1
|
Attia ABE, Balasundaram G, Moothanchery M, Dinish U, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: Current and future trends. PHOTOACOUSTICS 2019; 16:100144. [PMID: 31871888 PMCID: PMC6911900 DOI: 10.1016/j.pacs.2019.100144] [Citation(s) in RCA: 435] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.
Collapse
Key Words
- AR-PAM, acoustic resolution-photoacoustic microscopy
- Clinical applications
- DAQ, data acquisition
- FOV, field-of-view
- Hb, deoxy-hemoglobin
- HbO2, oxy-hemoglobin
- LED, light emitting diode
- MAP, maximum amplitude projection
- MEMS, microelectromechanical systems
- MRI, magnetic resonance imaging
- MSOT, multispectral optoacoustic tomography
- OCT, optical coherence tomography
- OR-PAM, optical resolution-photoacoustic microscopy
- Optoacoustic mesoscopy
- Optoacoustic tomography
- PA, photoacoustic
- PAI, photoacoustic imaging
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- Photoacoustic imaging
- Photoacoustic microscopy
- RSOM, raster-scanning optoacoustic mesoscopy
- SBH-PACT, single breath hold photoacoustic computed tomography system
- US, ultrasound
- sO2, saturation
Collapse
|
Review |
6 |
435 |
2
|
Kubelick KP, Emelianov SY. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord. PHOTOACOUSTICS 2020; 18:100166. [PMID: 32211291 PMCID: PMC7082547 DOI: 10.1016/j.pacs.2020.100166] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 05/16/2023]
Abstract
Translation of stem cell therapies to treat injuries and diseases of the spinal cord is hindered by lack of real-time monitoring techniques to guide regenerative therapies intra- and postoperatively. Thus, we developed an ultrasound (US), photoacoustic (PA), and magnetic resonance (MR) imaging approach augmented with Prussian blue nanocubes (PBNCs) to guide stem cell injections intraoperatively and monitor stem cell therapies in the spinal cord postoperatively. Per the clinical procedure, a multi-level laminectomy was performed in rats ex vivo, and PBNC-labeled stem cells were injected directly into the spinal cord while US/PA images were acquired. US/PA/MR images were also acquired post-surgery. Several features of the imaging approach were demonstrated including detection of low stem cell concentrations, real-time needle guidance and feedback on stem cell delivery, and good agreement between US/PA/MR images. These benefits span intra- and postoperative environments to support future development of this imaging tool.
Collapse
Key Words
- AuNS, gold nanosphere
- DIUF, deionized ultra-filtered water
- IACUC, Institutional Animal Care and Use Committee
- LOD, limit of detection
- MRI, magnetic resonance imaging
- MSC, mesenchymal stem cell
- Magnetic resonance imaging
- Multimodal imaging
- Nanoparticles
- OR, operating room
- PA, photoacoustic
- PBNC, Prussian blue nanocube
- PBS, phosphate buffered saline
- Photoacoustic imaging
- SPION, superparamagnetic iron oxide nanoparticle
- Spinal cord
- Stem cells
- TE, echo time
- TEM, transmission electron microscopy
- TR, repetition time
- US, ultrasound
- Ultrasound
Collapse
|
research-article |
5 |
32 |
3
|
Li D, Humayun L, Vienneau E, Vu T, Yao J. Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond. JID INNOVATIONS 2021; 1:100039. [PMID: 34909735 PMCID: PMC8659408 DOI: 10.1016/j.xjidi.2021.100039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Skin diseases are the most common human diseases and manifest in distinct structural and functional changes to skin tissue components such as basal cells, vasculature, and pigmentation. Although biopsy is the standard practice for skin disease diagnosis, it is not sufficient to provide in vivo status of the skin and highly depends on the timing of diagnosis. Noninvasive imaging technologies that can provide structural and functional tissue information in real time would be invaluable for skin disease diagnosis and treatment evaluation. Among the modern medical imaging technologies, photoacoustic (PA) tomography (PAT) shows great promise as an emerging optical imaging modality with high spatial resolution, high imaging speed, deep penetration depth, rich contrast, and inherent sensitivity to functional and molecular information. Over the last decade, PAT has undergone an explosion in technical development and biomedical applications. Particularly, PAT has attracted increasing attention in skin disease diagnosis, providing structural, functional, metabolic, molecular, and histological information. In this concise review, we introduce the principles and imaging capability of various PA skin imaging technologies. We highlight the representative applications in the past decade with a focus on imaging skin vasculature and melanoma. We also envision the critical technical developments necessary to further accelerate the translation of PAT technologies to fundamental skin research and clinical impacts.
