1
|
Zhou Y, He Y, Xiang Y, Meng S, Liu X, Yu J, Yang J, Zhang J, Qin P, Luo L. Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:29-36. [PMID: 30041045 DOI: 10.1016/j.scitotenv.2018.07.267] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, the oxidized multiwalled carbon nanotube (O-MWCNTs) was obtained by a simple method, and investigated by various techniques (SEM, TEM, FT-IR, XPS and zeta potential) for the removal of pefloxacin and Cu(II). The mutual effects of their adsorption onto O-MWCNTs were comprehensively clarified with sole and binary systems with adsorption kinetics, sorption thermodynamic and sorption isotherm models. The results indicated that there are site enhancement and competition of pefloxacin and Cu(II) on O-MWCNTs. According to mechanism investigation on the adsorption of pefloxacin and Cu(II) by XPS analysis, pH impact study, electrostatic interaction and π-π interactions, the low concentration of Cu(II)/pefloxacin could act as a bridge between pefloxacin/Cu(II) and O-MWCNTs, which significantly enhances the adsorption of pefloxacin/Cu(II). This study provided effective method and valuable reference for the elimination of pefloxacin/Cu(II) from aquatic environments.
Collapse
|
|
6 |
81 |
2
|
Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. Talanta 2023; 255:124216. [PMID: 36587425 DOI: 10.1016/j.talanta.2022.124216] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The current effort introduces a facile construction of peony-like CuO:Tb3+ nanostructure (P-L CuO:Tb3+ NS), whose characterization was determined via techniques of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. We investigated ofloxacin, pefloxacin and gatifloxacin oxidation electrochemically on P-L CuO:Tb3+ NS-modified glassy carbon electrode (P-L CuO:Tb3+ NS/GCE), the results of which revealed the irreversible oxidation of drugs through a two-electron oxidation process. An admirable resolution was found for this modified electrode between voltammetric peaks of ofloxacin, pefloxacin and gatifloxacin, suggesting its appropriateness for simultaneous detection of these drugs in pharmaceutical media. In addition, our nanostructure synergistically influenced the electro-catalytic oxidations of these three compounds. Differential pulse voltammetric measurements of ofloxacin, pefloxacin and gatifloxacin through our sensor showed a limit of detection of 1.9, 2.3 and 1.2 nM a as well as a linear dynamic range between 0.01 and 800.0 μM in phosphate buffered solution (0.1 M, pH = 6.0), respectively. Moreover, as-fabricated sensor could successfully co-detect these drugs in real serum and tablets specimens. In addition, since we use animal foods such as milk it is very important to detect their fluoroquinolone residues. For this purpose, the proposed sensor was tested to determine the residues of ofloxacin, pefloxacin and gatifloxacin in milk.
Collapse
|
|
2 |
21 |
3
|
Li G, Qi X, Wu J, Wan X, Wang T, Liu Y, Chen Y, Xia Y. Highly stable electrochemical sensing platform for the selective determination of pefloxacin in food samples based on a molecularly imprinted-polymer-coated gold nanoparticle/black phosphorus nanocomposite. Food Chem 2024; 436:137753. [PMID: 37862994 DOI: 10.1016/j.foodchem.2023.137753] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The overuse of pefloxacin (PEF) leaves residues in foods. Therefore, the development of robust analytical techniques for the selective detection of PEF is of great importance. In this study, a highly stable electrochemical sensing platform has been constructed, using molecularly imprinted polymer (MIP)-coated gold nanoparticle/black phosphorus nanocomposites (BPNS-AuNPs), for the selective detection of PEF. BPNS-AuNPs significantly enhance the black phosphorus (BP) stability and electrochemical activity and offer a larger surface area to accommodate more imprinted sites for selective PEF binding. MIP/BPNS-AuNPs exhibit a broad linear detection range (0.005-10 μM), low detection limit (0.80 nM), and high sensitivity (3.199 μA μM-1). The MIP/BPNS-AuNPs show a high binding affinity for PEF, even in the presence of structural analogs, and maintain stable voltammetric signals for at least 35 d. The MIP sensor exhibits consistent high sensitivity in the detection of PEF in real milk and orange juice samples.
