1
|
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK, Tuckey RC. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 2015; 151:25-37. [PMID: 25448732 PMCID: PMC4757911 DOI: 10.1016/j.jsbmb.2014.11.010] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
CYP11A1, found only in vertebrates, catalyzes the first step of steroidogenesis where cholesterol is converted to pregnenolone. The purified enzyme, also converts desmosterol and plant sterols including campesterol and β-sitosterol, to pregnenolone. Studies, initially with purified enzyme, reveal that 7-dehydrocholesterol (7DHC), ergosterol, lumisterol 3, and vitamins D3 and D2 also serve as substrates for CYP11A1, with 7DHC being better and vitamins D3 and D2 being poorer substrates than cholesterol. Adrenal glands, placenta, and epidermal keratinocytes can also carry out these conversions and 7-dehydropregnenolone has been detected in the epidermis, adrenal glands, and serum, and 20-hydroxyvitamin D3 was detected in human serum and the epidermis. Thus, this metabolism does appear to occur in vivo, although its quantitative importance and physiological role remain to be established. CYP11A1 action on 7DHC in vivo is further supported by detection of Δ(7)steroids in Smith-Lemli-Opitz syndrome patients. The activity of CYP11A1 is affected by the structure of the substrate with sterols having steroidal or Δ(7)-steroidal structures undergoing side chain cleavage following hydroxylations at C22 and C20. In contrast, metabolism of vitamin D involves sequential hydroxylations that start at C20 but do not lead to cleavage. Molecular modeling using the crystal structure of CYP11A1 predicts that other intermediates of cholesterol synthesis could also serve as substrates for CYP11A1. Finally, CYP11A1-derived secosteroidal hydroxy-derivatives and Δ(7)steroids are biologically active when administered in vitro in a manner dependent on the structure of the compound and the lineage of the target cells, suggesting physiological roles for these metabolites. This article is part of a special issue entitled 'SI: Steroid/Sterol signaling'.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
242 |
2
|
Chiavaroli L, Nishi SK, Khan TA, Braunstein CR, Glenn AJ, Mejia SB, Rahelić D, Kahleová H, Salas-Salvadó J, Jenkins DJA, Kendall CWC, Sievenpiper JL. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog Cardiovasc Dis 2018; 61:43-53. [PMID: 29807048 DOI: 10.1016/j.pcad.2018.05.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The evidence for the Portfolio dietary pattern, a plant-based dietary pattern that combines recognized cholesterol-lowering foods (nuts, plant protein, viscous fibre, plant sterols), has not been summarized. OBJECTIVE To update the European Association for the Study of Diabetes clinical practice guidelines for nutrition therapy, we conducted a systematic review and meta-analysis of controlled trials using GRADE of the effect of the Portfolio dietary pattern on the primary therapeutic lipid target for cardiovascular disease prevention, low-density lipoprotein cholesterol (LDL-C), and other established cardiometabolic risk factors. METHODS We searched MEDLINE, EMBASE, and The Cochrane Library through April 19, 2018. We included controlled trials ≥ 3-weeks assessing the effect of the Portfolio dietary pattern on cardiometabolic risk factors compared with an energy-matched control diet free of Portfolio dietary pattern components. Two independent reviewers extracted data and assessed risk of bias. The primary outcome was LDL-C. Data were pooled using the generic inverse-variance method and expressed as mean differences (MDs) with 95% confidence intervals (CIs). Heterogeneity was assessed (Cochran Q statistic) and quantified (I2-statistic). GRADE assessed the certainty of the evidence. RESULTS Eligibility criteria were met by 7 trial comparisons in 439 participants with hyperlipidemia, in which the Portfolio dietary pattern was given on a background of a National Cholesterol Education Program (NCEP) Step II diet. The combination of a portfolio dietary pattern and NCEP Step II diet significantly reduced the primary outcome LDL-C by ~17% (MD, -0.73 mmol/L, [95% CI, -0.89 to -0.56 mmol/L]) as well as non-high-density lipoprotein cholesterol, apolipoprotein B, total cholesterol, triglycerides, systolic and diastolic blood pressure, C-reactive protein, and estimated 10-year coronary heart disease (CHD) risk, compared with an NCEP Step 2 diet alone (p < 0.05). There was no effect on high-density lipoprotein cholesterol or body weight. The certainty of the evidence was high for LDL-cholesterol and most lipid outcomes and moderate for all others outcomes. CONCLUSIONS Current evidence demonstrates that the Portfolio dietary pattern leads to clinically meaningful improvements in LDL-C as well as other established cardiometabolic risk factors and estimated 10-year CHD risk.
