1
|
Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem 2011; 127:999-1006. [PMID: 25214089 DOI: 10.1016/j.foodchem.2011.01.072] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 01/03/2011] [Accepted: 01/19/2011] [Indexed: 11/20/2022]
Abstract
The ethanol extract and its solvent subfractions, partitioned by n-hexane (HX), chloroform (CF) and ethylacetate (EA), from Enteromorpha prolifera were measured for antioxidant activities, and a structural identification of the active compound was performed using spectroscopic techniques. The CF fraction showed the most potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging activities with strong reducing ability. The DPPH and hydroxyl radical scavenging capacities of the CF fraction were comparable to the capacities of the positive controls, BHA and α-tocopherol, at concentrations ranging from 0.25 to 1.0mg/mL. However, little correlation (r(2)=0.03-0.48) was observed between antioxidant activities and total phenolic contents of the extracts. Further fractionation and spectroscopic analysis of the CF fraction suggested that the strong antioxidant activity of the extracts from E. prolifera was because of a chlorophyll compound, pheophorbide a, rather than phenolic compounds.
Collapse
|
Journal Article |
14 |
111 |
2
|
Son J, Yang SM, Yi G, Roh YJ, Park H, Park JM, Choi MG, Koo H. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochem Biophys Res Commun 2018. [PMID: 29518390 DOI: 10.1016/j.bbrc.2018.03.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted drug delivery has been an important issue for tumor therapy including photodynamic therapy (PDT). The purpose of our study is to increase the targeting efficiency of photosensitizer (PS) using folate-modified nanoparticles (NPs) to tumor site in vivo. Folate receptor is over-expressed on the surface of many human cancer cells. We prepared poly (lactic-co-glycolic acid) (PLGA) NPs containing pheophorbide a (Pba), a PS that is used in PDT and generates free radical for killing cancer cells. The surface of NPs was composed of phospholipids modified with polyethylene glycol (PEG) and folate (FA). The size of the resulting FA-PLGA-Pba NPs was about 200 nm in PBS at pH 7.4 and they were stable for long time. They showed faster cellular uptake to MKN28 human gastric cancer cell line than control PLGA-Pba NPs by high-affinity binding with folate receptors on cell surface. In MTT assay, FA-PLGA-Pba NPs also showed enhanced tumor cell killing compared to control PLGA-Pba NPs. In vivo and ex vivo imaging showed high accumulation of FA-PLGA-Pba NPs in tumor site during 24 h after intravenous injection to MKN28 tumor-bearing mice model. These results demonstrate that our FA-PLGA-Pba NPs are useful for tumor-targeted delivery of PS for cancer treatment by PDT.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
45 |
3
|
Della Pietra E, Simonella F, Bonavida B, Xodo LE, Rapozzi V. Repeated sub-optimal photodynamic treatments with pheophorbide a induce an epithelial mesenchymal transition in prostate cancer cells via nitric oxide. Nitric Oxide 2015; 45:43-53. [PMID: 25700664 DOI: 10.1016/j.niox.2015.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment that causes a selective cytotoxic effect in cancer cells. In addition to the production of singlet oxygen and reactive oxygen species, PDT can induce the release of nitric oxide (NO) by up-regulating nitric oxide synthases (NOS). Since non-optimal PDT often causes tumor recurrence, understanding the molecular pathways involved in the photoprocess is a challenging task for scientists. The present study has examined the response of the PC3 human metastatic prostate cancer cell line following repeated low-dose pheophorbide a treatments, mimicking non-optimal PDT treatment. The analysis was focused on the NF-kB/YY1/RKIP circuitry as it is (i) dysregulated in cancer cells, (ii) modulated by NO and (iii) correlated with the epithelial to mesenchymal transition (EMT). We hypothesized that a repeated treatment of non-optimal PDT induces low levels of NO that lead to cell growth and EMT via the regulation of the above circuitry. The expressions of gene products involved in the circuitry and in EMT were analyzed by western blot. The findings demonstrate the cytoprotective role of NO following non-optimal PDT treatments that was corroborated by the use of L-NAME, an inhibitor of NOS.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
