1
|
Linnik O, Liesche J, Tilsner J, Oparka KJ. Unraveling the structure of viral replication complexes at super-resolution. FRONTIERS IN PLANT SCIENCE 2013; 4:6. [PMID: 23386855 PMCID: PMC3560349 DOI: 10.3389/fpls.2013.00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/09/2013] [Indexed: 05/20/2023]
Abstract
During infection, many RNA viruses produce characteristic inclusion bodies that contain both viral and host components. These structures were first described over a century ago and originally termed "X-bodies," as their function was not immediately appreciated. Whilst some inclusion bodies may represent cytopathic by-products of viral protein over-accumulation, X-bodies have emerged as virus "factories," quasi-organelles that coordinate diverse viral infection processes such as replication, protein expression, evasion of host defenses, virion assembly, and intercellular transport. Accordingly, they are now generally referred to as viral replication complexes (VRCs). We previously used confocal fluorescence microscopy to unravel the complex structure of X-bodies produced by Potato virus X (PVX). Here we used 3D-structured illumination (3D-SIM) super-resolution microscopy to map the PVX X-body at a finer scale. We identify a previously unrecognized membrane structure induced by the PVX "triple gene block" (TGB) proteins, providing new insights into the complex interplay between virus and host within the X-body.
Collapse
|
research-article |
12 |
43 |
2
|
Hameed A, Tahir MN, Asad S, Bilal R, Van Eck J, Jander G, Mansoor S. RNAi-Mediated Simultaneous Resistance Against Three RNA Viruses in Potato. Mol Biotechnol 2017; 59:73-83. [PMID: 28194691 DOI: 10.1007/s12033-017-9995-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA interference (RNAi) technology has been successfully applied in stacking resistance against viruses in numerous crop plants. During RNAi, the production of small interfering RNAs (siRNAs) from template double-standard RNA (dsRNA) derived from expression constructs provides an on-switch for triggering homology-based targeting of cognate viral transcripts, hence generating a pre-programmed immunity in transgenic plants prior to virus infection. In the current study, transgenic potato lines (Solanum tuberosum cv. Desiree) were generated, expressing fused viral coat protein coding sequences from Potato virus X (PVX), Potato virus Y (PVY), and Potato virus S (PVS) as a 600-bp inverted repeat expressed from a constitutive 35S promoter. The expression cassette (designated Ec1/p5941) was designed to generate dsRNAs having a hairpin loop configuration. The transgene insertions were confirmed by glufosinate resistance, gene-specific PCR, and Southern blotting. Regenerated lines were further assayed for resistance to virus inoculation for up to two consecutive crop seasons. Nearly 100% resistance against PVX, PVY, and PVS infection was observed in transgenic lines when compared with untransformed controls, which developed severe viral disease symptoms. These results establish the efficacy of RNAi using the coat protein gene as a potential target for the successful induction of stable antiviral immunity in potatoes.
Collapse
|
Journal Article |
8 |
35 |
3
|
Mohammadzadeh S, Roohvand F, Memarnejadian A, Jafari A, Ajdary S, Salmanian AH, Ehsani P. Co-expression of hepatitis C virus polytope-HBsAg and p19-silencing suppressor protein in tobacco leaves. PHARMACEUTICAL BIOLOGY 2015; 54:465-73. [PMID: 25990925 DOI: 10.3109/13880209.2015.1048371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Plants transformed by virus-based vectors have emerged as promising tools to rapidly express large amounts and inexpensive antigens in transient condition. OBJECTIVE We studied the possibility of transient-expression of an HBsAg-fused polytopic construct (HCVpc) [containing H-2d and HLA-A2-restricted CD8+CTL-epitopic peptides of C (Core; aa 132-142), E6 (Envelope2; aa 614-622), N (NS3; aa 1406-1415), and E4 (Envelope2; aa 405-414) in tandem of CE6NE4] in tobacco (Nicotiana tabacum) leaves for the development of a plant-based HCV vaccine. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, hexahistidine (6×His)-tag peptide, and HCVpc in tandem was designed, chemically synthesized, fused to HBsAg gene, and inserted into Potato virus X (PVX-GW) vector under the control of duplicated PVX coat protein promoter (CPP). The resulted recombinant plasmids (after confirmation by restriction and sequencing analyses) were transferred into Agrobacterium tumefaciens strain GV3101 and vacuum infiltrated into tobacco leaves. The effect of gene-silencing suppressor, p19 protein from tomato bushy stunt virus, on the expression yield of HCVpc-HBsAg was also evaluated by co-infiltration of a p19 expression vector. RESULTS Codon-optimized gene increased adaptation index (CAI) value (from 0.61 to 0.92) in tobacco. The expression of the HCVpc-HBsAg was confirmed by western blot and HBsAg-based detection ELISA on total extractable proteins of tobacco leaves. The expression level of the fusion protein was significantly higher in p19 co-agroinfiltrated plants. DISCUSSION AND CONCLUSION The results indicated the possibility of expression of HCVpc-HBsAg constructs with proper protein conformations in tobacco for final application as a plant-derived HCV vaccine.
