1
|
Zhao JJ, Halvardson J, Zander CS, Zaghlool A, Georgii‐Hemming P, Månsson E, Brandberg G, Sävmarker HE, Frykholm C, Kuchinskaya E, Thuresson A, Feuk L. Exome sequencing reveals NAA15 and PUF60 as candidate genes associated with intellectual disability. Am J Med Genet B Neuropsychiatr Genet 2018; 177:10-20. [PMID: 28990276 PMCID: PMC5765476 DOI: 10.1002/ajmg.b.32574] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/05/2017] [Indexed: 11/07/2022]
Abstract
Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2-3% of population worldwide. In recent years, exome sequencing has been a successful strategy for studies of genetic causes of ID, providing a growing list of both candidate and validated ID genes. In this study, exome sequencing was performed on 28 ID patients in 27 patient-parent trios with the aim to identify de novo variants (DNVs) in known and novel ID associated genes. We report the identification of 25 DNVs out of which five were classified as pathogenic or likely pathogenic. Among these, a two base pair deletion was identified in the PUF60 gene, which is one of three genes in the critical region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to the growing evidence that PUF60 is responsible for the majority of the symptoms reported for carriers of a microdeletion across this region. We also report variants in several genes previously not associated with ID, including a de novo missense variant in NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that the gene is highly intolerant to loss of function and coding variation, and previously reported DNVs in neurodevelopmental disorders.
Collapse
|
research-article |
7 |
39 |
2
|
Sun D, Lei W, Hou X, Li H, Ni W. PUF60 accelerates the progression of breast cancer through downregulation of PTEN expression. Cancer Manag Res 2019; 11:821-830. [PMID: 30697074 PMCID: PMC6340502 DOI: 10.2147/cmar.s180242] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background PUF60 is a splicing variant of far upstream element binding protein 1-interacting repressor, which is abnormally expressed in a variety of tumors and is closely involved in their progression. However, whether PUF60 participates in the occurrence and development of breast cancer remains unknown. Therefore, the objective of the current study is to explore the effects and mechanism of PUF60 in the progression of breast cancer. Methods PUF60 expression patterns in breast cancer tissues and cells were determined by RT-PCR and Western blotting. The relationship between PUF60 expression and patients' clinical features and outcome was evaluated to assess the potential of PUF60 as a marker for progression and prognosis prediction. CCK-8, flow cytometry, transwell and in vivo tumor formation assays were used to detect cell proliferation, apoptosis, migration, invasion and tumorigenesis. The effects of PUF60 on the activation of PTEN/PI3K/AKT were also evaluated by Western blotting and immunofluorescence assays. Results The expression of PUF60 was elevated in breast cancer tissue samples and cell lines, and its high expression was closely associated with the high incidence of lymph node metastasis and advanced TNM stage. Besides, upregulation of PUF60 with lentivirus infection significantly increased the growth, migration, and invasion and repressed the apoptosis of breast cancer HCC1937 and MDA-MB-231 cells, while silencing of PUF60 with shRNA showed the opposite results. Moreover, PUF60 upregulation promoted the expression of p-AKT, PI3K, and mTOR, while decreased PTEN expression through inhibiting its stability and enhancing its ubiquitination. Furthermore, upregulation of PUF60 promoted the tumorigenesis in vivo, whereas this effect was impaired when PTEN expression was upregulated in MDA-MB-231 and HCC1937 cells. Conclusion This study demonstrates that PUF60 is highly expressed in breast cancer; upregulation of PUF60 accelerates the progression of breast cancer through PTEN inhibition.
Collapse
|
Journal Article |
6 |
23 |
3
|
Xu L, Lin J, Liu Y, Hua B, Cheng Q, Lin C, Yan Z, Wang Y, Sun N, Qian R, Lu C. CLOCK regulates Drp1 mRNA stability and mitochondrial homeostasis by interacting with PUF60. Cell Rep 2022; 39:110635. [PMID: 35417690 DOI: 10.1016/j.celrep.2022.110635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Circadian genes such as Clock, Bmal1, Cryptochrome1/2, and Period1/2/3 constitute the precise circadian system. ClockΔ19 is a commonly used mouse model harboring a circadian clock gene mutation, which lacks the EXON-19-encoded 51 amino acids. Previous reports have shown that ClockΔ19 mice have severe metabolic abnormalities. Here, we report that the mitochondria of ClockΔ19 mice exhibit excessive fission and dysfunction. We also demonstrate that CLOCK binds to the RNA-binding protein PUF60 through its EXON 19. Further, we find that PUF60 directly maintains mitochondrial homeostasis through regulating Drp1 mRNA stability, while the association with CLOCK can competitively inhibit this function. In ClockΔ19 mice, CLOCKΔ19 releases PUF60, leading to enhanced Drp1 mRNA stability and persistent mitochondrial fission. Our results reveal a direct post-transcriptional role of CLOCK in regulating mitochondrial homeostasis via Drp1 mRNA stability and that the loss of EXON 19 of CLOCK in ClockΔ19 mice leads to severe mitochondrial homeostasis disorders.
