1
|
Huang YH, Al-Aidaroos AQO, Yuen HF, Zhang SD, Shen HM, Rozycka E, McCrudden CM, Tergaonkar V, Gupta A, Lin YB, Thiery JP, Murray JT, Zeng Q. A role of autophagy in PTP4A3-driven cancer progression. Autophagy 2014; 10:1787-800. [PMID: 25136802 DOI: 10.4161/auto.29989] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy, a "self-eating" cellular process, has dual roles in promoting and suppressing tumor growth, depending on cellular context. PTP4A3/PRL-3, a plasma membrane and endosomal phosphatase, promotes multiple oncogenic processes including cell proliferation, invasion, and cancer metastasis. In this study, we demonstrate that PTP4A3 accumulates in autophagosomes upon inhibition of autophagic degradation. Expression of PTP4A3 enhances PIK3C3-BECN1-dependent autophagosome formation and accelerates LC3-I to LC3-II conversion in an ATG5-dependent manner. PTP4A3 overexpression also enhances the degradation of SQSTM1, a key autophagy substrate. These functions of PTP4A3 are dependent on its catalytic activity and prenylation-dependent membrane association. These results suggest that PTP4A3 functions to promote canonical autophagy flux. Unexpectedly, following autophagy activation, PTP4A3 serves as a novel autophagic substrate, thereby establishing a negative feedback-loop that may be required to fine-tune autophagy activity. Functionally, PTP4A3 utilizes the autophagy pathway to promote cell growth, concomitant with the activation of AKT. Clinically, from the largest ovarian cancer data set (GSE 9899, n = 285) available in GEO, high levels of expression of both PTP4A3 and autophagy genes significantly predict poor prognosis of ovarian cancer patients. These studies reveal a critical role of autophagy in PTP4A3-driven cancer progression, suggesting that autophagy could be a potential Achilles heel to block PTP4A3-mediated tumor progression in stratified patients with high expression of both PTP4A3 and autophagy genes.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
40 |
2
|
Slørdahl TS, Abdollahi P, Vandsemb EN, Rampa C, Misund K, Baranowska KA, Westhrin M, Waage A, Rø TB, Børset M. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget 2017; 7:27295-306. [PMID: 27036022 PMCID: PMC5053650 DOI: 10.18632/oncotarget.8422] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/14/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM.
Collapse
|
Journal Article |
8 |
24 |
3
|
Vandsemb EN, Bertilsson H, Abdollahi P, Størkersen Ø, Våtsveen TK, Rye MB, Rø TB, Børset M, Slørdahl TS. Phosphatase of regenerating liver 3 (PRL-3) is overexpressed in human prostate cancer tissue and promotes growth and migration. J Transl Med 2016; 14:71. [PMID: 26975394 PMCID: PMC4791872 DOI: 10.1186/s12967-016-0830-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/05/2016] [Indexed: 01/04/2023] Open
Abstract
Background PRL-3 is a phosphatase implicated in oncogenesis in multiple cancers. In some cancers, notably carcinomas, PRL-3 is also associated with inferior prognosis and increased metastatic potential. In this study we investigated the expression of PRL-3 mRNA in fresh-frozen samples from patients undergoing radical prostatectomy because of prostate cancer (PC) and the biological function of PRL-3 in prostate cancer cells. Methods Samples from 41 radical prostatectomy specimens (168 samples in total) divided into low (Gleason score ≤ 6), intermediate (Gleason score = 7) and high (Gleason score ≥ 8) risk were analyzed with gene expression profiling and compared to normal prostate tissue. PRL-3 was identified as a gene with differential expression between healthy and cancerous tissue in these analyses. We used the prostate cancer cell lines PC3 and DU145 and a small molecular inhibitor of PRL-3 to investigate whether PRL-3 had a functional role in cancer. Relative ATP-measurement and thymidine incorporation were used to assess the effect of PRL-3 on growth of the cancer cells. We performed an in vitro scratch assay to investigate the involvement of PRL-3 in migration. Immunohistochemistry was used to identify PRL-3 protein in prostate cancer primary tumor and corresponding lymph node metastases. Results Compared to normal prostate tissue, the prostate cancer tissue expressed a significantly higher level of PRL-3. We found PRL-3 to be present in both PC3 and DU145, and that inhibition of PRL-3 led to growth arrest and apoptosis in these two cell lines. Inhibition of PRL-3 led to reduced migration of the PC3 cells. Immunohistochemistry showed PRL-3 expression in both primary tumor and corresponding lymph node metastases. Conclusions PRL-3 mRNA was expressed to a greater extent in prostate cancer tissue compared to normal prostate tissue. PRL-3 protein was expressed in both prostate cancer primary tumor and corresponding lymph node metastases. The results from our in vitro assays suggest that PRL-3 promotes growth and migration in prostate cancer. In conclusion, these results imply that PRL-3 has a role in the pathogenesis of prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0830-z) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
21 |
4
|
Regulatory mechanisms of phosphatase of regenerating liver (PRL)-3. Biochem Soc Trans 2017; 44:1305-1312. [PMID: 27911713 PMCID: PMC5095905 DOI: 10.1042/bst20160146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