Collapse
|
|
10 |
20 |
4
|
Huang YP, Chen JS, Hsu YH, Tsai CH. A putative Rab-GTPase activation protein from Nicotiana benthamiana is important for Bamboo mosaic virus intercellular movement. Virology 2013; 447:292-9. [PMID: 24210126 DOI: 10.1016/j.virol.2013.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/03/2013] [Accepted: 09/21/2013] [Indexed: 12/31/2022]
Abstract
The cDNA-amplified fragment length polymorphism technique was applied to isolate the differentially expressed genes during Bamboo mosaic virus (BaMV) infection on Nicotiana benthamiana plants. One of the upregulated genes was cloned and predicted to contain a TBC domain designated as NbRabGAP1 (Rab GTPase activation protein 1). No significant difference was observed in BaMV accumulation in the NbRabGAP1-knockdown and the control protoplasts. However, BaMV accumulation was 50% and 2% in the inoculated and systemic leaves, respectively, of the knockdown plants to those of the control plants. By measuring the spreading area of BaMV infection foci in the inoculated leaves, we found that BaMV moved less efficiently in the NbRabGAP1-knockdown plants than in the control plants. Transient expression of the wild type NbRabGAP1 significantly increases BaMV accumulation in N. benthamiana. These results suggest that NbRabGAP1 with a functional Rab-GAP activity is involved in virus movement.
Collapse
|
|
12 |
16 |
5
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
|
Review |
4 |
12 |
6
|
Tinazzi E, Merlin M, Bason C, Beri R, Zampieri R, Lico C, Bartoloni E, Puccetti A, Lunardi C, Pezzotti M, Avesani L. Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome. FRONTIERS IN PLANT SCIENCE 2015; 6:1080. [PMID: 26648961 PMCID: PMC4664701 DOI: 10.3389/fpls.2015.01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 05/23/2023]
Abstract
Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.
Collapse
|
research-article |
10 |
11 |
7
|
Shi J, Zhu Y, Li M, Ma Y, Liu H, Zhang P, Fang D, Guo Y, Xu P, Qiao Y. Establishment of a novel virus-induced virulence effector assay for the identification of virulence effectors of plant pathogens using a PVX-based expression vector. MOLECULAR PLANT PATHOLOGY 2020; 21:1654-1661. [PMID: 33029873 PMCID: PMC7694669 DOI: 10.1111/mpp.13000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens deliver virulence effectors into plant cells to modulate plant immunity and facilitate infection. Although species-specific virulence effector screening approaches have been developed for several pathogens, these assays do not apply to pathogens that cannot be cultured and/or transformed outside of their hosts. Here, we established a rapid and parallel screening assay, called the virus-induced virulence effector (VIVE) assay, to identify putative effectors in various plant pathogens, including unculturable pathogens, using a virus-based expression vector. The VIVE assay uses the potato virus X (PVX) vector to transiently express candidate effector genes of various bacterial and fungal pathogens into Nicotiana benthamiana leaves. Using the VIVE assay, we successfully identified Avh148 as a potential virulence effector of Phytophthora sojae. Plants infected with PVX carrying Avh148 showed strong viral symptoms and high-level Avh148 and viral RNA accumulation. Analysis of P. sojae Avh148 deletion mutants and soybean hairy roots overexpressing Avh148 revealed that Avh148 is required for full pathogen virulence. In addition, the VIVE assay was optimized in N. benthamiana plants at different developmental stages across a range of Agrobacterium cell densities. Overall, we identified six novel virulence effectors from seven pathogens, thus demonstrating the broad effectiveness of the VIVE assay in plant pathology research.