Collapse
|
|
3 |
19 |
4
|
Wells C, Spaggiari E, Malan V, Stirnemann JJ, Attie-Bitach T, Ville Y, Vekemans M, Bessieres B, Romana S. First fetal case of the 8q24.3 contiguous genes syndrome. Am J Med Genet A 2015; 170A:239-42. [PMID: 26437074 DOI: 10.1002/ajmg.a.37411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022]
Abstract
Molecular cytogenetics, particularly array-CGH, opened the way to the « genotype first approach » and for the discovery of new micro rearrangement syndromes. This was the case for the 8q24.3 microdeletion syndrome. Here, we describe the phenotype of a fetus with a 8q24.3 deletion. This rare condition has to be considered as a contiguous genes syndrome because its phenotype is generated by the SCRIB and PUF60 adjacent gene endophenotypes. The fetus presented atrioventricular septal defect and hypoplastic aortic arch, facial dysmorphism, microretrognathia, dysmorphic ears, clinodactyly of the 5th digit on both hands, mild rocker bottom feet and abnormal third sacral vertebra. This fetus is the first case where the endophenotype produced by SCRIB gene is absent. This case is compared with the previous published cases.
Collapse
|
Journal Article |
10 |
16 |
5
|
Long Q, An X, Chen M, Wang N, Sui S, Li Y, Zhang C, Lee K, Wang X, Tian T, Pan Y, Qiu H, Xie F, Deng W, Zheng F, He L. PUF60/AURKA Axis Contributes to Tumor Progression and Malignant Phenotypes in Bladder Cancer. Front Oncol 2020; 10:568015. [PMID: 33117697 PMCID: PMC7576680 DOI: 10.3389/fonc.2020.568015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression or mutation of RNA splicing proteins are widely observed in human cancers. Here, we identified poly(U) binding splicing factor 60 (PUF60) as one of the most differentially expressed genes out of 97 RNA splicing proteins between normal and bladder cancer tissues by bioinformatics analysis of TCGA bladder cancer expression data. The expression of PUF60 was significantly higher in tumor tissues, while high PUF60 expression was associated with malignant phenotypes of bladder cancer and shorter survival time. Moreover, we identified aurora kinase A (AURKA) as a new downstream target of PUF60 in bladder cancer cells. PUF60 knockdown significantly inhibited cell viability and colony formation capacity in bladder cancer cells, whereas AURKA overexpression reversed this inhibition effect. Overexpression of PUF60 significantly promoted cell viability and colony formation in bladder cancer cells, while treatment with AURKA specific inhibitor reversed this promotive effect. Mechanistically, PUF60 specifically bound to the AURKA promoter, thereby activating its transcription and expression. Furthermore, we showed that there was a significant positive correlation between PUF60 and AURKA expression in bladder cancer tissues, and PUF60 and AURKA expression contributed to tumor progression and malignant phenotypes in the patients with bladder cancer. Collectively, these results indicate that the PUF60/AURKA axis plays a key role in regulating tumorigenesis and progression of bladder cancer, and may be a potential prognostic biomarker and therapeutic target for bladder cancer patients.
Collapse
|
Journal Article |
5 |
15 |
6
|
Xu Q, Li CY, Wang Y, Li HP, Wu BB, Jiang YH, Xu X. Role of PUF60 gene in Verheij syndrome: a case report of the first Chinese Han patient with a de novo pathogenic variant and review of the literature. BMC Med Genomics 2018; 11:92. [PMID: 30352594 PMCID: PMC6199733 DOI: 10.1186/s12920-018-0421-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
Background Verheij syndrome is a rare microdeletion syndrome of chromosome 8q24.3 that harbors PUF60, SCRIB, and NRBP2 genes. Subsequently, loss of function mutations in PUF60 have been found in children with clinical features significantly overlapping with Verheij. Case presentation Here we present the first Chinese Han patient with a de novo nonsense variant (c.1357C > T, p.Gln453*) in PUF60 by clinical whole exome sequencing. The 5-year-old boy presents with dysmorphic facial features, intellectual disability, and growth retardation but without apparent cardiac, renal, ocular, and spinal anomalies. Conclusions Our finding contributes to the understanding of the genotype and phenotype in PUF60 related disorder.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
14 |
7
|
Li M, Ren C, Zhou S, He Y, Guo Y, Zhang H, Liu L, Cao Q, Wang C, Huang J, Hu Y, Bai X, Guo X, Shu W, Huo R. Integrative proteome analysis implicates aberrant RNA splicing in impaired developmental potential of aged mouse oocytes. Aging Cell 2021; 20:e13482. [PMID: 34582091 PMCID: PMC8520726 DOI: 10.1111/acel.13482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/18/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Aging has many effects on the female reproductive system, among which decreased oocyte quality and impaired embryo developmental potential are the most important factors affecting female fertility. However, the mechanisms underlying oocyte aging are not yet fully understood. Here, we selected normal reproductively aging female mice and constructed a protein expression profile of metaphase II (MII) oocytes from three age groups. A total of 187 differentially expressed (DE) proteins were identified, and bioinformatics analyses showed that these DE proteins were highly enriched in RNA splicing. Next, RNA‐seq was performed on 2‐cell embryos from these three age groups, and splicing analysis showed that a large number of splicing events and genes were discovered at this stage. Differentially spliced genes (DSGs) in the two reproductively aging groups versus the younger group were enriched in biological processes related to DNA damage repair/response. Binding motif analysis suggested that PUF60 might be one of the core splicing factors causing a decline in DNA repair capacity in the subsequent development of oocytes from reproductively aging mice, and changing the splicing pattern of its potential downstream DSG Cdk9 could partially mimic phenotypes in the reproductively aging groups. Taken together, our study suggested that the abnormal expression of splicing regulation proteins in aged MII oocytes would affect the splicing of nascent RNA after zygotic genome activation in 2‐cell embryos, leading to the production of abnormally spliced transcripts of some key genes associated with DNA damage repair/response, thus affecting the developmental potential of aged oocytes.