The phosphatase of regenerating liver (PRL)-3 is overexpressed in many human cancer types and tumor metastases when compared with healthy tissues. Different pathways and mechanisms have been suggested to modulate PRL-3 expression levels and activity, giving some valuable insights but still leaving an incomplete picture. Investigating these mechanisms could provide new targets for therapeutic drug development. Here, we present an updated overview and summarize recent findings concerning the different PRL-3 expression regulatory mechanisms and posttranslational modifications suggested to modulate the activity, localization, or stability of this phosphatase.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
20 |
5
|
Luján P, Varsano G, Rubio T, Hennrich ML, Sachsenheimer T, Gálvez-Santisteban M, Martín-Belmonte F, Gavin AC, Brügger B, Köhn M. PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position. J Cell Sci 2016; 129:4130-4142. [PMID: 27656108 PMCID: PMC5117205 DOI: 10.1242/jcs.190215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
19 |
6
|
Abdollahi P, Vandsemb EN, Elsaadi S, Røst LM, Yang R, Hjort MA, Andreassen T, Misund K, Slørdahl TS, Rø TB, Sponaas AM, Moestue S, Bruheim P, Børset M. Phosphatase of regenerating liver-3 regulates cancer cell metabolism in multiple myeloma. FASEB J 2021; 35:e21344. [PMID: 33566385 DOI: 10.1096/fj.202001920rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Cancer cells often depend on microenvironment signals from molecules such as cytokines for proliferation and metabolic adaptations. PRL-3, a cytokine-induced oncogenic phosphatase, is highly expressed in multiple myeloma cells and associated with poor outcome in this cancer. We studied whether PRL-3 influences metabolism. Cells transduced to express PRL-3 had higher aerobic glycolytic rate, oxidative phosphorylation, and ATP production than the control cells. PRL-3 promoted glucose uptake and lactate excretion, enhanced the levels of proteins regulating glycolysis and enzymes in the serine/glycine synthesis pathway, a side branch of glycolysis. Moreover, mRNAs for these proteins correlated with PRL-3 expression in primary patient myeloma cells. Glycine decarboxylase (GLDC) was the most significantly induced metabolism gene. Forced GLDC downregulation partly counteracted PRL-3-induced aerobic glycolysis, indicating GLDC involvement in a PRL-3-driven Warburg effect. AMPK, HIF-1α, and c-Myc, important metabolic regulators in cancer cells, were not mediators of PRL-3's metabolic effects. A phosphatase-dead PRL-3 mutant, C104S, promoted many of the metabolic changes induced by wild-type PRL-3, arguing that important metabolic effects of PRL-3 are independent of its phosphatase activity. Through this study, PRL-3 emerges as one of the key mediators of metabolic adaptations in multiple myeloma.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
18 |
7
|
Johansson JA, Marie KL, Lu Y, Brombin A, Santoriello C, Zeng Z, Zich J, Gautier P, von Kriegsheim A, Brunsdon H, Wheeler AP, Dreger M, Houston DR, Dooley CM, Sims AH, Busch-Nentwich EM, Zon LI, Illingworth RS, Patton EE. PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation. Dev Cell 2020; 54:317-332.e9. [PMID: 32652076 PMCID: PMC7435699 DOI: 10.1016/j.devcel.2020.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Abstract
Melanocytes, replenished throughout life by melanocyte stem cells (MSCs), play a critical role in pigmentation and melanoma. Here, we reveal a function for the metastasis-associated phosphatase of regenerating liver 3 (PRL3) in MSC regeneration. We show that PRL3 binds to the RNA helicase DDX21, thereby restricting productive transcription by RNAPII at master transcription factor (MITF)-regulated endolysosomal vesicle genes. In zebrafish, this mechanism controls premature melanoblast expansion and differentiation from MSCs. In melanoma patients, restricted transcription of this endolysosomal vesicle pathway is a hallmark of PRL3-high melanomas. Our work presents the conceptual advance that PRL3-mediated control of transcriptional elongation is a differentiation checkpoint mechanism for activated MSCs and has clinical relevance for the activity of PRL3 in regenerating tissue and cancer.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
16 |
8
|
Tasker NR, Rastelli EJ, Burnett JC, Sharlow ER, Lazo JS, Wipf P. Tapping the therapeutic potential of protein tyrosine phosphatase 4A with small molecule inhibitors. Bioorg Med Chem Lett 2019; 29:2008-2015. [PMID: 31307888 DOI: 10.1016/j.bmcl.2019.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging new targets for drug discovery. PTPs and protein tyrosine kinases (PTKs) maintain cellular homeostasis through opposing roles: tyrosine O-dephosphorylation and -phosphorylation, respectively. An imbalance in the phosphorylation equilibrium results in aberrant protein signaling and pathophysiological conditions. PTPs have historically been considered 'undruggable', in part due to a lack of evidence defining their relationship to disease causality and a focus on purely competitive inhibitors. However, a better understanding of protein-protein interfaces and shallow active sites has recently renewed interest in the pursuit of allosteric and orthosteric modulators of targets outside the major druggable protein families. While their biological mechanism of action still remains to be clarified, PTP4A1-3 (also referred to as PRL1-3) are validated oncology targets and play an important role in cell proliferation, metastasis, and tumor angiogenesis. In this Digest, recent syntheses and structure-activity relationships (SAR) of small molecule inhibitors (SMIs) of PTP4A1-3 are summarized, and enzyme docking studies of the most potent chemotype are highlighted. In particular, the thienopyridone scaffold has emerged as a potent lead structure to interrogate the function and druggability of this dual-specificity PTP.