Collapse
Key Words
- ACD, allergy contact dermatitis
- AR-PAM, acoustic-resolution photoacoustic microscopy
- CSC, cryogen spray cooling
- CSVV, cutaneous small-vessel vasculitis
- CTC, circulating tumor cell
- FDA, Food and Drug Administration
- NIR, near-infrared
- OR-PAM, optical-resolution photoacoustic microscopy
- PA, photoacoustic
- PACT, photoacoustic computed tomography
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- PWS, port-wine stain
- RSOM, raster-scan optoacoustic mesoscopy
- THb, total hemoglobin concentration
- sO2, oxygen saturation of hemoglobin
Collapse
|
Review |
4 |
26 |
4
|
Xavierselvan M, Cook J, Duong J, Diaz N, Homan K, Mallidi S. Photoacoustic nanodroplets for oxygen enhanced photodynamic therapy of cancer. PHOTOACOUSTICS 2022; 25:100306. [PMID: 34917471 PMCID: PMC8666552 DOI: 10.1016/j.pacs.2021.100306] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) is a well-known cancer therapy that utilizes light to excite a photosensitizer and generate cytotoxic reactive oxygen species (ROS). The efficacy of PDT primarily depends on the photosensitizer and oxygen concentration in the tumor. Hypoxia in solid tumors promotes treatment resistance, resulting in poor PDT outcomes. Hence, there is a need to combat hypoxia while delivering sufficient photosensitizer to the tumor for ROS generation. Here we showcase our unique theranostic perfluorocarbon nanodroplets as a triple agent carrier for oxygen, photosensitizer, and indocyanine green that enables light triggered spatiotemporal delivery of oxygen to the tumors. We evaluated the characteristics of the nanodroplets and validated their ability to deliver oxygen via photoacoustic monitoring of blood oxygen saturation and subsequent PDT efficacy in a murine subcutaneous tumor model. The imaging results were validated with an oxygen sensing probe, which showed a 9.1 fold increase in oxygen content inside the tumor, following systemic administration of the nanodroplets. These results were also confirmed with immunofluorescence. In vivo studies showed that nanodroplets held higher rates of treatment efficacy than a clinically available benzoporphyrin derivative formulation. Histological analysis showed higher necrotic area within the tumor with perfluoropentane nanodroplets. Overall, the photoacoustic nanodroplets can significantly enhance image-guided PDT and has demonstrated substantial potential as a valid theranostic option for patient-specific photodynamic therapy-based treatments.