34 |
4
|
Xu DD, Lam HM, Hoeven R, Xu CB, Leung AWN, Cho WCS. Photodynamic therapy induced cell death of hormone insensitive prostate cancer PC-3 cells with autophagic characteristics. Photodiagnosis Photodyn Ther 2013; 10:278-87. [PMID: 23993854 DOI: 10.1016/j.pdpdt.2013.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The introduction of photodynamic therapy (PDT) to the treatment of advanced prostate cancer can accomplish the eradication of local neoplasm and distant metastases with minimized damage to the adjacent structures. The evidence of PDT efficacy for androgen-refractory prostate cancer will be especially meaningful for the patients resistant to hormone therapy. METHODS Pheophorbide a (PhA) as a photosensitizer was employed to evaluate the photodynamic efficacy in androgen-insensitive PC-3 prostate cancer cells in culture by cell viability assay, reactive oxygen species (ROS) measurement and cell cycle test. Characteristics of apoptosis and autophagy were investigated via DNA fragmentation electrophoresis and immune-fluorescence staining, acidic vesicle determination and detection of LC3B in puncta form by fluorescence microscopy, Western blotting of autophagy-related (Atg) proteins and detailed phenotype shown by electron microscopy. RESULTS PhA exerted significant photo-cytotoxicity toward androgen-insensitive prostate cancer PC-3 cells in photosensitizer-dose and light-dose dependent manners. The photoactivation immediately initiated hyperproduction of ROS, the depolarization of mitochondrial membrane potential and the arrest of the cell cycle in the G0/G1 phase. Autophagy was revealed in PhA-PDT treated PC-3 cells by a significant high amount of acidic vesicular organelles with acridine orange staining, recruitment of LC3B on the membrane of autophagosomes by fluorescent microscopy, double membrane-bound vesicles suggesting autophagosomes by electron microscopy, significant increased Atg proteins such as beclin-1, Atg12-Atg5 conjugation, Atg7 and the conversion of LC3B-I to LC3B-II by Western blot analysis. CONCLUSIONS PhA-mediated PDT induced significant autophagy in hormone-refractory prostate cancer PC-3 cells.
Collapse
|
Journal Article |
12 |
24 |
5
|
Zhao Y, Wang X, Wang H, Liu T, Xin Z. Two new noroleanane-type triterpene saponins from the methanol extract of Salicornia herbacea. Food Chem 2013; 151:101-9. [PMID: 24423508 DOI: 10.1016/j.foodchem.2013.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 11/17/2022]
Abstract
Two new noroleanane-type triterpene saponins, Salbige A (1) and Salbige B (2), have been isolated from the aerial parts of Salicornia herbacea together with five other known compounds, including echinocystic acid (3), gypsogenin (4), pheophorbide a (5), (13(2)S)-hydroxy-pheophorbide a (6) and (13(2)S)-hydro-pheophorbide-lactone a (7). The chemical structures of these compounds were elucidated by extensive spectroscopic analysis and on the basis of their chemical reactivity. This work represents the first recorded example of the isolation of these compounds from S. herbacea. Compounds 1 and 2 exhibited potent antiproliferative activities and high levels of selectivity towards A549 cancer cells, with IC50 values of 52.35 and 79.39 μM, respectively, whereas compound 5 showed high levels of inhibitory activity against A549 and HepG2 cancer cells with IC50 values of 6.15 and 17.56 μM, respectively. None of these compounds exhibited antioxidant activities except for compound 7, which showed weak antioxidant activity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
22 |
6
|
