts of metal pollution on estuarine organisms.
Collapse
|
|
9 |
31 |
18
|
CROWE SJ, NEWTON AE, GOULD LH, PARSONS MB, STROIKA S, BOPP CA, FREEMAN M, GREENE K, MAHON BE. Vibriosis, not cholera: toxigenic Vibrio cholerae non-O1, non-O139 infections in the United States, 1984-2014. Epidemiol Infect 2016; 144:3335-3341. [PMID: 27510301 PMCID: PMC9150200 DOI: 10.1017/s0950268816001783] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/13/2016] [Accepted: 07/20/2016] [Indexed: 11/07/2022] Open
Abstract
Toxigenic strains of Vibrio cholerae serogroups O1 and O139 have caused cholera epidemics, but other serogroups - such as O75 or O141 - can also produce cholera toxin and cause severe watery diarrhoea similar to cholera. We describe 31 years of surveillance for toxigenic non-O1, non-O139 infections in the United States and map these infections to the state where the exposure probably originated. While serogroups O75 and O141 are closely related pathogens, they differ in how and where they infect people. Oysters were the main vehicle for O75 infection. The vehicles for O141 infection include oysters, clams, and freshwater in lakes and rivers. The patients infected with serogroup O75 who had food traceback information available ate raw oysters from Florida. Patients infected with O141 ate oysters from Florida and clams from New Jersey, and those who only reported being exposed to freshwater were exposed in Arizona, Michigan, Missouri, and Texas. Improving the safety of oysters, specifically, should help prevent future illnesses from these toxigenic strains and similar pathogenic Vibrio species. Post-harvest processing of raw oysters, such as individual quick freezing, heat-cool pasteurization, and high hydrostatic pressurization, should be considered.
Collapse
|
research-article |
9 |
29 |
19
|
Lozano-Hernández EA, Ramírez-Álvarez N, Rios Mendoza LM, Macías-Zamora JV, Sánchez-Osorio JL, Hernández-Guzmán FA. Microplastic concentrations in cultured oysters in two seasons from two bays of Baja California, Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118031. [PMID: 34455298 DOI: 10.1016/j.envpol.2021.118031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
As filter feeders, bivalve mollusks have a high potential risk of contamination by microplastics (MPs), which can be considered a transfer vector for humans through their consumption. Spatial-temporal differences in the MP concentration were evaluated in the cultured oyster Magallana gigas in Todos Santos Bay (TSB) and San Quintin Bay (SQB) during winter and summer (2019). MPs were found in all samples in both seasons, where microfibers were the most abundant particles observed. Only in winter, statistically significant differences were observed in the average concentration of ingested MPs between oysters from TSB and SQB. In each bay, the highest concentrations were observed during winter. Seasonal differences between MP concentrations were only found in TSB. During summer, the content of MPs was compared between the digestive system and the rest of the soft tissue in organisms from each site, and statistically significant differences were not observed, except by one site in SQB. Polymers were identified via μ-FTIR-ATR spectrometry. Polyester, polyacrylonitrile, and rayon were the most common plastics detected. However, due to the low concentration of MPs found in oysters, its consumption does not represent a risk to human health. Moreover, MP concentrations in organisms appear to respond to variables, such as temporality and the water circulation dynamics within the bays.