Collapse
|
Systematic Review |
7 |
123 |
3
|
Rogers MA, Liu J, Song BL, Li BL, Chang CCY, Chang TY. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. J Steroid Biochem Mol Biol 2015; 151:102-7. [PMID: 25218443 PMCID: PMC4851438 DOI: 10.1016/j.jsbmb.2014.09.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 01/18/2023]
Abstract
Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form the basis to further pursue ACAT structure-function analysis, and can be explored to develop novel allosteric ACAT inhibitors for therapeutic purposes. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
110 |
4
|
Ras RT, Hiemstra H, Lin Y, Vermeer MA, Duchateau GSMJE, Trautwein EA. Consumption of plant sterol-enriched foods and effects on plasma plant sterol concentrations--a meta-analysis of randomized controlled studies. Atherosclerosis 2013; 230:336-46. [PMID: 24075766 DOI: 10.1016/j.atherosclerosis.2013.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Intake of plant sterol (PS)-enriched foods effectively lowers plasma total- and LDL-cholesterol concentrations while increasing plasma PS concentrations. The magnitude of this increase has not been systematically assessed. This study aimed to investigate the effect of PS-enriched foods on plasma PS concentrations by performing a meta-analysis of randomized controlled studies. METHODS Published PS intervention studies reporting plasma PS concentrations were searched through June 2012. Studies were selected that fulfilled pre-defined in- and exclusion criteria. Data were extracted, particularly on campesterol, sitosterol, total- and LDL-cholesterol. Random-effects models were used to calculate net effects while weighing each study by the inverse of its variance. Potential sources of heterogeneity were investigated. RESULTS The meta-analysis included data from 41 studies (55 strata) with in total 2084 subjects. The average dose of PS from enriched foods was 1.6 g/d (range: 0.3-3.2 g/d). Plasma sitosterol and campesterol concentrations were increased by on average 2.24 μmol/L (31%) and 5.00 μmol/L (37%), respectively, compared to control. Total- and LDL-cholesterol were reduced by on average 0.36 mmol/L (5.9%) and 0.33 mmol/L (8.5%), respectively. The increase in sitosterol and campesterol was impacted by the dose of PS, the baseline PS concentration and the PS composition of the test products. In the highest PS dose category (2.0-3.2 g/d), increases in sitosterol and campesterol were on average 3.56 and 7.64 μmol/L, respectively. CONCLUSION Intake of PS-enriched foods increases plasma sitosterol and campesterol concentrations. However, total PS remain below 1% of total sterols circulating in the blood.
Collapse
|
Meta-Analysis |
12 |
75 |
5
|
Plat J, Baumgartner S, Vanmierlo T, Lütjohann D, Calkins KL, Burrin DG, Guthrie G, Thijs C, Te Velde AA, Vreugdenhil ACE, Sverdlov R, Garssen J, Wouters K, Trautwein EA, Wolfs TG, van Gorp C, Mulder MT, Riksen NP, Groen AK, Mensink RP. Plant-based sterols and stanols in health & disease: "Consequences of human development in a plant-based environment?". Prog Lipid Res 2019; 74:87-102. [PMID: 30822462 DOI: 10.1016/j.plipres.2019.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023]
Abstract
Dietary plant sterols and stanols as present in our diet and in functional foods are well-known for their inhibitory effects on intestinal cholesterol absorption, which translates into lower low-density lipoprotein cholesterol concentrations. However, emerging evidence suggests that plant sterols and stanols have numerous additional health effects, which are largely unnoticed in the current scientific literature. Therefore, in this review we pose the intriguing question "What would have occurred if plant sterols and stanols had been discovered and embraced by disciplines such as immunology, hepatology, pulmonology or gastroenterology before being positioned as cholesterol-lowering molecules?" What would then have been the main benefits and fields of application of plant sterols and stanols today? We here discuss potential effects ranging from its presence and function intrauterine and in breast milk towards a potential role in the development of non-alcoholic steatohepatitis (NASH), cardiovascular disease (CVD), inflammatory bowel diseases (IBD) and allergic asthma. Interestingly, effects clearly depend on the route of entrance as observed in intestinal-failure associated liver disease (IFALD) during parenteral nutrition regimens. It is only until recently that effects beyond lowering of cholesterol concentrations are being explored systematically. Thus, there is a clear need to understand the full health effects of plant sterols and stanols.