Miranda N, Gerola AP, Novello CR, Ueda-Nakamura T, de Oliveira Silva S, Dias-Filho BP, Hioka N, de Mello JCP, Nakamura CV. Pheophorbide a, a compound isolated from the leaves of Arrabidaea chica, induces photodynamic inactivation of Trypanosoma cruzi. Photodiagnosis Photodyn Ther 2017; 19:256-265. [PMID: 28587855 DOI: 10.1016/j.pdpdt.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Approximately 6-7 million people are infected with Trypanosoma cruzi, the etiological agent of Chagas' disease. Only two therapeutic compounds have been found to be useful against this disease: nifurtimox and benznidazole. These drugs have been effective in the acute phase of the disease but less effective in the chronic phase; they also have many side effects. Thus, the search for new compounds with trypanocidal action is necessary. Natural products can be the source of many important substances for the development of drugs to treat this infection. The present study evaluated the biological activity of an extract and fractions of Arrabidaea chica against T. cruzi and observed morphological and ultrastructural characteristics of parasites exposed to the isolated compound pheophorbide a. METHODS The crude hydroethanolic extract of A. chica was prepared. Fractions were obtained by partition and separated by liquid chromatography. RESULTS We observed a progressive increase in activity against epimastigote, trypomastigote, and amastigote forms of the parasite over the course of the fractionation process. Interestingly, we isolated a compound known as a photosensitizer that is used in photodynamic therapy. This method of treatment involving a photosensitizer, activation light and molecular oxygen is of great importance due to its selectivity. Pheophorbide a had activity against the protozoan in the presence of light and caused morphological and ultrastructural changes, demonstrating its potential in photodynamic therapy. CONCLUSIONS Based on the ability of pheophorbide a to eliminate bloodstream forms of T. cruzi, we suggest its use in blood banks for hemoprophylaxis.
Collapse
|
Journal Article |
8 |
20 |
7
|
Miranda N, Volpato H, da Silva Rodrigues JH, Caetano W, Ueda-Nakamura T, de Oliveira Silva S, Nakamura CV. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:342-354. [PMID: 28821011 DOI: 10.1016/j.jphotobiol.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Leishmaniasis is a disease caused by hemoflagellate protozoa, affecting millions of people worldwide. The difficulties of treating patients with this parasitosis include the limited efficacy and many side effects of the currently available drugs. Therefore, the search for new compounds with leishmanicidal action is necessary. Photodynamic therapy has been studied in the medical field because of its selectivity, utilizing a combination of visible light, a photosensitizer compound, and singlet oxygen to reach the area of treatment. The continued search for selective alternative treatments and effective targets that impact the parasite and not the host are fundamentally important for the development of new drugs. Pheophorbide a is a photosensitizer that may be promising for the treatment of leishmaniasis. The present study evaluated the in vitro biological effects of pheophorbide a and its possible mechanisms of action in causing cell death in L. amazonensis. Pheophorbide a was active against promastigote and amastigote forms of the parasite. After treatment, we observed ultrastructural alterations in this protozoan. We also observed changes in promastigote macromolecules and organelles, such as loss of mitochondrial membrane potential [∆Ψm], lipid peroxidation, an increase in lipid droplets, DNA fragmentation, phosphatidylserine exposure, an increase in caspase-like activity, oxidative imbalance, and a decrease in antioxidant defense systems. These findings suggest that cell death occurred through apoptosis. The mechanism of cell death in intracellular amastigotes appeared to involve autophagy, in which we clearly observed an increase in reactive oxygen species, a compromised ∆Ψm, and an increase in the number of autophagic vacuoles. The present study contributes to the development of new photosensitizers against L. amazonensis. We also elucidated the mechanism of action of pheophorbide a, mainly in intracellular amastigotes, which is the most clinically relevant form of this parasite.