Collapse
|
|
1 |
13 |
4
|
Murillo Pulgarín JA, Alañón Molina A, Jiménez García E. Simplex optimization of the variables influencing the determination of pefloxacin by time-resolved chemiluminescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:117-124. [PMID: 29223456 DOI: 10.1016/j.saa.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
A new chemiluminescence (CL) detection system combined with flow injection analysis (FIA) for the determination of Pefloxacin is proposed. The determination is based on an energy transfer from Pefloxacin to terbium (III). The metal ion enhances the weak CL signal produced by the KMnO4/H2SO3/Pefloxacin system. A modified simplex method was used to optimize chemical and instrumental variables. The influence of the interaction of the permanganate, Tb (III), sodium sulphite and sulphuric acid concentrations, flow rate and injected sample volume was thoroughly investigated by using a modified simplex optimization procedure. The results revealed a strong direct relationship between flow rate and CL intensity throughout the studied range that was confirmed by a gamma test. The response factor for the CL emission intensity was used to assess performance in order to identify the optimum conditions for maximization of the response. Under such conditions, the CL response was proportional to the Pefloxacin concentration over a wide range. The detection limit as calculated according to Clayton's criterion 13.7μgL-1. The analyte was successfully determined in milk samples with an average recovery of 100.6±9.8%.
Collapse
|
|
7 |
6 |
5
|
Zhao J, Guo X, He Q, Song Q, Wu F, Zhang C. Solvothermal synthesis of InNbO 4 cubes for efficient degradation of pefloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118247. [PMID: 32179465 DOI: 10.1016/j.saa.2020.118247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
A novel solvothermal process for synthesizing InNbO4 nanomaterials was developed. In this manner, a series of InNbO4 samples was synthesized. It was shown that reaction temperature and precursor pH had strong influence on the attributes of InNbO4 samples. The X-ray diffraction patterns revealed that all the samples possessed monoclinic structure and the optimal reaction condition was found at 250 °C with a pH of 5. Scanning electron microscopy images of different InNbO4 samples showed various morphologies. Transmission electron microscopy verified the synthesized InNbO4-pH 5 was single-crystal cubes. X-ray photoelectron spectra verified the existence of In, Nb, and O in InNbO4-pH 5 sample. The band gap of InNbO4-pH 5 was calculated to be 2.51 eV. The photocurrent intensity of InNbO4-pH 5 was the highest among the prepared samples. The photocatalytic degradation of pefloxacin was investigated using these samples. The InNbO4-pH 5 exhibited best degradation efficiency among these samples. The removal efficiency of pefloxacin with InNbO4-pH 5 could reach 80.2% in 60 min. Based on free radical capture results, superoxide radicals and holes showed to be the dominant active species. In addition, UHPLC/MS/MS was used to identify the degradation intermediates. Five new pefloxacin degradation products were found and possible degradation pathways were suggested.
Collapse
|
|
5 |
6 |
6
|
Wang B, Jiao H, Su H, Wang T. Degradation of pefloxacin by hybrid hydrodynamic cavitation with H 2O 2 and O 3. CHEMOSPHERE 2022; 303:135299. [PMID: 35691401 DOI: 10.1016/j.chemosphere.2022.135299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The degradation of toxic chemicals, antibiotics and other residues in organic wastewater has attracted much attention. Among various degradation technologies, hydrodynamic cavitation (HC) reactors have the advantage of being simple to operate. Through the combination of HC and other oxidants, the removal efficiency and energy efficiency of organic matter can be greatly improved, and the consumption of chemicals and the processing costs can be reduced. In this work, HC technology combined with oxidants was used to degrade pefloxacin (PEF), and the effect of different operating conditions on PEF degradation was investigated. The results indicated that the removal efficiency of PEF treated with HC alone was 84.9% under the optimal HC conditions of pH 3.3 and 120 min, which is much higher than that (35.5%) of pH 5.3. When co-treating the PEF solution with HC and H2O2 at 0.3 MPa and pH 5.3, the optimal molar ratio of PEF to H2O2 was 1:5, the highest PEF removal efficiency was 69.7%, and the synergy index (SI) was 4.4. When combining HC with O3, the PEF removal efficiency gradually elevated with increasing ozone addition. When the addition amount of ozone was 0.675 g/h, the removal efficiency of PEF was the highest, which was 91.5% after treatment of 20 min. The intermediate products in the reaction process were analyzed based on UV-Vis spectroscopy and LC-MS, and the mechanism and reaction pathways of PEF were proposed.