Collapse
|
brief-report |
5 |
11 |
8
|
Senanayake DMJB, Mandal B. Expression of symptoms, viral coat protein and silencing suppressor gene during mixed infection of a N-Wi strain of potato virus Y and an asymptomatic strain of potato virus X. Virusdisease 2015; 25:314-21. [PMID: 25674598 DOI: 10.1007/s13337-014-0204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 02/07/2014] [Indexed: 11/26/2022] Open
Abstract
Potato virus Y (PVY) and potato virus X (PVX), the RNA viruses of two different genera results into synergistic interactions on mixed infection. In this study, a N-Wi strain of PVY and a PVX strain that is asymptomatic on potato were used to study their interactions during mixed infection in Nicotiana benthamiana and Nicotiana tabacum with reference to symptom expression, level of coat protein (CP) using ELISA and suppressor gene using real time PCR under high temperature (26-40 °C) and low temperature (5-25 °C) conditions. Both mixed and single infection caused severe necrosis and death of N. benthamiana plants. Single infection of these viruses in N. tabacum showed mild symptoms but mixed infection caused more severe symptoms. Synergistic symptoms were more pronounced under low temperature conditions than at high temperature. In low temperature conditions, the CP level of PVX in N. benthamiana was twofold higher than PVY and both the viruses reached at peak at 28 dpi in single virus infection. When PVY and PVX inoculated together, the CP levels of both the viruses increased and reached to the peak earlier (within 7-14 days) than that in the single virus inoculation. Although, the CP level of PVX was higher than PVY in mixed infection, at later stage (28 dpi) both the CP level declined to the similar level. The level of p25 suppressor gene was higher than HC-Pro in single inoculation. However, under mixed inoculation of PVY and PVX, expression of p25 was declined to the level of HC-Pro when the CP levels of both the virus also were observed to decline. The expression pattern of CP and suppressor gene was different in plants when mixed infection was created by inoculation of one virus followed by the other. This study showed the level of CP and suppressor gene of specific strain of PVY and PVX during their mixed infection in tobacco.
Collapse
|
|
10 |
9 |
9
|
Petrova EK, Nikitin NA, Protopopova AD, Arkhipenko MV, Yaminsky IV, Karpova OV, Atabekov JG. The role of the 5'-cap structure in viral ribonucleoproteins assembly from potato virus X coat protein and RNAs. Biochimie 2013; 95:2415-22. [PMID: 24036171 DOI: 10.1016/j.biochi.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/02/2013] [Indexed: 12/01/2022]
Abstract
The potato virus X (PVX) virion can be reconstituted in vitro from the virus coat protein (CP) and RNA; heterologous RNAs may be used as well. In our recent study, structure and properties of cognate and heterologous viral ribonucleoproteins (vRNPs) were demonstrated to be similar to those of native virions. The assembly was found to be initiated at the 5' terminus of an RNA and was not dependent on RNA sequence. The aim of the present study was to search for a signal or an essential structural element that directs packaging of viral genetic material into vRNPs. vRNPs were formed by incubation of the PVX CP with heterologous capped RNAs, their functional fragments lacking the cap structure, as well as the capped and uncapped transcripts corresponding to the 5'-terminal region of the genomic PVX RNA. Experimental data show that the presence of the cap structure at the 5' end of a nucleic acid is an important condition for vRNP assembly from RNA and CP. Presumably, the 5'-cap affects conformational state of the RNA region responsible for the efficient interaction with CP and creates conformational encapsidation signal for vRNP assembly.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
8 |
10
|
First report of association of potato virus X and potato virus Y and 'Candidatus Phytoplasma trifolii' in brinjal in India. Virusdisease 2016; 27:207-8. [PMID: 27366775 DOI: 10.1007/s13337-016-0318-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022] Open
Abstract
Symptoms of little leaf, leaf chlorosis and leaf malformations with mosaic mottling symptoms were observed in two brinjal varieties (Pusa Shyamla and Pusa Purple Cluster) in fields of IARI, New Delhi, India during 2014-2015. Electron microscopy, PCR and sequence analysis first time provided evidence of association of Candidatus Phytoplasma trifolii with potato virus X and potato virus Y in brinjal in India.