Collapse
|
|
4 |
14 |
8
|
An J, Luo Z, An W, Cao D, Ma J, Liu Z. Identification of spliceosome components pivotal to breast cancer survival. RNA Biol 2020; 18:833-842. [PMID: 32965163 DOI: 10.1080/15476286.2020.1822636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer cells employ alternative splicing (AS) to acquire splicing isoforms favouring their survival. However, the causes of aberrant AS in breast cancer are poorly understood. In this study, the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) data were analysed with univariate feature selection. Of 122 analysed spliceosome components, U2SURP, PUF60, DDX41, HNRNPAB, EIF4A3, and PPIL3 were significantly associated with breast cancer survival. The top 4 four genes, U2SURP, PUF60, DDX41, and HNRNPAB, were chosen for further analyses. Their expression was significantly associated with cancer molecular subtype, tumour stage, tumour grade, overall survival (OS), and cancer-specific survival in the METABRIC data. These results were verifiable using other cohorts. The Cancer Genome Atlas data unveiled the elevated expression of PUF60, DDX41, and HNRNPAB in tumours compared with the normal tissue and confirmed the differential expression of the four genes among cancer molecular subtypes, as well as the associations of U2SURP, PUF60, and DDX41 expression with tumour stage. A meta-analysis data verified the associations of U2SURP, PUF60, and HNRNPAB expression with tumour grade, the associations of PUF60, DDX41, and HNRNPAB expression with OS and distant metastasis-free survival, and the associations of U2SURP and HNRNPAB expression with relapse-free survival. Experimentally, we demonstrated that inhibiting the expression of the four genes separately suppressed cell colony formation and slowed down cell growth considerably in breast cancer cells, but not in immortal breast epithelial cells. In conclusion, we have identified U2SURP, PUF60, DDX41, and HNRNPAB are spliceosome-related genes pivotal for breast cancer survival.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
9
|
Fennell AP, Baxter AE, Berkovic SF, Ellaway CJ, Forwood C, Hildebrand MS, Kumble S, McKeown C, Mowat D, Poke G, Rajagopalan S, Regan BM, Scheffer IE, Stark Z, Stutterd CA, Tan TY, Wilkins EJ, Yeung A, Hunter MF. The diverse pleiotropic effects of spliceosomal protein PUF60: A case series of Verheij syndrome. Am J Med Genet A 2022; 188:3432-3447. [PMID: 36367278 DOI: 10.1002/ajmg.a.62950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 01/31/2023]
Abstract
Verheij syndrome (VRJS) is a rare craniofacial spliceosomopathy presenting with craniofacial dysmorphism, multiple congenital anomalies and variable neurodevelopmental delay. It is caused by single nucleotide variants (SNVs) in PUF60 or interstitial deletions of the 8q24.3 region. PUF60 encodes a splicing factor which forms part of the spliceosome. To date, 36 patients with a sole diagnosis of VRJS due to disease-causing PUF60 SNVs have been reported in peer-reviewed publications. Although the depth of their phenotyping has varied greatly, they exhibit marked phenotypic heterogeneity. We report 10 additional unrelated patients, including the first described patients of Khmer, Indian, and Vietnamese ethnicities, and the eldest patient to date, with 10 heterozygous PUF60 variants identified through exome sequencing, 8 previously unreported. All patients underwent deep phenotyping identifying variable dysmorphism, growth delay, neurodevelopmental delay, and multiple congenital anomalies, including several unique features. The eldest patient is the only reported individual with a germline variant and neither neurodevelopmental delay nor intellectual disability. In combining these detailed phenotypic data with that of previously reported patients (n = 46), we further refine the known frequencies of features associated with VRJS. These include neurodevelopmental delay/intellectual disability (98%), axial skeletal anomalies (74%), appendicular skeletal anomalies (73%), oral anomalies (68%), short stature (66%), cardiac anomalies (63%), brain malformations (48%), hearing loss (46%), microcephaly (41%), colobomata (38%), and other ocular anomalies (65%). This case series, incorporating three patients from previously unreported ethnic backgrounds, further delineates the broad pleiotropy and mutational spectrum of PUF60 pathogenic variants.