Collapse
|
Review |
6 |
7 |
9
|
Lujan P, Rubio T, Varsano G, Köhn M. Keep it on the edge: The post-mitotic midbody as a polarity signal unit. Commun Integr Biol 2017; 10:e1338990. [PMID: 28919938 PMCID: PMC5595415 DOI: 10.1080/19420889.2017.1338990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
The maintenance of the epithelial architecture during tissue proliferation is achieved by apical positioning of the midbody after cell division. Consequently, midbody mislocalization contributes to epithelial architecture disruption, a fundamental event during epithelial tumorigenesis. Studies in 3D polarized epithelial MDCK or Caco2 cell models, where midbody misplacement leads to multiple ectopic but fully polarized lumen-containing cysts, revealed that this phenotype can be caused by 2 different scenarios: the loss of mitotic spindle orientation or the loss of asymmetric abscission. In addition, we have recently proposed a third cellular mechanism where the midbody mislocalization is achieved through cytokinesis acceleration driven by the cancer-promoting phosphatase of regenerating liver (PRL)-3. Here we critically review these findings, and we furthermore present new data indicating that midbodies themselves might act as signal unit for polarization since they can infer apical characteristics to a basal membrane.
Collapse
|
research-article |
8 |
7 |
10
|
Vandsemb EN, Rye MB, Steiro IJ, Elsaadi S, Rø TB, Slørdahl TS, Sponaas AM, Børset M, Abdollahi P. PRL-3 induces a positive signaling circuit between glycolysis and activation of STAT1/2. FEBS J 2021; 288:6700-6715. [PMID: 34092011 DOI: 10.1111/febs.16058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy resulting from the clonal expansion of plasma cells. MM cells are interacting with components of the bone marrow microenvironment such as cytokines to survive and proliferate. Phosphatase of regenerating liver (PRL)-3, a cytokine-induced oncogenic phosphatase, is highly expressed in myeloma patients and is a mediator of metabolic reprogramming of cancer cells. To find novel pathways and genes regulated by PRL-3, we characterized the global transcriptional response to PRL-3 overexpression in two MM cell lines. We used pathway enrichment analysis to identify pathways regulated by PRL-3. We further confirmed the hits from the enrichment analysis with in vitro experiments and investigated their function. We found that PRL-3 induced expression of genes belonging to the type 1 interferon (IFN-I) signaling pathway due to activation of signal transducer and activator of transcription (STAT) 1 and STAT2. This activation was independent of autocrine IFN-I secretion. The increase in STAT1 and STAT2 did not result in any of the common consequences of increased IFN-I or STAT1 signaling in cancer. Knockdown of STAT1/2 did not affect the viability of the cells, but decreased PRL-3-induced glycolysis. Interestingly, glucose metabolism contributed to the activation of STAT1 and STAT2 and expression of IFN-I-stimulated genes in PRL-3-overexpressing cells. In summary, we describe a novel signaling circuit where the key IFN-I-activated transcription factors STAT1 and STAT2 are important drivers of the increase in glycolysis induced by PRL-3. Subsequently, increased glycolysis regulates the IFN-I-stimulated genes by augmenting the activation of STAT1/2.