Collapse
|
Journal Article |
9 |
8 |
11
|
He M, He CQ, Ding NZ. Evolution of Potato virus X. Mol Phylogenet Evol 2021; 167:107336. [PMID: 34757169 DOI: 10.1016/j.ympev.2021.107336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Potato virus X (PVX) is the type potexvirus of economic significance. The pathogen is distributed worldwide, threatening solanaceous plants in particular. Based on the coat protein (CP) gene, PVX isolates are classified into two major genotypes (I and II). To gain more insights into the molecular epidemiology and evolution of PVX, recombination analyses were conducted and significant signals were detected. Bayesian coalescent method was then applied to the time-stamped entire CP sequences. According to the estimates, the global subtype I-1 went into expansion in the 20th century and was evolving at a moderate rate. Based on the CP phylogenies, a divergence scenario was proposed for PVX. Surveys of codon usage variation showed that PVX genes had additional bias independent of compositional constraint. In codon preference, PVX was both similar to and different from the three major hosts, potato (Solanum tuberosum), tobacco (Nicotiana tabacum), and tomato (S. lycopersicum). Moreover, the suppression of CpG and UpA dinucleotide frequencies was observed in PVX.
Collapse
|
|
4 |
6 |
12
|
Dickmeis C, Altintoprak K, van Rijn P, Wege C, Commandeur U. Bioinspired Silica Mineralization on Viral Templates. Methods Mol Biol 2018; 1776:337-362. [PMID: 29869253 DOI: 10.1007/978-1-4939-7808-3_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant virus capsids are attractive entities for nanotechnological applications because of their variation in shape and natural assembly ability. This chapter describes the production and modification of three differently shaped plant virus capsids for silica mineralization purposes. The chosen plant viruses exhibit either an icosahedral (cowpea mosaic virus, CPMV), or a flexuous rod-like structure (potato virus X, PVX), or a rigid rod-like shape (tobacco mosaic virus, TMV), and are well-known and frequently used plant viruses for biotechnological applications. We describe the production (including genetic or chemical modification) and purification of the plant viruses or of empty virus-like particles in the case of CPMV, as well as the characterization of these harvested templates. The mineralization procedures and differences in the protocols specific to the distinct viruses are described, and the analyses of the mineralization results are explained.
Collapse
|
|
7 |
4 |
13
|
Robles-Luna G, Furman N, Barbarich MF, Carlotto N, Attorresi A, García ML, Kobayashi K. Interplay between potato virus X and RNA granules in Nicotiana benthamiana. Virus Res 2020; 276:197823. [PMID: 31765690 DOI: 10.1016/j.virusres.2019.197823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/26/2023]
Abstract
Cytoplasmic RNA granules consist of microscopic agglomerates of mRNAs and proteins and occur when the translation is reversibly and temporally halted (stress granules, SGs) or mRNAs are targeted for decapping (processing bodies, PBs). The induction of RNA granules formation by virus infection is a common feature of mammalian cells. However, plant-virus systems still remain poorly characterized. In this work, the SG marker AtUBP1b was expressed in Nicotiana benthamiana plants to decipher how the virus infection of plant cells affects SG dynamics. We found that the hypoxia-induced SG assembly was substantially inhibited in Potato virus X (PVX)-infected cells. Furthermore, we determined that the expression of PVX movement protein TGBp1 by itself, mimics the inhibitory effect of PVX on SG formation under hypoxia. Importantly, overexpression of AtUBP1b showed inhibition of the PVX spreading, whereas the overexpression of the dominant negative AtUBP1brrm enhanced PVX spreding, indicating that AtUBP1b negatively affects PVX infection. Notably, PVX infection did not inhibit the formation of processing bodies (PBs), indicating PVX has distinct effects depending on the type of RNA granule. Our results suggest that SG inhibition could be part of the virus strategy to infect the plant.