Collapse
|
|
3 |
11 |
10
|
Yamada M, Uehara T, Suzuki H, Takenouchi T, Kosaki K. Protein elongation variant of PUF60: Milder phenotypic end of the Verheij syndrome. Am J Med Genet A 2020; 182:2709-2714. [PMID: 32851780 DOI: 10.1002/ajmg.a.61816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
The PUF60 gene encodes a ubiquitously expressed essential splicing factor that is recruited to the U2snRNA complex. The complex binds to the 3' splice site of exons in specific target genes and regulates the inclusion or exclusion of such exons. Recently, pathogenic variants of PUF60 have been shown to cause a relatively specific and potentially recognizable pattern of malformation referred to as Verheij syndrome. Here, we report a 12-year-old female patient with a de novo mutation in PUF60 whose phenotype was representative of the milder end of the phenotypic spectrum of Verheij syndrome; the de novo mutation was a frameshift mutation p.(Ser558Cysfs*21) that resulted in the addition of 21 extra amino acids at the carboxy end of the protein. Among the frequent features of Verheij syndrome, the patient exhibited coloboma, cervical spinal segmentation defects, and borderline intellectual functioning, but lacked cardiac abnormalities, deafness, and urogenital abnormalities. The results of RNA analysis using peripheral blood showed the escape of the mutant allele from nonsense-mediated mRNA decay, possibly accounting for the mild phenotype in the presently reported patient. Based on our clinical observations, we inferred that two embryologic processes, closure of the ocular plate and cervical spinal segmentation, are particularly susceptible to deficient PUF60-mediated splicing regulation, compared with other embryogenetic processes leading to the central nervous system, heart, ear, and kidney.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
9 |
11
|
Kralovicova J, Borovska I, Kubickova M, Lukavsky PJ, Vorechovsky I. Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues Required for Correct Folding and 3' Splice-Site Selection. Cancers (Basel) 2020; 12:cancers12071865. [PMID: 32664474 PMCID: PMC7408900 DOI: 10.3390/cancers12071865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3′ splice sites (3′ss). Both proteins preferentially bind uridine-rich sequences upstream of 3′ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3′ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3′ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3′ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.
Collapse
|
Journal Article |
5 |
8 |
12
|
Grimes H, Ansari M, Ashraf T, Cueto-González AM, Calder A, Day M, Fernandez Alvarez P, Foster A, Lahiri N, Repetto GM, Scurr I, Varghese V, Low KJ. PUF60-related developmental disorder: A case series and phenotypic analysis of 10 additional patients with monoallelic PUF60 variants. Am J Med Genet A 2023; 191:2610-2622. [PMID: 37303278 DOI: 10.1002/ajmg.a.63313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
PUF60-related developmental disorder (also referred to as Verheij syndrome), resulting from haploinsufficiency of PUF60, is associated with multiple congenital anomalies affecting a wide range of body systems. These anomalies include ophthalmic coloboma, and congenital anomalies of the heart, kidney, and musculoskeletal system. Behavioral and intellectual difficulties are also observed. While less common than other features associated with PUF60-related developmental disorder, for instance hearing impairment and short stature, identification of specific anomalies such as ophthalmic coloboma can aid with diagnostic identification given the limited spectrum of genes linked with this feature. We describe 10 patients with PUF60 gene variants, bringing the total number reported in the literature, to varying levels of details, to 56 patients. Patients were recruited both via locally based exome sequencing from international sites and from the DDD study in the United Kingdom. Eight of the variants reported were novel PUF60 variants. The addition of a further patient with a reported c449-457del variant to the existing literature highlights this as a recurrent variant. One variant was inherited from an affected parent. This is the first example in the literature of an inherited variant resulting in PUF60-related developmental disorder. Two patients (20%) were reported to have a renal anomaly consistent with 22% of cases in previously reported literature. Two patients received specialist endocrine treatment. More commonly observed were clinical features such as: cardiac anomalies (40%), ocular abnormalities (70%), intellectual disability (60%), and skeletal abnormalities (80%). Facial features did not demonstrate a recognizable gestalt. Of note, but remaining of unclear causality, we describe a single pediatric patient with pineoblastoma. We recommend that stature and pubertal progress should be monitored in PUF60-related developmental disorder with a low threshold for endocrine investigations as hormone therapy may be indicated. Our study reports an inherited case with PUF60-related developmental disorder which has important genetic counseling implications for families.