Collapse
|
Journal Article |
4 |
7 |
11
|
Wang Y, Guo Y, Hu Y, Sun Y, Xu D. Endosulfan triggers epithelial-mesenchymal transition via PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139234. [PMID: 32413665 DOI: 10.1016/j.scitotenv.2020.139234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Endosulfan is a persistent organochlorine pesticide that bioaccumulates in human body through the food chain and thus represents a potential risk to public health. Despite epidemiological studies, the molecular mechanisms underlying the carcinogenic effects of endosulfan in the prostate remain poorly understood. In this study, we investigated the effect of endosulfan on epithelial-mesenchymal transition (EMT) in human prostate cancer PC3 and DU145 cells. Endosulfan induced alterations of EMT biomarkers, reflecting repression of E-cadherin expression and induction of fibronectin, snail2, ZEB2, Twist1 and Vimentin. The expression of Protein-tyrosine Phosphatase 4A3 (PTP4A3) at mRNA and protein levels was upregulated by endosulfan. PTP4A3 inhibitor reversed the changes of EMT biomarkers, PTP4A3 and p-Smad2/Smad2, but did not affect the upregulation of Cleaved-Notch1 and Jagged1 in endosulfan-exposed cells. Endosulfan promoted cell migration and invasion, which were rescued by specific inhibitors for PTP4A3, TGF-β signaling and Notch signaling, respectively. These findings suggest that endosulfan promoted cell migration and invasion with the induction of EMT through PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells.
Collapse
|
|
5 |
7 |
12
|
Richter GM, Kruppa J, Keceli HG, Ataman-Duruel ET, Graetz C, Pischon N, Wagner G, Rendenbach C, Jockel-Schneider Y, Martins O, Bruckmann C, Staufenbiel I, Franke A, Nohutcu RM, Jepsen S, Dommisch H, Schaefer AS. Epigenetic adaptations of the masticatory mucosa to periodontal inflammation. Clin Epigenetics 2021; 13:203. [PMID: 34732256 PMCID: PMC8567676 DOI: 10.1186/s13148-021-01190-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background In mucosal barrier interfaces, flexible responses of gene expression to long-term environmental changes allow adaptation and fine-tuning for the balance of host defense and uncontrolled not-resolving inflammation. Epigenetic modifications of the chromatin confer plasticity to the genetic information and give insight into how tissues use the genetic information to adapt to environmental factors. The oral mucosa is particularly exposed to environmental stressors such as a variable microbiota. Likewise, persistent oral inflammation is the most important intrinsic risk factor for the oral inflammatory disease periodontitis and has strong potential to alter DNA-methylation patterns. The aim of the current study was to identify epigenetic changes of the oral masticatory mucosa in response to long-term inflammation that resulted in periodontitis. Methods and results Genome-wide CpG methylation of both inflamed and clinically uninflamed solid gingival tissue biopsies of 60 periodontitis cases was analyzed using the Infinium MethylationEPIC BeadChip. We validated and performed cell-type deconvolution for infiltrated immune cells using the EpiDish algorithm. Effect sizes of DMPs in gingival epithelial and fibroblast cells were estimated and adjusted for confounding factors using our recently developed “intercept-method”. In the current EWAS, we identified various genes that showed significantly different methylation between periodontitis-inflamed and uninflamed oral mucosa in periodontitis patients. The strongest differences were observed for genes with roles in wound healing (ROBO2, PTP4A3), cell adhesion (LPXN) and innate immune response (CCL26, DNAJC1, BPI). Enrichment analyses implied a role of epigenetic changes for vesicle trafficking gene sets. Conclusions Our results imply specific adaptations of the oral mucosa to a persistent inflammatory environment that involve wound repair, barrier integrity, and innate immune defense. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01190-7.
Collapse
|
|
4 |
5 |
13
|
Yeh HC, Huang CN, Li CC, Chang LL, Lin HH, Ke HL, Huang AM, Liang PI, Li CF, Wu WJ. Overexpression of PTP4A3 is associated with metastasis and unfavorable prognosis in bladder cancer. World J Urol 2015; 34:835-46. [PMID: 26433386 DOI: 10.1007/s00345-015-1698-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Bladder cancer (BC) is the most common malignancy in urinary system. The prognosis of metastatic BC is poor, but there remains no reliable marker to early detect metastasis. Dysregulated prenylated protein tyrosine phosphatases (PTPs) are commonly associated with cancer metastasis. From a published BC transcriptome, we identified that PTP IVA3 (PTP4A3) was the most significantly upregulated gene implicated in tumor progression among genes related to prenylated PTPs. We therefore analyzed PTP4A3 expression in our well-characterized cohort of BC. METHODS By immunohistochemistry, PTP4A3 expression was determined using H-score. PTP4A3 expression of 295 BCs was compared with clinicopathological parameters, and the effect of PTP4A3 on cancer-specific survival (CSS) and metastasis-free survival (MFS) was also examined. Two independent sets of BCs were used to assess PTP4A3 protein and transcript expression in normal urothelium and different stage tumors. RESULTS PTP4A3 overexpression was significantly associated with higher pT stage (P < 0.001), nodal metastasis (P < 0.001), vascular invasion (P < 0.001), and perineural invasion (P = 0.021). In multivariate analysis, PTP4A3 overexpression was an independent predictor for CSS (P < 0.001) and MFS (P = 0.007). Notably, the difference in CSS and MFS between high and low PTP4A3-expressing tumors was also significant in muscle-invasive BCs. PTP4A3 protein expression showed significant and stepwise increments from normal urothelium to noninvasive BC, invasive BC, and metastatic foci (P < 0.001). PTP4A3 transcript was also obviously upregulated in high-stage BC (P < 0.001). CONCLUSIONS PTP4A3 may play a role in BC oncogenesis and is a predictive marker of metastasis. PTP4A3 overexpression represents an independent prognosticator for BC, suggesting its potential theranostic value.