Collapse
|
|
3 |
6 |
7
|
Green magnetic nanomaterial as antibiotic release vehicle: The release of pefloxacin and ofloxacin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111439. [PMID: 33255032 DOI: 10.1016/j.msec.2020.111439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
The increased efflux of fluoroquinolone antibiotics to the environment has become of worldwide concern due to their potential to disturb aquatic ecosystems. How to improve the antibiotic release is a challenge. In this work, magnetic Fe3O4 nanoparticles as a drug release vehicle were prepared using the green synthesis method. It is a simple and environmental friendly technique that employs the plant extract as a reducing and coating agent during the preparation process. Antibiotics ofloxacin and pefloxacin served as the drug model and the drug release behavior was tested at various pH levels. The release efficiency of ofloxacin from Fe3O4 reached 99.6% and for pefloxacin it was 57.0% at 310 K after 120 h (pH 10.5). The scanning electron microscope images show that Fe3O4 particles ranged in size from 10 to 40 nm and magnetism testing indicated that saturation magnetization was 58.7 emu/g. Furthermore, zeta potential, FTIR, UV-VIS, XRD and XPS were used to provide the evidence to support the release mechanism, where was based on the pH control. Our work clearly demonstrated that Fe3O4 nanoparticles were a potential as a targeted drug delivery system.
Collapse
|
Journal Article |
5 |
5 |
8
|
Sha L, Tang X, Liu D, Xu Y, Ding YU, Ding F. Detection and Quantitation of Lomefloxacin and Pefloxacin Residues in the Organ Tissues and Eggs of Laying Hens. J Food Prot 2018; 81:810-814. [PMID: 29637810 DOI: 10.4315/0362-028x.jfp-17-422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lomefloxacin (LOM) and pefloxacin (PEF) are synthetic antibiotics that have been used in the treatment of infectious diseases in both human and animals. In the People's Republic of China, the use of LOM and PEF in livestock has been prohibited because of the concern that the residues of these drugs may pose a risk to public health. Despite this prohibition, these drugs are still being used in the poultry industry illegally, and so far there has been no systematic study of the persistence of LOM and PEF residues in chickens. In this study, laying hens were treated with a daily dose (10 mg/kg of body weight) of LOM or PEF for five consecutive days, and the drug residues in various tissues and eggs were determined over a 15-day period after the last drug administration. The highest LOM and PEF residual concentrations were found in the tissues 4 h after the last drug administration, and concentrations gradually decreased over time. Plasma had the lowest and liver had the highest residual concentrations throughout the 15-day study period. At the end of the 15 days, 3.64 ± 0.74 μg/kg LOM and 1.78 ± 0.28 μg/kg PEF were detected in the liver, with slightly lower residual concentrations in the kidney. No LOM or PEF residue was detected in the ovarian follicle, plasma, and muscle at the end of the 15 days. In eggs, the depletion rate of LOM was slower than that of PEF. LOM and PEF residues were detected in whole eggs for up to 10 and 8 days, respectively, after drug administration ceased. These findings suggest that the liver and, to a lesser extent, the kidney may be the sites where LOM or PEF residues would persist. This information can be a reliable reference for governmental agencies with respect to the screening of LOM and PEF residues in food products derived from laying hens.