Collapse
|
|
4 |
29 |
20
|
Ferreira CP, Lima D, Paiva R, Vilke JM, Mattos JJ, Almeida EA, Grott SC, Alves TC, Corrêa JN, Jorge MB, Uczay M, Vogel CIG, Gomes CHAM, Bainy ACD, Lüchmann KH. Metal bioaccumulation, oxidative stress and antioxidant responses in oysters Crassostrea gasar transplanted to an estuary in southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:332-344. [PMID: 31176220 DOI: 10.1016/j.scitotenv.2019.05.384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
The present study assessed the spatial and temporal variations on metal bioaccumulation and biochemical biomarker responses in oysters Crassostrea gasar transplanted to two different sites (S1 and S2) at the Laguna Estuarine System (LES), southern Brazil, over a 45-days period. A multi-biomarker approach was used, including the evaluation of lipid peroxidation (MDA) levels, and antioxidant defense enzymes (CAT, GPx, GR and G6PDH) and phase II biotransformation enzyme (GST) in the gills and digestive gland of oysters in combination with the quantification of Al, Cd, Cu, Pb, Fe, Ni and Zn in both tissues. The exposed oysters bioaccumulated metals, especially Al, Cd and Zn in gills and digestive gland, with most prominent biomarker responses in the gills. Results showed that GPx, GR and G6PDH enzymes offered an increased and coordinated response possibly against metal (Zn, Ni, Cd and Cu) contamination in gills. GST was inversely correlated to Cd levels, being its activity significantly lowered over the 45-d exposure periods at S2. On contrary, in digestive gland GST was slightly positively correlated to Cd, revealing a compensatory mechanism between tissues to protect oysters' cells against oxidative damages, since MDA levels also decreased. CAT also appeared to be involved in the cellular protection against oxidative stress, being increased in gills. However, CAT was negatively correlated to Al levels, which might suggest a possible inhibitory effect of this metal in the gills of C. gasar. Differences between tissues were evident by the Integrative Biomarker Responses version 2 (IBRv2) indexes, which showed different pattern between tissues when studying the sites and exposure periods separately. This study provided evidence for the effectiveness of using a multi-biomarker approach in oyster C. gasar to monitor estuarine metal pollution.
Collapse
|
|
6 |
29 |
21
|
Doyle JJ, Ward JE, Mason R. An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). MARINE ENVIRONMENTAL RESEARCH 2015; 110:45-52. [PMID: 26263835 DOI: 10.1016/j.marenvres.2015.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
The production rates of titanium dioxide (TiO2) nanoparticles for consumer products far exceed the pace at which research can determine the effects of these particles in the natural environment. Sedentary organisms such as suspension-feeding bivalves are particularly vulnerable to anthropogenic contaminants, such as nanoparticles, that enter coastal environments. The purpose of this work was to examine the ingestion, bioaccumulation, and depuration rates of TiO2 nanoparticles by two species of suspension-feeding bivalves, the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Two representative TiO2 nanoparticles, UV-Titan M212 (Titan) and Aeroxide P25 (P25), were delivered to the animals either incorporated into marine snow or added directly to seawater at a concentration of 1.0 mg/L for exposure periods of 2 and 6 h. After feeding, the animals were transferred to filtered-seawater and allowed to depurate. Feces and tissues were collected at 0, 12, 24, 72, and 120 h, post-exposure, and analyzed for concentrations of titanium by inductively coupled plasma-mass spectrometry. Results indicated that the capture and ingestion (i.e., transfer to the gut) of TiO2 nanoparticles by both mussels and oysters was not dependent on the presence of marine snow, and weight-standardized clearance rates of bivalves exposed to TiO2 nanoparticles were not significantly different than those of unexposed control animals. Both species ingested about half of the nanoparticles to which they were exposed, and >90% of the nanoparticles were egested in feces within 12 h, post-exposure. The findings of this study demonstrate that mussels and oysters can readily ingest both Titan and P25 nanoparticles regardless of the form in which they are encountered, but depurate these materials over a short period of time. Importantly, bioaccumulation of Titan and P25 nanoparticles does not occur in mussels and oysters following exposures of up to 6 h.
Collapse
|
|
10 |
28 |
22
|
Zhu Q, Zhang L, Li L, Que H, Zhang G. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:176-188. [PMID: 26746430 DOI: 10.1007/s10126-015-9678-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.