Collapse
|
Journal Article |
10 |
5 |
14
|
Li H, Liu S, Hu Y, Zhao B, Sun Y, Xu D. Endosulfan promotes cell migration via PTP4A3-mediated signaling pathways in HUVECs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110267. [PMID: 32044604 DOI: 10.1016/j.ecoenv.2020.110267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Endosulfan is a persistent organic pollutant and can cause endothelial dysfunction, closely related to cardiovascular diseases. Endothelial cell migration plays a critical role in atherosclerosis and angiogenesis. This study was aimed to investigate the effect of environmentally relevant doses of endosulfan and underlying molecular mechanism on endothelial cell migration. Human umbilical vein endothelial cells (HUVECs) were treated with DMSO (control) or endosulfan (0.1, 1, 10 and 20 μM) in the presence or absence of inhibitors. Wound healing and Transwell assay were employed to explore the effect of endosulfan on endothelial cell migration. The expression of genes or proteins was assayed by real-time PCR or immunoblotting. The results showed that endosulfan at relative low concentration (0.1, 1, 10 and 20 μM) increased cell migration ability horizontally and vertically at 12 h after exposure. In line with this cellular effect, Protein-tyrosine Phosphatase 4A3 (PTP4A3) expression was significantly increased in endosulfan-exposed endothelial cells. Specific inhibitor of PTP4A3 significantly inhibited 20 μM endosulfan-induced cell migration, the expression and phosphorylation of Src and phosphorylation of focal adhesion kinase (FAK). Exposure to endosulfan resulted in activation of various signaling pathways including phosphoinositide 3-kinase (PI3K)/AKT, mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB), which were suppressed by PTP4A3 inhibitor or specific inhibitor for each signaling pathway. Exposure to endosulfan significantly reduced nitric oxide production and caused oxidative stress in HUVECs. These findings suggest that endosulfan promoted cell migration through PTP4A3-mediated various signaling pathways in endothelial cells.
Collapse
|
|
5 |
4 |
15
|
Wang Y, Guo Y, Lu Y, Sun Y, Xu D. The effects of endosulfan on cell migration and invasion in prostate cancer cells via the KCNQ1OT1/miR-137-3p/ PTP4A3 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157252. [PMID: 35817112 DOI: 10.1016/j.scitotenv.2022.157252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Endosulfan belongs to persistent organic pollutants (POPs), closely related to an increased risk of prostate cancer (PCa). The existing evidence shows that lncRNAs compete with miRNAs for binding sites and contribute to the onset and progression of human malignancies. In this study we investigate how endosulfan promotes cell migration and invasion in DU145 and PC3 prostate cancer cells through epigenetic mechanism of lncRNA-miRNA regulation. Based on our past research we focused on PTP4A3 and constructed wild-type (WT) and mutant PTP4A3 plasmids for further analysis. Our results revealed that transfection of PTP4A3-WT can lead to changes in the expression of epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the TGF-β signaling pathway, and promote cell migration and invasion in PCa cells. Bioinformatics analysis shows that there were complementary sequences in PTP4A3 3'-UTR and KCNQ1OT1 3'-UTR to the seed sequence of hsa-miR-137-3p, and dual luciferase reporter assay indicates the potential binding capacity of miR-137-3p to 3'-UTR of PTP4A3 and KCNQ1OT1. We found that miR-137-3p mimic inhibited cell migration and invasion, as well as repressed alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway. Rescue experiment results revealed that co-transfection of miR-137-3p mimic and PTP4A3-WT plasmid reversed these changes following transfection with miR-137-3p mimic alone. We found that KCNQ1OT1 was predominantly distributed in the cytoplasm from a subcellular fractionation assay. Functionally, silencing of KCNQ1OT1 repressed cell migration and invasion, and caused alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway, which were all restored by co-transfection with anti-miR-137-3p or PTP4A3-WT plasmid. Furthermore, overexpression of miR-137-3p or silencing of KCNQ1OT1 dramatically rescued the effects of endosulfan on promoting cell migration and invasion. These findings suggest that endosulfan can indeed promote cell migration and invasion via the KCNQ1OT1/miR-137-3p/PTP4A3 axis in PCa cells.