Collapse
|
|
7 |
3 |
9
|
Zhou X, Li N, Sun C, Zhang X, Zhang C, Zhou J, Guan S, Xiao X, Wang Y. Development of a colloidal gold immunochromatographic strip for the rapid detection of pefloxacin in grass carp with a novel pretreatment method. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:517-525. [PMID: 35477387 DOI: 10.1080/03601234.2022.2068908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A rapid colloidal gold immunochromatography assay (GICA) for the detection of pefloxacin (PEF) was established and optimized. The anti-PEF monoclonal antibody (mAb) was used to target PEF as a colloidal gold-mAb conjugate. The mAb belonged to the IgG2b subtype, lambda light chain, the affinity constant (Ka) was 5.21 × 109 L·mol-1, and its half maximal inhibitory concentration (IC50) was 0.23 ng·mL-1. No obvious cross-reactivity (CR) was observed with other common fluoroquinolone antibiotics, including ciprofloxacin (CIP), norfloxacin (NOR), lomefloxacin (LOM) and ofloxacin (OFL). The visual limit of detection (vLOD) of the optimized GICA was 2 ng·g-1 under the conventional pretreatment method, and the assay was completed in 15 min. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) was employed to confirm the performance of the strip. In addition, a novel pretreatment was established and compared with conventional pretreatment. Without the removal of organic solvents, the novel pretreatment method reduced the sample pretreatment time (more than 10 min). The vLOD of the optimized GICA was also 2 ng·g-1 when applying the novel pretreatment method. In conclusion, the proposed PEF-GICA could detect samples containing PEF rapidly and accurately, and the novel pretreatment method saved the time of sample pretreatment and improved the efficiency of detection.
Collapse
|
|
3 |
2 |
10
|
Li Y, Wu Y, Guo K, Wu W, Yao M. Effect of chlorination and ultraviolet on the adsorption of pefloxacin on polystyrene and polyvinyl chloride. J Environ Sci (China) 2025; 149:21-34. [PMID: 39181636 DOI: 10.1016/j.jes.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 08/27/2024]
Abstract
During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.
Collapse
|
|
1 |
1 |
11
|
Skopkó BE, Deák Á, Matesz C, Kelentey B, Bácskai T. Pefloxacin induced changes in serotonergic innervation and mast cell number in rat salivary glands. Drug Chem Toxicol 2018; 43:496-503. [PMID: 30257570 DOI: 10.1080/01480545.2018.1508217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Pefloxacin is a second-generation fluoroquinolone antibiotic. Besides its advantageous characteristics, side effects including the hypofunction of salivary glands, decreased saliva production, and peripheral neuropathy were observed during the administration of pefloxacin. The aim of this study was to investigate the changes in the number of serotonergic immunoreactive fibers and mast cells after pefloxacin treatment in the parotid and sublingual glands of rats to detect the possible neurotoxic effect of pefloxacin. The adult female rats were treated with intraperitoneal (i.p.) injection of pefloxacin for three or seven days (at a concentration of 20 mg/100g body weight) and the serotonergic innervation pattern along with the change in mast cell number were evaluated by using histochemistry and immunohistochemistry in the parotid and sublingual glands. We found that a three-day treatment significantly increased the number of immunoreactive serotonergic nerve fibers, but after a seven-day treatment the number of serotonin positive nerve fibers decreased almost to values of the control group. The alteration of mast cell number was parallel with the changes of the serotonin positive fibers during the treatment. These results suggest that pefloxacin treatment can modify the finely controlled communication between the immune- and the peripheral nervous systems, resulting neurogenic inflammatory process. The background of this process is the altered serotonergic innervation and the increased number of activated mast cells releasing different mediators for example histamine, which can finally lead to reduced number of serotonin positive nerve fibers after a seven-day treatment of pefloxacin leading to atrophy and hypofunction of the salivary glands.
Collapse
|
|
7 |
0 |
12
|
Varghese G, Jamwal A, Deepika, Tejan N, Patel SS, Sahu C, Mishra S, Singh V. Trends in antimicrobial susceptibility pattern of Salmonella species isolated from bacteremia patients at a tertiary care center in Northern India. Diagn Microbiol Infect Dis 2024; 109:116354. [PMID: 38776664 DOI: 10.1016/j.diagmicrobio.2024.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The study was done to assess the antimicrobial susceptibility pattern among Salmonella enterica serovars causing bacteremia in Northern India. In this observational study, blood samples positive for Salmonella enterica serovars from January 2021 to April 2023 were studied. Species identification was done using MALDI-ToF MS. Serotyping was done using slide agglutination method. Antimicrobial susceptibility was interpreted as per the CLSI guidelines. During the study period, 32 Salmonella enterica serovars were isolated. Salmonella enterica serovar Typhi was the predominant serovar, followed by Salmonella enterica serovar Paratyphi A. All isolates were susceptible to ceftriaxone, chloramphenicol, co-trimoxazole and cefotaxime. Pefloxacin showed 100% resistance. Resistance to nalidixic acid was found in 81.2% isolates. Of the isolates resistant to nalidixic acid, 19(73.08%) isolates were resistant to ciprofloxacin also. This changing susceptibility pattern necessitates continuous surveillance of antibiogram of Salmonella isolates to rationalize the treatment protocols for invasive salmonellosis and prevent emergence of resistant strains.
