Wu Y, Huang L, Xu Y, Zhang Y, Nie L, Kang S, Wei F, Ma S. Rapid and accurate detection of cinnamon oil adulteration in perilla leaf oil using atmospheric solids analysis probe-mass spectrometry.
Food Chem 2025;
462:140965. [PMID:
39197242 DOI:
10.1016/j.foodchem.2024.140965]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Perilla leaf oil (PLO) is a global premium vegetable oil with abundant nutrients and substantial economic value, rendering it susceptible to potential adulteration by unscrupulous entrepreneurs. The addition of cinnamon oil (CO) is one of the main adulteration avenues for illegal PLOs. In this study, new and real-time ambient mass spectrometric methods were developed to detect CO adulteration in PLO. First, atmospheric solids analysis probe tandem mass spectrometry combined with principal component analysis and principal component analysis-linear discriminant analysis was employed to differentiate between authentic and adulterated PLO. Then, a spectral library was established for the instantaneous matching of cinnamaldehyde in the samples. Finally, the results were verified using the SRM mode of ASAP-MS/MS. Within 3 min, the three methods successfully identified CO adulteration in PLO at concentrations as low as 5% v/v with 100% accuracy. The proposed strategy was successfully applied to the fraud detection of CO in PLO.
Collapse