Collapse
|
|
3 |
4 |
16
|
Overexpression of PTP4A3 in ETV6-RUNX1 acute lymphoblastic leukemia. Leuk Res 2016; 54:1-6. [PMID: 28063378 DOI: 10.1016/j.leukres.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/25/2016] [Accepted: 12/18/2016] [Indexed: 11/21/2022]
Abstract
Cell signalling, which is often derailed in cancer, is a network of multiple interconnected pathways with numerous feedback mechanisms. Dynamics of cell signalling is intimately regulated by addition and removal of phosphate groups by kinases and phosphatases. We examined expression of members of the PTP4A family of phosphatases across acute leukemias. While expression of PTP4A1 and PTP4A2 remained relatively unchanged across diseases, PTP4A3 showed marked overexpression in ETV6-RUNX1 and BCR-ABL1 subtypes of precursor B cell acute lymphoblastic leukemia. We show that PTP4A3 is regulated by the ETV6-RUNX1 fusion, but noticed no marked impact on cell viability either after PTP4A3 silencing or treatment with a PTP4A3 inhibitor. Regulation of PTP4A3 expression is altered in specific subgroups of acute leukemias and this is likely brought about by expression of the aberrant fusion genes.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
4 |
17
|
PTP4A3, A Novel Target Gene of HIF-1alpha, Participates in Benzene-Induced Cell Proliferation Inhibition and Apoptosis through PI3K/AKT Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030910. [PMID: 32024182 PMCID: PMC7037067 DOI: 10.3390/ijerph17030910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 μM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 μM 1,4-BQ group, whereas the results reversed at the concentration of 20 μM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.
Collapse
|
|
5 |
2 |
18
|
Smith CN, Blackburn JS. PRL-3 promotes a positive feedback loop between STAT1/2-induced gene expression and glycolysis in multiple myeloma. FEBS J 2021; 288:6674-6676. [PMID: 34327809 DOI: 10.1111/febs.16120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
Over 34 000 patients are diagnosed yearly with multiple myeloma (MM), which remains a fatal malignancy. Expression of the phosphatase PRL-3 is associated with poor prognosis in MM patients, and Vandsemb et al. have demonstrated that PRL-3 contributes to enhanced MM cell fitness through activation of a glycolysis-associated feedback loop. PRL-3 resulted in increased expression of signal transducer and activator of transcription 1 (STAT1) and 2 (STAT2) and increased glycolysis. Increased glucose metabolism in turn activated STAT1/2 and interferon 1-related genes. This discovery advances the MM field by providing a new potential treatment avenue. Comment on: https://doi.org/10.1111/febs.16058.
Collapse
|
Journal Article |
4 |
2 |
19
|
Song Q, Zheng Y, Wu J, Wang S, Meng L, Yao Q, Li Z, Lian S. PTP4A3 Is a Prognostic Biomarker Correlated With Immune Infiltrates in Papillary Renal Cell Carcinoma. Front Immunol 2021; 12:717688. [PMID: 34630392 PMCID: PMC8495008 DOI: 10.3389/fimmu.2021.717688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
PTP4A3 plays an important role in the tumorigenesis and metastasis of multiple tumors, but its prognostic role in renal cancer is not well understood. We utilized the Oncomine and Tumor Immunoassay Resource databases to examine the differential expression of PTP4A3 in tumor tissues and normal tissues in breast, urinary tract, gastrointestinal tract and skin. Using the GEPIA and PrognoScan databases, the independent prognostic role of PTP4A3 was confirmed in clear cell renal cell cancer and papillary renal cell cancer. Expression of PTP4A3 were obviously higher in tumor tissue compare with normal tissues (P=0.028). We haven’t found the associations of PTP4A3 and clinicopathological features in our IHC cohort. Ectopic expression of PTP4A3 promotes proliferation, migration and invasion and increased the mRNA level of TGFB1 in RCC cell lines. Immunohistochemical staining indicated that the expression of PTP4A3 associates with CD3+ (P =0.037)/CD8+ (P =0.037) intratumor TILs, not with invasive margins in renal cancer. Comprehensive analysis of immune infiltration in the TIMER database correlated PTP4A3 expression with the infiltration of B cells, CD8+ T cells, CD4+ T cells and neutrophils in both clear cell renal cell carcinoma and papillary renal cell carcinoma. PTP4A3 expression was associated with the infiltration of dendritic cells in papillary renal cell carcinoma. We further confirmed that the infiltration of B cells and CD8+ T cells was associated with poor prognosis in papillary renal cell carcinoma patients, consistent with the prognostic role of PTP4A3 in papillary renal cell carcinoma. PTP4A3 expression correlated genes involved in B cells, monocytes, M1 macrophages, Th2 and Treg cells in papillary renal cell carcinoma. These results suggest PTP4A3 as a prognostic factor with a role in regulating immune cell infiltration in papillary renal cell carcinoma.