Collapse
|
|
2 |
7 |
13
|
Latypova X, Dang X, Zhang J, Isidor B. Letter regarding the article "two girls with short stature, short neck, vertebral anomalies, Sprengel deformity and intellectual disability" (Isidor et al., 2015). Eur J Med Genet 2021; 64:104179. [PMID: 33636376 DOI: 10.1016/j.ejmg.2021.104179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
|
Comment |
4 |
5 |
14
|
Long Q, Hua Y, He L, Zhang C, Sui S, Li Y, Qiu H, Tian T, An X, Luo G, Yan Y, Zhao A, Shi D, Xie F, Chen M, Zheng F, Deng W. Poly(U) binding splicing factor 60 promotes renal cell carcinoma growth by transcriptionally upregulating telomerase reverse transcriptase. Int J Biol Sci 2020; 16:3002-3017. [PMID: 33061812 PMCID: PMC7545719 DOI: 10.7150/ijbs.45115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Abnormal transcriptional upregulation of telomerase reverse transcriptase (TERT) plays a dominant role in telomerase activation in various cancers. TERT promoter mutations (TPMs) have been identified as a key mechanism in TERT upregulation. However, the mechanism of TERT upregulation in cancers with low frequency of TPMs are not fully elucidated so far. Methods: The expression of PUF60 and TERT was detected by real-time PCR, western blot and immunohistochemistry. TERT promoter binding proteins were identified by streptavidin-agarose pulldown assay and mass spectrum (MS) analysis. The role of PUF60/TERT in renal cancer was evaluated on cell growth in vitro and in vivo. Results: In this study, we identify the regulation mechanism of TERT in renal cell carcinoma (RCC) cells which have rare TPMs but exert significant upregulation of TERT. We found that TERT was highly expressed in RCC tumor tissues, and elevated TERT expression was associated with poor prognosis for patients. We also detected the relatively rare TPM status in both RCC tumor tissues and RCC cell lines. Mechanistically, PUF60, a RNA binding protein, was identified as a novel TERT regulator which bound to the TERT and transcriptionally upregulated TERT expression in RCC cells. The in vitro and in vivo experiments also demonstrated that PUF60 could promote RCC cell growth through activation of TERT expression in a TPM status independent way. Furthermore, we showed that there was a strong correlation of the expression of PUF60 and TERT in RCC tumor tissues and RCC cell lines, and the patients with high expression of PUF60 and TERT had significantly shorter survival. Conclusions: Collectively, these results indicated that PUF60 transcriptionally upregulated TERT expression to promote RCC growth and progression in a TPM status independent way, suggesting that the PUF60/TERT signaling pathway may serve as potential prognostic biomarkers and therapeutic targets for RCC.
Collapse
|
|
5 |
5 |
15
|
Toader DO, Ursu R, Bacalbasa N, Cretoiu D, Pop LG, Balescu I, Gherghiceanu F, Furtunescu F, Radavoi D, Radoi V. Identification of a New Variant of PUF60 Gene: Case Presentation and Literature Review. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:213-219. [PMID: 35399315 PMCID: PMC8962785 DOI: 10.21873/cdp.10029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND/AIM The aim of the study was to report the case of a 5-month-old boy with a complex prenatal and neonatal symptomatology diagnosed with a "de novo" pathogenic variant of PUF60 gene. CASE REPORT Our hospital, undertook the antenatal and postnatal care of a 27-year-old pregnant lady. This was her second baby with a previously healthy boy. During her routine first-trimester anomaly scan, increased nuchal translucency was noticed. Multiple anomalies were seen throughout her subsequent antenatal visits. This triggered a sequence of tests, examinations and differential diagnosis. The final diagnosis was made at 5 months postpartum following the result of the whole exome sequence, which described a variant of unknown clinical significance (VUS, class 3 variant) in the PUF60 gene. We are mindful that changing the classification of a variant of unknown significance is challenging and requires supporting and robust criteria. Considering clinical symptomatology produced by the pathogenic mutation in the PUF gene, the identified c.1640A>G variant may be categorized as likely pathogenic. CONCLUSION Our case adds new insights on the pathology and the underlying process involved in the PUF60 variant spectrum disorders. It also highlights the limits of current prenatal tests.