Collapse
Key Words
- 1O2, singlet oxygen
- BPD, benzoporphyrin derivative
- DLS, dynamic light scattering
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- DSPE-mPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
- H&E, hematoxylin and eosin
- HbT, total hemoglobin
- Hypoxia
- ICG, indocyanine green
- IF, immunofluorescence
- Image guided PDT
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NIR, near infrared radiation
- PA, photoacoustic
- PBS, phosphate buffered saline
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PFP, perfluoropentane
- PS, photosensitizer
- Perfluorocarbon nanodroplets
- Photoacoustic imaging
- Photodynamic therapy
- ROS, reactive oxygen species
- SOSG, singlet oxygen sensor green
- StO2, oxygen saturation
- TBAI, tertbutylammonium iodide
- pO2, partial pressure of oxygen
Collapse
|
research-article |
3 |
19 |
5
|
Xie W, Feng T, Zhang M, Li J, Ta D, Cheng L, Cheng Q. Wavelet transform-based photoacoustic time-frequency spectral analysis for bone assessment. PHOTOACOUSTICS 2021; 22:100259. [PMID: 33777692 PMCID: PMC7985564 DOI: 10.1016/j.pacs.2021.100259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/08/2023]
Abstract
In this study, we investigated the feasibility of using photoacoustic time-frequency spectral analysis (PA-TFSA) for evaluating the bone mineral density (BMD) and bone structure. Simulations and ex vivo experiments on bone samples with different BMDs and mean trabecular thickness (MTT) were conducted. All photoacoustic signals were processed using the wavelet transform-based PA-TFSA. The power-weighted mean frequency (PWMF) was evaluated to obtain the main frequency component at different times. The y-intercept, midband-fit, and slope of the linearly fitted curve of the PWMF over time were also quantified. The results show that the osteoporotic bone samples with lower BMD and thinner MTT have higher frequency components and lower acoustic frequency attenuation over time, thus higher y-intercept, midband-fit, and slope. The midband-fit and slope were found to be sensitive to the BMD; therefore, both parameters could be used to distinguish between osteoporotic and normal bones (p < 0.05).
Collapse
Key Words
- ARTB, area ratio of trabecular bone
- BMD, bone mineral density
- Bone assessment
- CWT, continuous wavelet transform
- DEXA, dual energy X-ray absorptiometry
- EDTA, ethylenediaminetetraacetic acid
- MTT, mean trabecular thickness
- PA, photoacoustic
- PA-TFS, photoacoustic time-frequency spectrum
- PA-TFSA, photoacoustic time-frequency spectral analysis
- PWMF, power-weighted mean frequency
- Photoacoustic measurement
- QUS, quantitative ultrasound
- ROI, region of interest
- Time-frequency spectral analysis
- US, ultrasound
- Wavelet transform
Collapse
|
research-article |
4 |
19 |
6
|
Mallidi S, Kim S, Karpiouk A, Joshi PP, Sokolov K, Emelianov S. Visualization of molecular composition and functionality of cancer cells using nanoparticle-augmented ultrasound-guided photoacoustics. PHOTOACOUSTICS 2015; 3:26-34. [PMID: 25893171 PMCID: PMC4398809 DOI: 10.1016/j.pacs.2014.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 05/07/2023]
Abstract
Assessment of molecular signatures of tumors in addition to their anatomy and morphology is desired for effective diagnostic and therapeutic procedures. Development of in vivo imaging techniques that can identify and monitor molecular composition of tumors remains an important challenge in pre-clinical research and medical practice. Here we present a molecular photoacoustic imaging technique that can visualize the presence and activity of an important cancer biomarker - epidermal growth factor receptor (EGFR), utilizing the effect of plasmon resonance coupling between molecular targeted gold nanoparticles. Specifically, spectral analysis of photoacoustic images revealed profound changes in the optical absorption of systemically delivered EGFR-targeted gold nanospheres due to their molecular interactions with tumor cells overexpressing EGFR. In contrast, no changes in optical properties and, therefore, photoacoustic signal, were observed after systemic delivery of non-targeted gold nanoparticles to the tumors. The results indicate that multi-wavelength photoacoustic imaging augmented with molecularly targeted gold nanoparticles has the ability to monitor molecular specific interactions between nanoparticles and cell-surface receptors, allowing visualization of the presence and functional activity of tumor cells. Furthermore, the approach can be used for other cancer cell-surface receptors such as human epidermal growth factor receptor 2 (HER2). Therefore, ultrasound-guided molecular photoacoustic imaging can potentially aid in tumor diagnosis, selection of customized patient-specific treatment, and monitor the therapeutic progression and outcome in vivo.