Collapse
|
|
4 |
1 |
20
|
The phosphatase PRL-3 affects intestinal homeostasis by altering the crypt cell composition. J Mol Med (Berl) 2021; 99:1413-1426. [PMID: 34129057 PMCID: PMC8455404 DOI: 10.1007/s00109-021-02097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/04/2022]
Abstract
Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events. Key messages • Transgenic mice homozygous for PRL-3 overexpression die early. • PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity. • PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine. • PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion. • Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.
Collapse
|
Journal Article |
4 |
0 |
21
|
Santarpia M, Aliprandi M, Claudia Spagnolo C, Avan A, Rosell R, Andrea Zucali P, Giovannetti E. NOTCH and PTP4A3 alterations emerge as novel predictive biomarkers and potential therapeutic targets in pleural mesothelioma. Lung Cancer 2024; 198:108024. [PMID: 39547104 DOI: 10.1016/j.lungcan.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Previous studies showed opposite effects of NOTCH1 and NOTCH2 on mesothelioma cell survival under hypoxia. Mechanisms underlying these effects are not still clear and this pathway plays a key role in angiogenesis and cancer stem cells (CSCs) self-renewal processes. PURPOSE In this study we evaluated whether NOTCH1, NOTCH2 copy number alterations (CNAs) might predict prognosis of patients with pleural mesothelioma (PM) and if the modulation of this pathway might target CSCs, potentiating pemetrexed activity, also in hypoxic conditions. METHODS Recurrent CNAs were determined by high-resolution whole-genome sequencing from paraffin-embedded samples of a "discovery cohort" (26 patients treated with pemetrexed-based chemotherapy). Prognostic CNAs were validated by PCR gene copy-number and expression analyses in the "discovery" and in two independent "validation" cohorts of pemetrexed-treated and untreated patients (N = 45 and N = 40). Functional analyses of emerging genes were performed through siRNA in different subpopulation of PM cells, growing under hypoxia. RESULTS A copy number gain of NOTCH2 was observed in 50% of patients with progressive disease and its overexpression correlated with a worse prognosis in both pemetrexed-treated and untreated-patients' cohorts. Conversely, losses of PTP4A3 correlated with clinical benefit, while patients with overexpression of both NOTCH2 and PTP4A3 had the worse prognosis. Moreover, NOTCH2 silencing through siRNA in vitro reduced migration, enhancing apoptosis of PM cells, while the PTP4A3 inhibitor BR-1 overcame pemetrexed resistance in PM cells characterized by high NOTCH2/PTP4A3 expression. CONCLUSIONS NOTCH2 and PTP4A3 alterations are associated with clinical outcomes in pemetrexed-treated PM patients. The inhibition of NOTCH pathway may be exploited to eradicate CSCs and improve patients' survival.
Collapse
MESH Headings
- Humans
- Mesothelioma/genetics
- Mesothelioma/drug therapy
- Mesothelioma/pathology
- Mesothelioma/mortality
- Mesothelioma/metabolism
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Pleural Neoplasms/genetics
- Pleural Neoplasms/drug therapy
- Pleural Neoplasms/pathology
- Pleural Neoplasms/mortality
- Pleural Neoplasms/metabolism
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Prognosis
- Pemetrexed/therapeutic use
- Pemetrexed/pharmacology
- DNA Copy Number Variations
- Female
- Male
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Cell Line, Tumor
- Aged
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Mesothelioma, Malignant/drug therapy
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/metabolism
- Mesothelioma, Malignant/pathology
Collapse
|
|
1 |
|
22
|
Lin C, Yu M, Wu X, Wang H, Wei M, Zhang L. Targeting Moonlighting Enzymes in Cancer. Molecules 2024; 29:1573. [PMID: 38611852 PMCID: PMC11013064 DOI: 10.3390/molecules29071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy.