Collapse
|
Observational Study |
1 |
|
13
|
Huang H, Zheng Y, Wei D, Yang G, Peng X, Fan L, Luo L, Zhou Y. Efficient removal of pefloxacin from aqueous solution by acid-alkali modified sludge-based biochar: adsorption kinetics, isotherm, thermodynamics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43201-43211. [PMID: 35091955 DOI: 10.1007/s11356-021-18220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
In this paper, one kind of acid-alkali modified sludge-based biochar (ASBC) was synthesized, characterized, and employed as adsorbent for the removal of pefloxacin. The characterization results showed that the specific surface area (SSA) of ASBC (53.381 m2/g) was significantly higher than that of SBC (24.411 m2/g). ASBC had a rougher surface, larger particle distribution, lower zero point charge, and richer functional groups (e.g., C-O and O-H) than SBC. The adsorption capacity of ASBC was 1.82 times than that of SBC. After 8 adsorption cycles in reuse experiment, the adsorption capacity of ASBC for pefloxacin still reached 144.08 mg/L, indicating that ASBC has good reusability. Static experiments showed that the optimal pH value was 6.0 in the adsorption of pefloxacin on SBC and ASBC. The result of adsorption kinetics indicated that the pseudo-second-order model could describe well the adsorption process. The Freundlich model was better than the Langmuir model to describe the adsorption of pefloxacin by ASBC, indicating that the adsorption process was mainly multilayer adsorption. Thermodynamic result showed that the adsorption of pefloxacin by ASBC was spontaneous and endothermic. The removal mechanism of pefloxacin by ASBC is mainly the substitution reaction and π-π EDA interaction. In summary, acid-alkali modified biochar is an effective adsorbent for pefloxacin in aqueous solution, and has great application prospects.
Collapse
|
|
3 |
|
14
|
Inayath SB, Broor S, Gupta R, Agarwal P, Majumder S, Anveshi AK, Gaind R. Validation of Pefloxacin for detection of fluoroquinolone (FQ) resistance among Salmonella Typhi with special reference to GyrB mutations. J Med Microbiol 2021; 70. [PMID: 34356003 DOI: 10.1099/jmm.0.001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Fluoroquinolone (FQ) resistant Salmonella are classified as high priority pathogens by WHO. FQ resistance among Salmonella Typhi has emerged rapidly and is predominantly mediated by mutations in the topoisomerase genes gyrA, and parC. Mutations in GyrA result in classical FQ resistance (DCS-NAR) i.e. decreased susceptibility to ciprofloxacin (MIC of 0.12 to 0.5 µg ml-1) (DCS) and resistance to nalidixic acid (NAR). Previously a nalidixic acid disc test was proposed for detection of DCS. Recently isolates with non-classical FQ resistance caused by plasmid-mediated quinolone resistance (PMQR) and mutations in GyrB have emerged. These mechanisms also result in DCS but are nalidixic acid susceptible (NAS) and thus pose diagnostic challenges. CLSI and EUCAST have recommended use of 5 µg pefloxacin discs for detection of DCS in Salmonella.Hypothesis. The CLSI and EUCAST recommendations for use of 5 µg pefloxacin for detection of DCS has not been validated on typhoidal Salmonella and resistance mediated by GyrB mutation in Salmonella species.Aim. The aim of the present study was to validate the performance of the 5 µg pefloxacin discs to detect isolates of S. Typhi with DCS with special reference to GyrB mutations.Methodology. A total of 180 clinical isolates of Salmonella Typhi (2005-2014) were investigated for genetic mechanisms of resistance. Zone diameters for nalidixic acid (30μg), ciprofloxacin (5μg) and pefloxacin (5µg) and minimum inhibitory concentration (MIC) for ciprofloxacin were determined using CLSI guidelines. Performance of the three discs was evaluated to detect FQ resistance in S. Typhi.Results. Topoisomerase mutations in GyrB +/ ParC and GyrB were detected in 112 and 34 isolates respectively. Different mutations have a varied effect on the MIC for ciprofloxacin. The current breakpoints for susceptible (≤0.06 µg ml-1) and non-susceptible (≥0.125 µg ml-1), failed to detect all isolates with a resistance mechanism. Performance of both ciprofloxacin and pefloxacin discs were excellent compared to nalidixic acid in differentiating isolates with non-classical resistance mediated by GyrB from wild-type.Conclusion. The pefloxacin disc can be used to detect FQ resistance among S. Typhi. This is the first report of validation of pefloxacin for detection of FQ resistance in S. Typhi mediated by GyrB mutation.