Collapse
|
Journal Article |
8 |
19 |
8
|
Choi YS, Kwon K, Yoon K, Huh KM, Kang HC. Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: Subcellular targeting, therapeutic, and imaging potentials. Int J Pharm 2017; 520:195-206. [PMID: 28179191 DOI: 10.1016/j.ijpharm.2017.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 02/07/2023]
Abstract
Mitochondria-targeting drug carriers have considerable potential because of the presence of many molecular drug targets in the mitochondria and their pivotal roles in cellular viability, metabolism, maintenance, and death. To compare the mitochondria-targeting abilities of triphenylphosphonium (TPP) and pheophorbide a (PhA) in nanoparticles (NPs), this study prepared mitochondria-targeting NPs using mixtures of methoxy poly(ethylene glycol)-(SS-PhA)2 [mPEG-(SS-PhA)2 or PPA] and TPP-b-poly(ε-caprolactone)-b-TPP [TPP-b-PCL-b-TPP or TPCL], which were designated PPAn-TPCL4-n (0≤n≤4) NPs. With increasing TPCL content, the formed PPAn-TPCL4-n NPs decreased in size from 33nm to 18nm and increased in terms of positive zeta-potentials from -12mV to 33mV. Although the increased TPCL content caused some dark toxicity of the PPAn-TPCL4-n NPs due to the intrinsic positive character of TPCL, the NPs showed strong light-induced killing effects in tumor cells. In addition, the mitochondrial distribution of the PPAn-TPCL4-n NPs was analyzed and imaged by flow cytometry and confocal microscopy, respectively. Thus, the PhA-containing NPs specifically targeted the mitochondria, and light stimulation caused PhA-mediated therapeutic effects and imaging functions. Expanding the capabilities of these nanocarriers by incorporating other drugs should enable multiple potential applications (e.g., targeting, therapy, and imaging) for combination and synergistic treatments.
Collapse
|
Journal Article |
8 |
12 |
9
|
Gushchina OI, Larkina EA, Nikolskaya TA, Mironov AF. Synthesis of amide derivatives of chlorin e6 and investigation of their biological activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:76-81. [PMID: 26398814 DOI: 10.1016/j.jphotobiol.2015.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
In this work there is a synthesis of new photosensitizers which is based on amide derivatives of chlorin е6 . For the disclosure of an extra ring of the initial compound - pheophorbide a 1, we used primary aliphatic amines with 4-12 carbon atoms in the alkyl chain. The reaction is carried out under mild conditions in chloroform with heating to 40 ºС. The structure of all compounds obtained was confirmed by means of electronic, IR, 1Н-NMR spectroscopy and mass-spectrometry. The photoactivity and the dark toxicity of the compounds 2b-2h were investigated on two cancer cell lines: P-388 and K-562. The biological investigations revealed a good photoactivity and low dark toxicity of all compounds 2b-2f. The amide derivatives of chlorin е6 with 6 and 7 carbon atoms in the alkyl part showed the best results in our research. Thus, in this paper we propose a reliable scheme of synthesis of chlorin's photosensitizers which are promising agents for PDT.
Collapse
|
Journal Article |
10 |
11 |
10
|
Pheophorbide a-mediated sonodynamic, photodynamic and sonophotodynamic therapies against prostate cancer. Photodiagnosis Photodyn Ther 2020; 31:101909. [PMID: 32619716 DOI: 10.1016/j.pdpdt.2020.101909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Anticancer efficiencies and mechanisms of Pheophorbide-a-mediated photodynamic, sonodynamic and sonophotodynamic therapies were investigated in vitro using androgen-sensitive (LNCaP) and androgen insensitive (PC3) prostate cancer cell lines. The cells were incubated in RPMI-1640 media at various concentrations of Pheophorbide-a. The media was treated with 0.5 W/cm2 ultrasound and/or 0.5 mJ/cm2 light irradiation. Cell proliferation in both cell lines was inhibited most effectively by sonophotodynamic therapy in comparison to that of both monotherapies. LNCaP cells were more sensitive to the applied treatments and the cell survival in LNCaP cell line was observed to be less than that of PC3 cell line. The results of histochemical analysis showed that there were more apoptotic cells in the treatment groups in comparison to control group. Additionally, the treatments induced apoptosis deduced by the overexpressed levels of caspase-3, caspase-8, PARP, and Bax proteins, while the expression levels of caspase-9 and Bcl-2 proteins were observed to be lower than those of control group. Treatments led to an increase in the oxidative stress markers, ROS and MDA, but a decrease in the activities of antioxidant enzymes, SOD, CAT and GSH. The results of this study revealed that Pheophorbide a-mediated sonophotodynamic therapy more efficiently activates the apoptotic mechanisms in prostate cancer cells and thus may provide a promising approach for treatment.