Collapse
|
Review |
1 |
|
23
|
Li CJ, Tsai HW, Chen YL, Wang CI, Lin YH, Chu PM, Chi HC, Huang YC, Chen CY. Cisplatin or Doxorubicin Reduces Cell Viability via the PTPIVA3-JAK2-STAT3 Cascade in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:123-138. [PMID: 36741246 PMCID: PMC9896975 DOI: 10.2147/jhc.s385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) accounts for 80% of all liver cancers and is the 2nd leading cause of cancer-related death in Taiwan. Various factors, including rapid cell growth, a high recurrence rate and drug resistance, make HCC difficult to cure. Moreover, the survival rate of advanced HCC patients treated with systemic chemotherapy remains unsatisfactory. Hence, the identification of novel molecular targets and the underlying mechanisms of chemoresistance in HCC and the development more effective therapeutic regimens are desperately needed. Methods An MTT assay was used to determine the cell viability after cisplatin or doxorubicin treatment. Western blotting, qRT‒PCR and immunohistochemistry were utilized to examine the protein tyrosine phosphatase IVA3 (PTP4A3) level and associated signaling pathways. ELISA was utilized to analyze the levels of the inflammatory cytokine IL-6 influenced by cisplatin, doxorubicin and PTP4A3 silencing. Results In this study, we found that PTP4A3 in the cisplatin/doxorubicin-resistant microarray was closely associated with the overall and recurrence-free survival rates of HCC patients. Cisplatin or doxorubicin significantly reduced cell viability and decreased PTP4A3 expression in hepatoma cells. IL-6 secretion increased with cisplatin or doxorubicin treatment and after PTP4A3 silencing. Furthermore, PTP4A3 was highly expressed in tumor tissues versus adjacent normal tissues from HCC patients. In addition, we evaluated the IL-6-associated signaling pathway involving STAT3 and JAK2, and the levels of p-STAT3, p-JAK2, STAT3 and JAK2 were obviously reduced with cisplatin or doxorubicin treatment in HCC cells using Western blotting and were also decreased after silencing PTP4A3. Collectively, we suggest that cisplatin or doxorubicin decreases HCC cell viability via downregulation of PTP4A3 expression through the IL-6R-JAK2-STAT3 cascade. Discussion Therefore, emerging evidence provides a deep understanding of the roles of PTP4A3 in HCC cisplatin/doxorubicin chemoresistance, which can be applied to develop early diagnosis strategies and reveal prognostic factors to establish novel targeted therapeutics to specifically treat HCC.
Collapse
|
research-article |
2 |
|
24
|
Jolly JT, Blackburn JS. The PACT Network: PRL, ARL, CNNM, and TRPM Proteins in Magnesium Transport and Disease. Int J Mol Sci 2025; 26:1528. [PMID: 40003994 PMCID: PMC11855589 DOI: 10.3390/ijms26041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological conditions. Over the past two decades, extensive research on magnesium-regulating proteins has provided valuable insight into their pathogenic and therapeutic potential. This review explores an emerging mechanism of magnesium homeostasis involving proteins in the PRL (phosphatase of regenerating liver), ARL (ADP ribosylation factor-like GTPase family), CNNM (cyclin and cystathionine β-synthase domain magnesium transport mediator), and TRPM (transient receptor potential melastatin) families, collectively termed herein as the PACT network. While each PACT protein has been studied within its individual signaling and disease contexts, their interactions suggest a broader regulatory network with therapeutic potential. This review consolidates the current knowledge on the PACT proteins' structure, function, and interactions and identifies research gaps to encourage future investigation. As the field of magnesium homeostasis continues to advance, understanding PACT protein interactions offers new opportunities for basic research and therapeutic development targeting magnesium-related disorders.
Collapse
|
Review |
1 |
|
25
|
Mir IH, Shyam KT, Balakrishnan SS, Kumar MS, Ramesh T, Thirunavukkarasu C. Elucidation of escitalopram oxalate and related antidepressants as putative inhibitors of PTP4A3/PRL-3 protein in hepatocellular carcinoma: A multi-computational investigation. Comput Biol Chem 2024; 110:108039. [PMID: 38471352 DOI: 10.1016/j.compbiolchem.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Hepatocellular carcinoma (HCC) persists to be one of the most devastating and deadliest malignancies globally. Recent research into the molecular signaling networks entailed in many malignancies has given some prominent insights that can be leveraged to create molecular therapeutics for combating HCC. Therefore, in the current communication, an in-silico drug repurposing approach has been employed to target the function of PTP4A3/PRL-3 protein in HCC using antidepressants: Fluoxetine hydrochloride, Citalopram, Amitriptyline, Imipramine, and Escitalopram oxalate as the desired ligands. The density function theory (DFT) and chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters for the chosen ligands were evaluated to comprehend the pharmacokinetics, drug-likeness properties, and bioreactivity of the ligands. The precise interaction mechanism was explored using computational methods such as molecular docking and molecular dynamics (MD) simulation studies to assess the inhibitory effect and the stability of the interactions against the protein of interest. Escitalopram oxalate exhibited a comparatively significant docking score (-7.4 kcal/mol) compared to the control JMS-053 (-6.8 kcal/mol) against the PRL-3 protein. The 2D interaction plots exhibited an array of hydrophobic and hydrogen bond interactions. The findings of the ADMET forecast confirmed that it adheres to Lipinski's rule of five with no violations, and DFT analysis revealed a HOMO-LUMO energy gap of -0.26778 ev, demonstrating better reactivity than the control molecule. The docked complexes were subjected to MD studies (100 ns) showing stable interactions. Considering all the findings, it can be concluded that Escitalopram oxalate and related therapeutics can act as potential pharmacological candidates for targeting the activity of PTP4A3/PRL-3 in HCC.
Collapse
|
|
1 |
|