Collapse
|
research-article |
10 |
17 |
7
|
Chen Y, Xu C, Cheng Y, Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy. PHOTOACOUSTICS 2021; 23:100284. [PMID: 34354923 PMCID: PMC8322131 DOI: 10.1016/j.pacs.2021.100284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
Gold nanostars (GNSs) are promising contrast agents for simultaneous photothermal therapy and photoacoustic imaging (PAI) owing to their excellent photothermal conversion efficiency. However, GNSs are easily reshaped under transient high-intensity laser pulses, which can cause a rapid shift in the light absorption peak, resulting in a decrease in both therapeutic and monitoring effects. In this work, we synthesized GNSs without toxic surfactants and coated them with a silica shell to retain their shape, thus maintaining their photostability. The excellent performance of these silica-coated GNSs was verified through both in vitro and in vivo PAI experiments. The silica-coated GNSs exhibited a threefold improvement in photoacoustic stability, as compared with the non-coated GNSs. The proposed silica coating method for GNSs was found to improve the photostability of GNSs, making them efficient, safe, and reliable nanoparticles for PAI.
Collapse
|
research-article |
4 |
16 |
8
|
Zhou Q, Li Z, Zhou J, Joshi BP, Li G, Duan X, Kuick R, Owens SR, Wang TD. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft. PHOTOACOUSTICS 2016; 4:43-54. [PMID: 27766208 PMCID: PMC5066077 DOI: 10.1016/j.pacs.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 05/24/2023]
Abstract
EGFR is a promising cell surface target for in vivo imaging that is highly overexpressed in hepatocellular carcinoma (HCC), a common cancer worldwide. Peptides penetrate easily into tumors for deep imaging, and clear rapidly from the circulation to minimize background. We aim to demonstrate use of an EGFR specific peptide to detect HCC xenograft tumors in mice with photoacoustic imaging. Nude mice implanted with human HCC cells that overexpress EGFR were injected intravenously with Cy5.5-labeled EGFR and scrambled control peptides respectively. Photoacoustic images collected from 0 to 24 h. Photoacoustic signal peaked in tumors at 3 h post-injection. Images from 0 to 1.8 cm beneath the skin revealed increased target-to-background (T/B) ratio from tumors. The T/B ratio was significantly greater for the EGFR versus control peptide. Clearance of signal was observed by ∼24 h. EGFR overexpression was validated with immunofluorescence and immunohistochemistry. A peptide specific for EGFR delivered systemically can detect HCC xenograft tumors in vivo with photoacoustic imaging.
Collapse
|
research-article |
9 |
8 |
9
|
Matchynski JI, Manwar R, Kratkiewicz KJ, Madangopal R, Lennon VA, Makki KM, Reppen AL, Woznicki AR, Hope BT, Perrine SA, Conti AC, Avanaki K. Direct measurement of neuronal ensemble activity using photoacoustic imaging in the stimulated Fos-LacZ transgenic rat brain: A proof-of-principle study. PHOTOACOUSTICS 2021; 24:100297. [PMID: 34522608 PMCID: PMC8426561 DOI: 10.1016/j.pacs.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 05/16/2023]
Abstract
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Collapse
Key Words
- ANSI, American national standards institute
- AP, anterior-posterior
- Brain
- CNR, contrast-to-noise ratio
- Cocaine
- DMSO, dimethyl sulfoxide
- DV, dorsal-ventral
- F/M-PAT, functional molecular photoacoustic tomography
- FOV, field-of-view
- Fear conditioning
- Fos
- GRIN, gradient-index
- IL, infralimbic cortex
- ML, medial-lateral
- Neuronal ensemble
- OCT, optical coherence tomography
- OPO, optical parametric oscillator
- PA, photoacoustic
- PBS, phosphate buffer saline
- PL, prelimbic cortex
- Photoacoustic imaging
- SNR, signal-to-noise ratio
- US, ultrasound
- X-gal
- X-gal, beta-D-galactosidase
- fMRI, functional magnetic resonance imaging
- mPFC, medial prefrontal cortex
Collapse
|
research-article |
4 |
4 |