Collapse
|
Journal Article |
5 |
11 |
11
|
Jimenez-Aleman GH, Castro V, Londaitsbehere A, Gutierrez-Rodríguez M, Garaigorta U, Solano R, Gastaminza P. SARS-CoV-2 Fears Green: The Chlorophyll Catabolite Pheophorbide A Is a Potent Antiviral. Pharmaceuticals (Basel) 2021; 14:ph14101048. [PMID: 34681272 PMCID: PMC8538351 DOI: 10.3390/ph14101048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 pandemic is having devastating consequences worldwide. Although vaccination advances at good pace, effectiveness against emerging variants is unpredictable. The virus has displayed a remarkable resistance to treatments and no drugs have been proved fully effective against COVID-19. Thus, despite the international efforts, there is still an urgent need for new potent and safe antivirals against SARS-CoV-2. Here, we exploited the enormous potential of plant metabolism using the bryophyte Marchantia polymorpha L. and identified a potent SARS-CoV-2 antiviral, following a bioactivity-guided fractionation and mass-spectrometry approach. We found that the chlorophyll derivative Pheophorbide a (PheoA), a porphyrin compound similar to animal Protoporphyrin IX, has an extraordinary antiviral activity against SARS-CoV-2, preventing infection of cultured monkey and human cells, without noticeable cytotoxicity. We also show that PheoA targets the viral particle, interfering with its infectivity in a dose- and time-dependent manner. Besides SARS-CoV-2, PheoA also displayed a broad-spectrum antiviral activity against enveloped RNA viral pathogens such as HCV, West Nile, and other coronaviruses. Our results indicate that PheoA displays a remarkable potency and a satisfactory therapeutic index, which together with its previous use in photoactivable cancer therapy in humans, suggest that it may be considered as a potential candidate for antiviral therapy against SARS-CoV-2.
Collapse
|
|
4 |
9 |
12
|
Xu DD, Xu CB, Lam HM, Wong FL, Leung AWN, Leong MML, Cho WCS, Hoeven R, Lv Q, Rong R. Proteomic analysis reveals that pheophorbide a-mediated photodynamic treatment inhibits prostate cancer growth by hampering GDP-GTP exchange of ras-family proteins. Photodiagnosis Photodyn Ther 2018; 23:35-39. [PMID: 29800714 DOI: 10.1016/j.pdpdt.2018.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND We previously reported that pheophorbide a (PhA), excited by 630 nm light, significantly inhibited the growth of prostate cancer cells. In this study, we employed whole-cell proteomics to investigate photodynamic treatment (PDT)-related proteins. METHODS Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was employed to reveal the proteins involved in PhA-mediated PDT in LNCaP and PC-3 prostate cancer cells. RESULTS After PhA-PDT treatment, decreased expression of translationally-controlled tumor protein (TCTP) was found in both PC-3 and LNCaP whole-cell proteomes. In contrast, human rab GDP dissociation inhibitor (GDI) in LNCaP cells and ras-related homologs GDI in PC-3 cells were up-regulated. CONCLUSIONS GDP-GTP exchange is an underlying target of photodynamic treatment in prostate cancer cells.