Collapse
|
|
5 |
4 |
14
|
Herath V, Verchot J. Transcriptional Regulatory Networks Associate with Early Stages of Potato Virus X Infection of Solanum tuberosum. Int J Mol Sci 2021; 22:2837. [PMID: 33799566 PMCID: PMC8001266 DOI: 10.3390/ijms22062837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.
Collapse
|
research-article |
4 |
4 |
15
|
Yu C, Miao R, Ye Z, MacFarlane S, Lu Y, Li J, Yang J, Yan F, Dai L, Chen J. Integrated Proteomics and Transcriptomics Analyses Reveal the Transcriptional Slippage of P3N-PIPO in a Bymovirus. Viruses 2021; 13:1247. [PMID: 34206959 PMCID: PMC8310318 DOI: 10.3390/v13071247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
P3N-PIPO (P3 N-terminal fused with Pretty Interesting Potyviridae ORF), the movement protein of potyviruses, is expressed as a translational fusion with the N-terminus of P3 in potyviruses. As reported in previous studies, P3N-PIPO is expressed via transcriptional slippage at a conserved G2A6 slippery site in the genus Potyvirus. However, it is still unknown whether a similar expression mechanism of P3N-PIPO is used in the other genera of the family Potyviridae. Moreover, due to the extremely low expression level of P3N-PIPO in natural virus-infected plants, the peptides spanning the slippery site which provide direct evidence of the slippage at the protein level, have not been identified yet. In this study, a potato virus X (PVX)-based expression vector was utilized to investigate the expression mechanism of P3N-PIPO. A high expression level of the P3N-PIPO(WT) of turnip mosaic virus (TuMV, genus Potyvirus) was observed based on the PVX expression vector. For the first time, we successfully identified the peptides of P3N-PIPO spanning the slippery site by mass spectrometry. Likewise, the P3N-PIPO(WT) of wheat yellow mosaic virus (WYMV, genus Bymovirus) was also successfully expressed using the PVX expression vector. Integrated proteome and transcriptome analyses revealed that WYMV P3N-PIPO was expressed at the conserved G2A6 site through transcriptional slippage. Moreover, as revealed by mutagenesis analysis, Hexa-adenosine of the G2A6 site was important for the frameshift expression of P3N-PIPO in WYMV. According to our results, the PVX-based expression vector might be used as an excellent tool to study the expression mechanism of P3N-PIPO in Potyviridae. To the best of our knowledge, this is the first experimental evidence for the expression mechanism of P3N-PIPO in the genus Bymovirus, the only genus comprising bipartite virus species in the family Potyviridae.
Collapse
|
research-article |
4 |
2 |
16
|
Dickmeis C, Commandeur U. Advanced Fusion Strategies for the Production of Functionalized Potato Virus X Virions. Methods Mol Biol 2022; 2480:215-239. [PMID: 35616866 DOI: 10.1007/978-1-0716-2241-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant virions are ideal for nanotechnology applications because they are structurally diverse and can self-assemble naturally, allowing for large-scale production in plants by molecular farming. Potato virus X (PVX) is particularly amenable due to the unique properties of its filamentous and flexible capsid, but efficient strategies are required to adapt the surface properties of PVX, such as the attachment of proteins and peptides. This chapter describes the selection and utilization of 2A ribosomal skip sequences, allowing the presentation of heterologous proteins and peptides as N-terminal fusions to the PVX coat protein at different densities. Another strategy for the rapid modification of PVX capsids is the plug-and-display module of the SpyTag/SpyCatcher system. The SpyTag can be presented on the PVX surface, allowing for the attachment of any protein fused to the SpyCatcher sequence.