Collapse
|
Case Reports |
4 |
3 |
16
|
Liu Q, Song Y, Su J, Yang S, Lian Q, Wang T, Wei H, Fang J. PUF60 Promotes Chemoresistance Through Drug Efflux and Reducing Apoptosis in Gastric Cancer. Int J Med Sci 2025; 22:269-282. [PMID: 39781520 PMCID: PMC11704696 DOI: 10.7150/ijms.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Background: Chemotherapy resistance is a great challenge in the treatment of gastric cancer (GC), so it is urgent to explore the prognostic markers of chemoresistance. PUF60 (Poly (U)-binding splicing factor 60) is a nucleic acid-binding protein that has been shown to regulate transcription and link to tumorigenesis in various cancers. However, its biological role and function in chemotherapy resistance of GC is unclear. Methods: The expression and prognostic value of PUF60 in GC chemotherapy-resistant patients were analyzed by databases and K-M Plotter. The functional effect of PUF60 on chemoresistance in GC was studied by by RNA interference, CCK8 test, colony formation test and apoptosis detection. Moreover, further validation and mechanism exploration were conducted in clinical samples. Results: PUF60 was highly expressed in both GC and chemoresistant tissues, and was positively correlated with poor prognosis in GC patients treated with 5-fluorouracil (5-FU). In addition, the knockdown of PUF60 significantly reduced the proliferation of human gastric cancer cells and increased sensitivity to chemotherapy drugs, such as 5-FU and cisplatin (CDDP). Mechanistically, PUF60 enhances chemotherapy resistance in gastric cancer (GC) cells by actively excluding chemotherapy drugs via the recombinant ATP Binding Cassette Transporter A1 (ABCA1) and ATP Binding Cassette Subfamily C Member 1 (ABCC1). This process further affects the cell cycle, reduces cell apoptosis, and ultimately promotes resistance to chemotherapy in GC. Conclusion: PUF60 promotes chemoresistance in GC, resulting in poor prognosis of GC patients treated with 5-FU, and providing a new idea for overcoming the chemoresistance in GC.
Collapse
|
research-article |
1 |
|
17
|
Baum E, Huang W, Vincent-Delorme C, Brunelle P, Antebi A, Dafsari HS. Novel Genetic and Phenotypic Expansion in Ameliorated PUF60-Related Disorders. Int J Mol Sci 2024; 25:2053. [PMID: 38396730 PMCID: PMC10889399 DOI: 10.3390/ijms25042053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Heterozygous variants in the Poly(U) Binding Splicing Factor 60kDa gene (PUF60) have been associated with Verheij syndrome, which has the key features of coloboma, short stature, skeletal abnormalities, developmental delay, palatal abnormalities, and congenital heart and kidney defects. Here, we report five novel patients from unrelated families with PUF60-related disorders exhibiting novel genetic and clinical findings with three truncating variants, one splice-site variant with likely reduced protein expression, and one missense variant. Protein modeling of the patient's missense variant in the PUF60 AlphaFold structure revealed a loss of polar bonds to the surrounding residues. Neurodevelopmental disorders were present in all patients, with variability in speech, motor, cognitive, social-emotional and behavioral features. Novel phenotypic expansions included movement disorders as well as immunological findings with recurrent respiratory, urinary and ear infections, atopic diseases, and skin abnormalities. We discuss the role of PUF60 in immunity with and without infection based on recent organismic and cellular studies. As our five patients showed less-severe phenotypes than classical Verheij syndrome, particularly with the absence of key features such as coloboma or palatal abnormalities, we propose a reclassification as PUF60-related neurodevelopmental disorders with multi-system involvement. These findings will aid in the genetic counseling of patients and families.
Collapse
|
research-article |
1 |
|
18
|
Miao M, Wang J, Guo C, Su X, Sun L, Lu S. Identification of a novel de novo PUF60 variant causing Verheij syndrome in a fetus. Gene 2024; 897:148092. [PMID: 38110042 DOI: 10.1016/j.gene.2023.148092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Verheij syndrome (VRJS) is a craniofacial spliceosomopathy with a wide phenotypic spectrum. Haploinsufficiency of the poly-uridine binding splicing factor 60 gene (PUF60) and its loss-of-function (LOF) variants are involved in VRJS. We evaluated a human fetus with congenital heart defects and preaxial polydactyly. Clinical data were obtained from the medical record. Whole-exome sequencing (WES) was used to explore the potential genetic etiology, and the detected variant verified using Sanger sequencing. Functional studies were performed to validate the pathogenic effects of the variant. Using trio-WES, we identified a novel PUF60 variant (NM_078480.2; c.1678 T > A, p.*560Argext*204) in the pedigree. Bioinformatic analyses revealed that the variant is potentially pathogenic, and functional studies indicated that it leads to degradation of the elongated protein and subsequently PUF60 LOF, producing some VRJS phenotypes. These findings confirmed the pathogenicity of the variant. This study implicates PUF60 LOF in the etiopathogenesis of VRJS. It not only expands the PUF60 variant spectrum, and also provides a basis for genetic counseling and the diagnosis of VRJS. Although trio-WES is a well-established approach for identifying the genetic etiology of rare multisystemic conditions, functional studies could aid in verifying the pathogenicity of novel variants.