Collapse
|
Journal Article |
7 |
6 |
13
|
A comparative study of the effect of drug hydrophobicity on nanoparticle drug delivery in vivo using two photosensitizers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102151. [PMID: 31927135 DOI: 10.1016/j.nano.2020.102151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022]
Abstract
To evaluate the effect of drug hydrophobicity on nanoparticle delivery in vivo, we conducted a comparative study using different photosensitizer-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). Chlorin e6 (Ce6) and pheophorbide a (Pba) with similar structure but different hydrophobicity were loaded into PLGA-NPs separately. We observed release profiles and photodynamic effects in vitro from the resulting Ce6- and Pba-PLGA-NPs. After intravenous injection into SCC7 tumor-bearing mice, biodistribution and accumulation of two drugs in tumor tissue were observed by real-time fluorescence imaging. Finally, in vivo photodynamic therapy with Ce6- and Pba-PLGA-NPs provided different therapeutic results according to imaging data. The results demonstrated that drug hydrophobicity is an important factor in nanoparticle drug delivery and should be considered for efficient drug delivery in vivo.
Collapse
|
|
5 |
5 |
14
|
The Enhancement of Antimicrobial Photodynamic Therapy of Escherichia Coli by a Functionalized Combination of Photosensitizers: In Vitro Examination of Single Cells by Quantitative Phase Imaging. Int J Mol Sci 2022; 23:ijms23116137. [PMID: 35682814 PMCID: PMC9181539 DOI: 10.3390/ijms23116137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
The prevention of biofilm formation is crucial for the limitation of bacterial infections typically associated with postoperative infections, complications in bedridden patients, and a short-term prognosis in affected cancer patients or mechanically ventilated patients. Antimicrobial photodynamic therapy (aPDT) emerges as a promising alternative for the prevention of infections due to the inability of bacteria to become resistant to aPDT inactivation processes. The aim of this study was to demonstrate the use of a functionalized combination of Chlorin e6 and Pheophorbide as a new approach to more effective aPDT by increasing the accumulation of photosensitizers (PSs) within Escherichia coli cells. The accumulation of PSs and changes in the dry mass density of single-cell bacteria before and after aPDT treatment were investigated by digital holotomography (DHT) using the refractive index as an imaging contrast for 3D label-free live bacteria cell imaging. The results confirmed that DHT can be used in complex examination of the cell–photosensitizer interaction and characterization of the efficiency of aPDT. Furthermore, the use of Pheophorbide a as an efflux pomp inhibitor in combination with Chlorin e6 increases photosensitizers accumulation within E. coli and overcomes the limited penetration of Gram-negative cells by anionic and neutral photosensitizers.
Collapse
|
|
3 |
4 |
15
|
Sheng Q, Fang X, Zhu Z, Xiao W, Wang Z, Ding G, Zhao L, Li Y, Yu P, Ding Z, Sun Q. Seasonal variation of pheophorbide a and flavonoid in different organs of two Carpinus species and its correlation with immunosuppressive activity. In Vitro Cell Dev Biol Anim 2016; 52:654-61. [PMID: 27112162 DOI: 10.1007/s11626-016-0041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
Abstract
The genus Carpinus of Betulaceae is the most widely distributed in the European landscape. This study reports a comparative study based on the pheophorbide a and flavonoid content from the two main species of the genus Carpinus, Carpinus betulus and Carpinus turczaninowii, respectively, in Nanjing, China. The pheophorbide a and flavonoid content depends on the organ, species, and season. HPLC analysis showed that the pheophorbide a and flavonoid levels were the highest in May and June, respectively, from the leaves of C. betulus 'Fastigiata.' In contrast, the content of pheophorbide a and flavonoid in the stems of C. betulus 'Fastigiata' or in other species was low. The immunosuppressive effects of the ethyl acetate extracts and methanol extracts from the two Carpinus species were also evaluated. The ethyl acetate extracts of C. betulus 'Fastigiata' in May and the methanol extracts of C. betulus 'Fastigiata' in June showed better immunosuppressive activity than in other seasons, which coincided with the content of pheophorbide a and flavonoid, respectively. Our findings indicated that C. betulus 'Fastigiata' can serve as a medicinal plant against inflammation because of its pheophorbide a and flavonoid content.