Collapse
|
|
3 |
2 |
17
|
Abstract
Plants immune surveillance systems depend on nucleotide-binding leucine-rich repeat receptors (NLRs). A subset of NLRs are nuclear-localized, including Rx1, which confers an extreme immunity against potato virus X (PVX). As with many NLRs, the downstream signaling partners of Rx1 are unknown. Townsend et al. identify a Golden-like transcription factor that interacts with Rx1 and mediates antiviral immunity, providing the first insights into the specificity factors that enable the nonspecific DNA-binding Rx1 to confer extreme resistance to PVX.
Collapse
|
|
7 |
1 |
18
|
Verchot-Lubicz J. Plasmodesmata transport of GFP and GFP fusions requires little energy and transitions during leaf expansion. PLANT SIGNALING & BEHAVIOR 2008; 3:902-905. [PMID: 19704536 PMCID: PMC2634411 DOI: 10.4161/psb.3.10.6600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 05/28/2023]
Abstract
Plasmodesmata (Pd) are symplastic channels between neighboring plant cells and are key in plant cell-cell signaling. Viruses of proteins, nucleic acids, and a wide range of signaling macromolecules move across Pd. Protein transport Pd is regulated by development and biotic signals. Recent investigations utilizing the Arrhenius equation or Coefficient of conductivity showed that fundamental energetic measurements used to describe transport of proteins across membrane pores or the nuclear pore can also apply to protein movement across Pd. As leaves continue to expand, Pd transport of proteins declines which may result from changes in cell volume, Pd density or Pd structure.
Collapse
|
article-commentary |
17 |
1 |
19
|
Xiang S, Wang J, Wang X, Ma X, Peng H, Zhu X, Huang J, Ran M, Ma L, Sun X. A chitosan-coated lentinan-loaded calcium alginate hydrogel induces broad-spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin-like (CML) protein 3. PLANT, CELL & ENVIRONMENT 2023; 46:3592-3610. [PMID: 37551976 DOI: 10.1111/pce.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Control of plant virus diseases largely depends on the induced plant defence achieved by the external application of synthetic chemical inducers with the ability to modify defence-signalling pathways. However, most of the molecular mechanisms underlying these chemical inducers remain unknown. Here, we developed a chitosan-coated lentinan-loaded hydrogel and discovered how it protects plants from different virus infections. The hydrogel was synthesized by coating chitosan on the surface of the calcium alginate-lentinan (LNT) hydrogel (SL-gel) to form a CSL-gel. CSL-gels exhibit the capacity to prolong the stable release of lentinan and promote Ca2+ release. Application of CSL-gels on the root of plants induces broad-spectrum resistance against plant viruses (TMV, TRV, PVX and TuMV). RNA-seq analysis identified that Nicotiana benthamiana calmodulin-like protein gene 3 (NbCML3) is upregulated by the sustained release of Ca2+ from the CSL-gel, and silencing and overexpression of NbCML alter the susceptibility and resistance of tobacco to TMV. Our findings provide evidence that this novel and synthetic CSL-gel strongly inhibits the infection of plant viruses by the sustainable release of LNT and Ca2+ . This study uncovers a novel mode of action by which CSL-gels trigger NbCML3 expression through the stable and sustained release of Ca2+ .