Collapse
|
|
1 |
|
19
|
Chen H, Guan T, Song J, Chen Y. The Function of Poly (U) Binding Splicing Factor 60 ( PUF60) in Disease Regulation. Anticancer Agents Med Chem 2025; 25:ACAMC-EPUB-145392. [PMID: 39773058 DOI: 10.2174/0118715206346843241119105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
The alternative splicing (AS) of pre-mRNA is an important process in controlling the expression of human genes, which can enrich the diversity of the proteome and regulate gene function. On the contrary, aberrant splicing contributes significantly to numerous human diseases progression, including tumors, neurological diseases, metabolic diseases, infections, and immune diseases. The PUF60, a protein related to RNA splicing, plays critical functions in RNA splicing and gene transcription regulation. In addition, it can achieve synergistic binding with U2AF65 on RNA through interactions in the pyrimidine region, promoting the splicing of introns with weak 3'- splice sites and pyrimidine bundles. Nevertheless, an increasing amount of evidence supports that it shows a significant overexpression pattern in the vast majority of cancer cells and is crucial for embryonic development, indicating that PUF60 may hold the post of a potential therapeutic target for such diseases. These studies have significantly increased our interest in PUF60. Thus, we briefly reviewed the structural domain characteristics of the PUF60, splicing mutants of PUF60, and the roles and functions in human diseases, including various cancers, infections of bacterium and viruses, myositis, and Verheij syndrome. Furthermore, the targeted PUF60 inhibitors and boundedness of the current research were elaborated on in the article. The article effectively communicates critical perception and insight, making it a precious resource for those interested in PUF60 research and treatment.
Collapse
|
|
1 |
|
20
|
Xu N, Ren Y, Bao Y, Shen X, Kang J, Wang N, Wang Z, Han X, Li Z, Zuo J, Wei GH, Wang Z, Zong WX, Liu W, Xie G, Wang Y. PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C. Cell Rep 2023; 42:113041. [PMID: 37682709 DOI: 10.1016/j.celrep.2023.113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Alternative splicing (AS) has been implicated in cell cycle regulation and cancer, but the underlying mechanisms are poorly understood. The poly(U)-binding splicing factor 60 (PUF60) is essential for embryonic development and is overexpressed in multiple types of cancer. Here, we report that PUF60 promotes mitotic cell cycle and lung cancer progression by controlling AS of the cell division cycle 25C (CDC25C). Systematic analysis of splicing factors deregulated in lung adenocarcinoma (LUAD) identifies that elevated copy number and expression of PUF60 correlate with poor prognosis. PUF60 depletion inhibits LUAD cell-cycle G2/M transition, cell proliferation, and tumor development. Mechanistically, PUF60 knockdown leads to exon skipping enriched in mitotic cell cycle genes, including CDC25C. Exon 3 skipping in the full-length CDC25C results in nonsense-mediated mRNA decay and a decrease of CDC25C protein, thereby inhibiting cell proliferation. This study establishes PUF60 as a cell cycle regulator and an oncogenic splicing factor in lung cancer.
Collapse
|
|
2 |
|
21
|
Zhang C, Ni X, Tao C, Zhou Z, Wang F, Gu F, Cui X, Jiang S, Li Q, Lu H, Li D, Wu Z, Zhang R. Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer. Cell Oncol (Dordr) 2024; 47:157-174. [PMID: 37632669 PMCID: PMC10899302 DOI: 10.1007/s13402-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear. METHODS The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC. RESULTS We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level. CONCLUSION Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.