Collapse
|
Comparative Study |
9 |
4 |
16
|
Identification of pheophorbide a as an inhibitor of receptor for advanced glycation end products in Mallotus japonicus. J Nat Med 2021; 75:675-681. [PMID: 33625682 DOI: 10.1007/s11418-021-01495-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023]
Abstract
Accumulation of advanced glycation end products (AGEs) plays an important role in diabetes, immunoinflammation, and cardiovascular and neurodegenerative diseases. Since AGEs mediate their pathological effects through interaction with receptor for AGEs (RAGE), RAGE antagonists would provide a useful therapeutic option for various health disorders. Therefore, in this study, we aimed to identify phytochemicals that would inhibit binding of AGEs to RAGE, which may help develop new drug leads and/or nutraceuticals for AGE-RAGE-related diseases. On screening ethanol extracts obtained from 700 plant materials collected in Myanmar, we found that the ethanol extract from the leaves of Mallotus philippensis inhibited the binding of AGEs to RAGE. We also found that the leaves of M. japonicus, which belongs to the same genera and distributes abundantly in Japan, exhibited the inhibitory activity similar to M. philippensis. Activity-guided fractionation and LC/MS analysis of the ethanol extract of M. japonicus helped identify pheophorbide a (PPBa) as a major component in the active fraction, along with some other pheophorbide derivatives. PPBa exhibited potent inhibitory activity against AGE-RAGE binding, with an IC50 value (0.102 μM) comparable to that of dalteparin (0.084 μM). PPBa may be a valuable natural product for use as a therapeutic agent and/or a nutraceutical against various health complications arising from activation of the AGE-RAGE axis.
Collapse
|
Journal Article |
4 |
1 |
17
|
Vu QV, Vu NT, Baba K, Sasaki S, Tamura R, Morimoto K, Hirano H, Osada H, Kataoka T. Porphyrin derivatives inhibit tumor necrosis factor α-induced gene expression and reduce the expression and increase the cross-linked forms of cellular components of the nuclear factor κB signaling pathway. Eur J Pharmacol 2024; 977:176747. [PMID: 38880218 DOI: 10.1016/j.ejphar.2024.176747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The transcription factor nuclear factor κB (NF-κB) is activated by proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and Toll-like receptor (TLR) ligands. Screening of NPDepo chemical libraries identified porphyrin derivatives as anti-inflammatory compounds that strongly inhibited the up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression induced by TNF-α, interleukin-1α, the TLR3 ligand, and TLR4 ligand in human umbilical vein endothelial cells. In the present study, the mechanisms of action of porphyrin derivatives were further elucidated using human lung adenocarcinoma A549 cells. Porphyrin derivatives, i.e., dimethyl-2,7,12,18-tetramethyl-3,8-di(1-methoxyethyl)-21H,23H-porphine-13,17-dipropionate (1) and pheophorbide a (2), inhibited TNF-α-induced ICAM-1 expression and decreased the TNF-α-induced transcription of ICAM-1, vascular cell adhesion molecule-1, and E-selectin genes. 1 and 2 reduced the expression of the NF-κB subunit RelA protein for 1 h, which was not rescued by the inhibition of proteasome- and lysosome-dependent protein degradation. In addition, 1 and 2 decreased the expression of multiple components of the TNF receptor 1 complex, and this was accompanied by the appearance of their cross-linked forms. As common components of the NF-κB signaling pathway, 1 and 2 also cross-linked the α, β, and γ subunits of the inhibitor of NF-κB kinase complex and the NF-κB subunits RelA and p50. Cellular protein synthesis was prevented by 2, but not by 1. Therefore, the present results indicate that porphyrin derivative 1 reduced the expression and increased the cross-linked forms of cellular components required for the NF-κB signaling pathway without affecting global protein synthesis.