Collapse
|
|
2 |
|
20
|
Zhuang X, Zhang W, Xu S, Yang W, Yin J, Zhou T, Kundu JK, Xu K. Protease activity of NIa-Pro determines systemic pathogenicity of clover yellow vein virus. Virology 2025; 604:110417. [PMID: 39854917 DOI: 10.1016/j.virol.2025.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Clover yellow vein virus (ClYVV), a potyvirus that infects various dicotyledonous plants, poses a significant threat to the cultivation of legumes. Although potyviral NIa-Pro was extensively studied in viral infection cycle and host antiviral responses, the contribution of NIa-Pro protease activity to virus systemic symptoms has not yet been reported. In this study, we developed infectious clones of a ClYVV isolated from Pisum sativum. The rescued ClYVV showed robust infectivity and induced obvious systemic mosaic and necrosis symptoms in the model host Nicotiana benthamiana and natural hosts Pisum sativum and Vicia faba. Using a potato virus X (PVX) vector to express 11 ClYVV proteins in N. benthamiana ectopically, we identified that NIa-Pro is the key determinant in inducing systemic symptoms and causes higher leaf ROS levels and cell death. Further, we found that the protease-inactive mutant NIa-ProC151A causes significantly reduced systemic symptoms when expressed via the PVX vector and does not induce higher cellular ROS levels and cell death when transiently overexpressed compared to wild-type NIa-Pro. Overall, this study provides evidence supporting that the protease activity of a potyvirus protein NIa-Pro directly contributes to the virus symptoms.
Collapse
|
|
1 |
|
21
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, van der Werf W, Civera AV, Yuen J, Zappalà L, Candresse T, Lacomme C, Bottex B, Oplaat C, Roenhorst A, Schenk M, Di Serio F. Pest categorisation of potato virus X (non-EU isolates). EFSA J 2020; 18:e05937. [PMID: 32626491 PMCID: PMC7008906 DOI: 10.2903/j.efsa.2020.5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health has addressed the pest categorisation of non‐EU isolates of potato virus X (PVX). The information currently available on geographical distribution, biology, epidemiology, potential entry pathways, potential additional impact and availability of control measures of non‐EU isolates of PVX has been evaluated with regard to the criteria to qualify as a potential Union quarantine pest. Because non‐EU isolates of PVX are absent from the EU, they do not meet one of the requirements to be regulated as a regulated non‐quarantine pest (RNQP) (presence in the EU); as a consequence, the Panel decided not to evaluate the other RNQP criteria for these isolates. On the basis of their ability to overcome potato resistance genes, PVX isolates can be divided into several pathotypes. PVX isolates that are not able to overcome resistance genes and PVX isolates that are able to overcome the Nb and/or Nx resistance genes are already present in the EU. Isolates able to overcome the Rx resistance gene have only been reported from South America. These Rx breaking isolates could potentially have an additional impact over the current situation in the EU and therefore meet all the criteria to qualify as a potential Union quarantine pest. All other non‐EU isolates, should they be introduced, are not expected to have additional impact and therefore do not meet this criterion to qualify as a potential Union quarantine pest.
Collapse
|
|
5 |
|
22
|
Dutta P, Lõhmus A, Ahola T, Mäkinen K. The Replicase Protein of Potato Virus X Is Able to Recognize and Trans-Replicate Its RNA Component. Viruses 2024; 16:1611. [PMID: 39459944 PMCID: PMC11512358 DOI: 10.3390/v16101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The trans-replication system explores the concept of separating the viral RNA involved in the translation of the replicase protein from the replication of the viral genome and has been successfully used to study the replication mechanisms of alphaviruses. We tested the feasibility of this system with potato virus X (PVX), an alpha-like virus, in planta. A viral RNA template was designed which does not produce the replicase and prevents virion formation but remains recognizable by the replicase. The replicase construct encodes for the replicase protein, while lacking other virus-specific recognition sequences. Both the constructs were delivered into Nicotiana benthamiana leaves via Agrobacterium-mediated infiltration. Templates of various lengths were tested, with the longer templates not replicating at 4 and 6 days post inoculation, when the replicase protein was provided in trans. Co-expression of helper component proteinase with the short template led to its trans-replication. The cells where replication had been initiated were observed to be scattered across the leaf lamina. This study established that PVX is capable of trans-replicating and can likely be further optimized, and that the experimental freedom offered by the system can be utilized to delve deeper into understanding the replication mechanism of the virus.
Collapse
|
research-article |
1 |
|