Collapse
|
|
1 |
|
22
|
Liang Y, Ye J, Wei H, Ye F, Luo XP. [Clinical and genetic analysis of Verheij syndrome caused by PUF60 de novo mutation in a Chinese boy and literature review]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2019; 56:592-596. [PMID: 30078240 DOI: 10.3760/cma.j.issn.0578-1310.2018.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical and genetic characteristics of a Chinese boy with Verheij syndrome and review the literature. Methods: The clinical and genetic data of a Chinese boy with Verheij syndrome, who was admitted to the Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology in May 2017 were analyzed. Original papers on Verheij syndrome published up to January 2018 were retrieved at PubMed, Human Gene Mutation Database (HGMD), Online Mendelian Inheritance in Man(OMIM), CNKI and WanFang databases by using the key words "Verheij syndrome" and "PUF60" . Results: The male patient (at the age of 14 years and 3 months) visited us because of growth retardation for 13 years. Atrial septal defect was repaired at the age 3. Congenital amblyopia and hyperopia were diagnosed at the age 4. On physical examination, serious growth retardation and delayed psychomotor development was noted. His height was 142.5 cm (-3.26 SDS). He had poor academic performance at school. Facial features included: webbed neck, hypertelorism, down-slanting palpebral fissures, long philtrum, thin upper lip, and high palate. Palmar crease was found in the right hand. His bone age was 10 years. Growth hormone stimulation test indicated partial growth hormone deficiency (growth hormone (GH) peak 6.63 μg/L). The level of insulin like growth factor 1 (IGF1) and insulin like growth factor binding protein 3 (IGFBP3) was lower than normal, 73.20 μg/L and 2 500 μg/L respectively. Abdominal ultrasound showed that the volumes of bilateral kidneys were small. The size of the left and right kidney was 8.5 cm × 3.3 cm and 8.4 cm × 4.3 cm respectively. Karyotype was normal (46, XY). MRI of pituitary showed partial empty sella turcica. Ten genes associated with Noonan syndrome (PTPN11, SOS1, RASA2, KRAS, RAF1, NRAS, SHOC2, BRAF, RIT1, A2ML1) were analyzed and no genetic mutations were found. Whole exome-sequencing analysis identified a de novo heterozygous frame shift mutation of PUF60 gene (c.931_934del, P.P.T 311Qfs*47). According to ACMG guidelines in 2015, the mutation is pathogenic and has not been reported in the above databases. Conclusions: This is the first case report of Verheij syndrome caused by mutation of PUF60 gene in Chinese population. It is difficult to discriminate Verheij syndrome from Noonan syndrome, both have clinical manifestations such as severe growth retardation, psychomotor retardation, and congenital heart disease. In addition to Noonan syndrome, PUF60 genetic analysis was recommended for avoiding missed diagnosis with such clinical manifestations of patients.
Collapse
|
Review |
6 |
|
23
|
Ogawa T, Xue J, Guo L, Inoue-Arai MS, Vendramini-Pittoli S, Zechi-Ceide RM, Candido-Souza RM, Tonello C, Brandão MM, Ozawa TO, Peixoto AP, Ruiz DMCF, Nakashima T, Ikegawa S, Moriyama K, Kokitsu-Nakata NM. Identification of a de novo PUF60 variant associated with craniofacial microsomia. Am J Med Genet A 2024; 194:e63631. [PMID: 38647383 DOI: 10.1002/ajmg.a.63631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Craniofacial microsomia (CFM), also known as the oculo-auriculo-vertebral spectrum, is a congenital disorder characterized by hypoplasia of the mandible and external ear due to tissue malformations originating from the first and second branchial arches. However, distinguishing it from other syndromes of branchial arch abnormalities is difficult, and causal variants remain unidentified in many cases. In this report, we performed an exome sequencing analysis of a Brazilian family with CFM. The proband was a 12-month-old boy with clinical findings consistent with the diagnostic criteria for CFM, including unilateral mandibular hypoplasia, microtia, and external auditory canal abnormalities. A heterozygous de novo nonsense variant (c.713C>G, p.S238*) in PUF60 was identified, which was predicted to be pathogenic in silico. PUF60 has been reported as a causal gene in Verheij syndrome, but not in CFM. Although the boy showed craniofacial abnormalities and developmental delay that overlapped with Verheij syndrome, the facial asymmetry with unilateral hypoplasia of the mandible observed in this case did not match the previously reported phenotypes of PUF60 variants. Our findings expand the phenotypic range of PUF60 variants that cover CFM and Verheij syndrome.
Collapse
|
Case Reports |
1 |
|
24
|
Bach MY, Miron SR, Kurolap A, Feldman HB. PUF60 loss-of-function with normal cognition should be considered in the differential diagnosis of Klippel-Feil syndrome. Am J Med Genet A 2024; 194:e63550. [PMID: 38297485 DOI: 10.1002/ajmg.a.63550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Klippel-Feil syndrome (KFS) has a genetically heterogeneous phenotype with six known genes, exhibiting both autosomal dominant and autosomal recessive inheritance patterns. PUF60 is a nucleic acid-binding protein, which is involved in a number of nuclear processes, including pre-mRNA splicing, apoptosis, and transcription regulation. Pathogenic variants in this gene have been described in Verheij syndrome due to either 8q24.3 microdeletion or PUF60 single-nucleotide variants. PUF60-associated conditions usually include intellectual disability, among other findings, some overlapping KFS; however, PUF60 is not classically referred to as a KFS gene. Here, we describe a 6-year-old female patient with clinically diagnosed KFS and normal cognition, who harbors a heterozygous de novo variant in the PUF60 gene (c.1179del, p.Ile394Serfs*7). This is a novel frameshift variant, which is predicted to result in a premature stop codon. Clinically, our patient demonstrates a pattern of malformations that matches reported cases of PUF60 variants; however, unlike most others, she has no clear learning difficulties. In light of these findings, we propose that PUF60 should be considered in the differential diagnosis of KFS and that normal cognition should not exclude its testing.
Collapse
|
Case Reports |
1 |
|