Collapse
|
|
1 |
|
18
|
Ribeiro T, Reis M, Vasconcelos V, Urbatzka R. Phenotypic screening in zebrafish larvae identifies promising cyanobacterial strains and pheophorbide a as insulin mimetics. Sci Rep 2024; 14:32142. [PMID: 39739113 PMCID: PMC11685485 DOI: 10.1038/s41598-024-83986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Diabetes is a pandemic disease that causes the loss of control of glucose regulation in the organism, in consequence of dysfunction of insulin production or functionality. In this work, the antidiabetic bioactivity of 182 fractions from 19 cyanobacteria strains derived from the LEGE Culture Collection were analysed using the 2-NBDG assay in zebrafish larvae. From this initial screening, two fractions (57 (06104_D) and 107 (03283_B)) were identified as promising insulin mimetics. These were further characterized by measuring glucose levels in whole larvae, the expression of glucose transporters (GLUT 1-3) using western blot, and the mRNA expression levels of the glut2, pepck, and insa genes using real-time qPCR. Both fractions showed a decrease in free glucose levels. Furthermore, exposure to fraction 06104_D decreased GLUT1 and increased insa mRNA levels. The chemical composition of these fractions was determined using LC-HRESIMS/MS and compared to inactive fractions of the same polarity in order to identify the unique bioactive molecules. The molecular networks constructed using the GNPS platform revealed that fraction 06104_D contained mass clusters primarily composed of chlorins, lipids, and terpenoids, while fraction 03283_B contained xanthophylls, peptides, and terpenoids. To correlate the observed activity with the chemical composition of fraction 06104_D, pheophorbide a was chosen as a representative of chlorophyll derivatives. Exposure to zebrafish larvae at 10 and 20 µM confirmed the increased glucose uptake on the 2-NBDG assay. These findings highlight the bioactivity of chlorophyll derivatives as insulin mimetic compounds, as well as cyanobacteria as a source of potential therapeutic diabetes applications.
Collapse
|
research-article |
1 |
|
19
|
Chota A, George BP, Abrahamse H. Apoptotic efficiency of Dicoma anomala biosynthesized silver nanoparticles against A549 lung cancer cells. Biomed Pharmacother 2024; 176:116845. [PMID: 38810403 DOI: 10.1016/j.biopha.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
Lung cancer is one of the common forms of cancer that affects both men and women and is regarded as the leading cause of cancer related deaths. It is characterized by unregulated cell division of altered cells within the lung tissues. Green nanotechnology is a promising therapeutic option that is adopted in cancer research. Dicoma anomala (D. anomala) is one of the commonly used African medicinal plant in the treatment of different medical conditions including cancer. In the present study, silver nanoparticles (AgNPs) were synthesized using D. anomala MeOH root extract. We evaluated the anticancer efficacy of the synthesized AgNPs as an individual treatment as well as in combination with pheophorbide a (PPBa) mediated photodynamic therapy (PDT) in vitro. UV-VIS spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) was used to confirm the formation of D.A AgNPs. Post 24 h treatment, A549 cells were evaluated for ATP proliferation, morphological changes supported by LIVE/DEAD assay, and caspase activities. All experiments were repeated four times (n=4), with findings being analysed using SPSS statistical software version 27 set at 0.95 confidence interval. The results from the present study revealed a dose-dependent decrease in cell proliferation in both individual and combination therapy of PPBa mediated PDT and D.A AgNPs on A549 lung cancer cells with significant morphological changes. Additionally, LIVE/DEAD assay displayed a significant increase in the number of dead cell population in individual treatments (i.e., IC50's treated A549 cells) as well as in combination therapy. In conclusion, the findings from this study demonstrated the anticancer efficacy of green synthesized AgNPs as a mono-therapeutic drug as well as in combination with a chlorophyll derivative PPBa in PDT. Taken together, the findings highlight the therapeutic potential of green nanotechnology in medicine.
Collapse
|
|
1 |
|