Collapse
|
|
9 |
27 |
23
|
Khan B, Adeleye AS, Burgess RM, Russo SM, Ho KT. Effects of graphene oxide nanomaterial exposures on the marine bivalve, Crassostrea virginica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105297. [PMID: 31550666 PMCID: PMC6837171 DOI: 10.1016/j.aquatox.2019.105297] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 05/13/2023]
Abstract
Since its discovery in 2004, graphene has been used in a wide variety of fields including biomedicine, electronics, filtration materials, and surface coatings. The rapidly expanding consumer market for graphene family nanomaterials (GFNs), such as graphene oxide (GO), raises concern regarding their environmental toxicity. The aim of this study was to evaluate the effects of GO exposures in a marine filter-feeding bivalve (Crassostrea virginica) using sublethal biomarker approaches that can contribute to the development of an adverse outcome pathway (AOP). A 14-day study was conducted to identify tissue-specific molecular markers of GO toxicity using a static renewal design. Elevated lipid peroxidation and changes in glutathione-s-transferase (GST) activities were observed in gills and digestive gland tissues of the GO-exposed oysters. These cellular changes were noted for 2.5 and 5 mg/L GO exposures in seawater. Based on our results, reactive oxygen species (ROS)-induced oxidative damage is identified as a key event in the proposed AOP. Additionally, detoxification enzymes, such as GST, are thought to be involved in stress signaling leading to adverse effects on cellular health. This study is a part of our two-tier approach towards the identification of short- and long-term effects of GO exposures. This work, together with our previous 72 h exposure, represents the application of biomarker-based investigations in the process of AOP development for graphene family nanomaterials.
Collapse
|
research-article |
6 |
26 |
24
|
Le Mennec C, Parnaudeau S, Rumebe M, Le Saux JC, Piquet JC, Le Guyader SF. Follow-Up of Norovirus Contamination in an Oyster Production Area Linked to Repeated Outbreaks. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:54-61. [PMID: 27613529 DOI: 10.1007/s12560-016-9260-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 05/15/2023]
Abstract
A production area repeatedly implicated in oyster-related gastroenteritis in France was studied for several months over 2 years. Outbreaks and field samples were analyzed by undertaking triplicate extractions, followed by norovirus (NoV) detection using triplicate wells for genomic amplification. This approach allowed us to demonstrate that some variabilities can be observed for samples with a low level of contamination, but most samples analyzed gave reproducible results. At the first outbreak, implicated oysters were collected at the beginning of the contamination event, which was reflected by the higher NoV levels during the first month of the study. During the second year, NoV concentrations in samples implicated in outbreaks and collected from the production area were similar, confirming the failure of the shellfish depuration process. Contamination was detected mainly during winter-spring months, and a high prevalence of NoV GI contamination was observed. A half-life of 18 days was calculated from NoV concentrations detected in oysters during this study, showing a very slow decrease of the contamination in the production area. Preventing the contamination of coastal waters should be a priority.
Collapse
|
|
8 |
24 |
25
|
Sarmento SK, Guerra CR, Malta FC, Coutinho R, Miagostovich MP, Fumian TM. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment. MARINE POLLUTION BULLETIN 2020; 157:111315. [PMID: 32658680 DOI: 10.1016/j.marpolbul.2020.111315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Noroviruses are the most common cause of gastroenteritis outbreaks in humans and bivalve shellfish consumption is a recognized route of infection. Our aim was to detect and characterize norovirus in bivalves from a coastal city of Brazil. Nucleic acid was extracted from the bivalve's digestive tissue concentrates using magnetic beads. From March 2018 to June 2019, 77 samples were screened using quantitative RT-PCR. Noroviruses were detected in 41.5%, with the GII being the most prevalent (37.7%). The highest viral load was 3.5 × 106 and 2.5 × 105 GC/g in oysters and mussels, respectively. PMA-treatment demonstrated that a large fraction of the detected norovirus corresponded to non-infectious particles. Genetic characterization showed the circulation of the GII.2[P16] and GII.4[P4] genotypes. Norovirus detection in bivalves reflects the anthropogenic impact on marine environment and serves as an early warning for the food-borne disease outbreaks resulting from the consumption of contaminated molluscs.
Collapse
|
|
5 |
24 |