Hsu YW, Wong HSC, Huang WC, Yeh YH, Hsiao CD, Chang WC, Hsieh SL. Human rs75776403 polymorphism links differential phenotypic and clinical outcomes to a CLEC18A p.T151M-driven multiomics.
J Biomed Sci 2022;
29:43. [PMID:
35717171 PMCID:
PMC9206359 DOI:
10.1186/s12929-022-00822-1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
Human traits, diseases susceptibility, and clinical outcomes vary hugely among individuals. Despite a fundamental understanding of genetic (or environmental) contributions, the detailed mechanisms of how genetic variation impacts molecular or cellular behaviours of a gene, and subsequently leads to such variability remain poorly understood.
METHODS
Here, in addition to phenome-wide correlations, we leveraged multiomics to exploit mechanistic links, from genetic polymorphism to protein structural or functional changes and a cross-omics perturbation landscape of a germline variant.
RESULTS
We identified a missense cis-acting expression quantitative trait locus in CLEC18A (rs75776403) in which the altered residue (T151→M151) disrupts the lipid-binding ability of the protein domain. The altered allele carriage led to a metabolic and proliferative shift, as well as immune deactivation, therefore determines human anthropometrics (body height), kidney, and hematological traits.
CONCLUSIONS
Collectively, we uncovered genetic pleiotropy in human complex traits and diseases via CLEC18A rs75776403-regulated pathways.
Collapse