Collapse
|
Validation Study |
4 |
|
15
|
Nduka SO, Okonta E, Abba CC, Ihekwereme CP, Ekwedigwe U, Okonta M. Herb drug interaction: effect of Manix® on pharmacokinetic parameters of pefloxacin in rat model. Asian Pac J Trop Biomed 2014; 4:S413-6. [PMID: 25183119 PMCID: PMC4025296 DOI: 10.12980/apjtb.4.2014c400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To evaluate the effect of Manix®, the commonly used polyherbal formulation on pefloxacin pharmacokinetic parameters. METHODS Microbiological assay was employed using clinical isolate of Escherichia coli samples from hospitalized patients. RESULTS Manix® altered the bioavailability parameters of pefloxacin as thus, maximal concentration (Cmax) of pefloxacin (0.91±0.31) µg/mL occurred at time to reach maximal concentration (tmax) 4.0 h while in the group that received Manix® alongside pefloxacin Cmax was (0.22±0.08) µg/mL at tmax 1.0 h respectively. The area under curve of pefloxacin alone was (7.83±5.14) µg/h/mL while with Manix® was (2.60±0.08) µg/h/mL. There was a significant difference between Cmax, tmax and area under curve between pefloxacin alone and pefloxacin after Manix® pre-treatment (P<0.05). CONCLUSIONS The concurrent use of Manix® and pefloxacin has been found to compromise the therapeutic effectiveness of pefloxacin which could lead to poor clinical outcomes in patients.
Collapse
|
research-article |
11 |
|
16
|
Zhou Y, Wang J. Electro-Fenton degradation of pefloxacin using MOFs derived Cu, N co-doped carbon as a nanocomposite catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124198. [PMID: 38782161 DOI: 10.1016/j.envpol.2024.124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Electro-Fenton (EF) can in-situ produce H2O2 and effectively activate H2O2 to generate powerful reactive species for the destruction of contaminants under acidic conditions, however, the production of iron-containing sludge and requirement of low working pH significantly hinder its practical application. Herein, a novel Cu, N co-doped carbon (Cu-N@C) with metal organic framework (MOF) as a precursor was constructed and adopted for the elimination of pefloxacin (PEF) in the heterogeneous electro-Fenton (HEF) process. PEF could be almost completely removed within 1 h and total organic carbon (TOC) removal efficiency was 48.57% within 6 h. Meanwhile, Cu-N@C had good repeatability and environmental adaptability, it can still maintain excellent catalytic performance after 10 cycles, and it exhibited satisfactory remediation performance in simulated water matrix. In addition, the HEF process catalyzed by Cu-N@C also showed satisfactory degradation effect on other organic pollutants including atrazine, methylene blue, and chlorotetracycline. Under the action of impressed current, the HEF system could generate H2O2 in-situ, and the active species could be generated in the redox cycle of Cu0/Cu1+/Cu2+. Electron paramagnetic resonance and quenching experiments confirmed that •OH was the dominant active species in the degradation of organic compounds. The degradation process of PEF was studied by mass spectrometry analysis of intermediate products. This study provided a simple method to prepare MOF-based electrocatalyst, which exhibits promising application potential for treatment wastewater.
Collapse
|
|
1 |
|