Collapse
|
Review |
6 |
66 |
6
|
Othman RA, Myrie SB, Jones PJH. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia. Atherosclerosis 2013; 231:291-9. [PMID: 24267242 DOI: 10.1016/j.atherosclerosis.2013.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/05/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
Abstract
Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.
Collapse
|
Review |
12 |
45 |
7
|
Lin Y, Knol D, Trautwein EA. Phytosterol oxidation products (POP) in foods with added phytosterols and estimation of their daily intake: A literature review. EUR J LIPID SCI TECH 2016; 118:1423-1438. [PMID: 27812313 PMCID: PMC5066650 DOI: 10.1002/ejlt.201500368] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/30/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023]
Abstract
To evaluate the content of phytosterol oxidation products (POP) of foods with added phytosterols, in total 14 studies measuring POP contents of foods with added phytosterols were systematically reviewed. In non‐heated or stored foods, POP contents were low, ranging from (medians) 0.03–3.6 mg/100 g with corresponding oxidation rates of phytosterols (ORP) of 0.03–0.06%. In fat‐based foods with 8% of added free plant sterols (FPS), plant sterol esters (PSE) or plant stanol esters (PAE) pan‐fried at 160–200°C for 5–10 min, median POP contents were 72.0, 38.1, and 4.9 mg/100 g, respectively, with a median ORP of 0.90, 0.48, and 0.06%. Hence resistance to thermal oxidation was in the order of PAE > PSE > FPS. POP formation was highest in enriched butter followed by margarine and rapeseed oil. In margarines with 7.5–10.5% added PSE oven‐heated at 140–200°C for 5–30 min, median POP content was 0.3 mg/100 g. Further heating under same temperature conditions but for 60–120 min markedly increased POP formation to 384.3 mg/100 g. Estimated daily upper POP intake was 47.7 mg/d (equivalent to 0.69 mg/kg BW/d) for foods with added PSE and 78.3 mg/d (equivalent to 1.12 mg/kg BW/d) for foods with added FPS as calculated by multiplying the advised upper daily phytosterol intake of 3 g/d with the 90% quantile values of ORP. In conclusion, heating temperature and time, chemical form of phytosterols added and the food matrix are determinants of POP formation in foods with added phytosterols, leading to an increase in POP contents. Practical applications: Phytosterol oxidation products (POP) are formed in foods containing phytosterols especially when exposed to heat treatment. This review summarising POP contents in foods with added phytosterols in their free and esterified forms reveals that heating temperature and time, the chemical form of phytosterols added and the food matrix itself are determinants of POP formation with heating temperature and time having the biggest impact. The estimated upper daily intakes of POP is 78.3 mg/d for fat‐based products with added free plant sterols and 47.7 mg/d for fat‐based products with added plant sterol esters.
Phytosterols in foods are susceptible to oxidation to form phytosterol oxidation products (POP). This review summarizes literature data regarding POP contents of foods with added phytosterols that were exposed to storage and heat treatments.
Collapse
|
Journal Article |
9 |
37 |
8
|
Yanai H, Katsuyama H, Hamasaki H, Abe S, Tada N, Sako A. Effects of Dietary Fat Intake on HDL Metabolism. J Clin Med Res 2014; 7:145-9. [PMID: 25584098 PMCID: PMC4285059 DOI: 10.14740/jocmr2030w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2014] [Indexed: 11/11/2022] Open
Abstract
High-density lipoprotein (HDL) is a lipoprotein which has anti-atherogenic property by reversing cholesterol transport from the peripheral tissues to liver. Low HDL-cholesterol (HDL-C) as well as high low-density lipoprotein-cholesterol (LDL-C) is associated with the development of coronary heart diseases (CHD). Various epidemiological studies have suggested that the development of CHD increase in individuals with less than 40 mg/dL of HDL-C. In spite of accumulation of evidences suggesting a significant association between low HDL-C and CHD, effects of dietary factors on HDL metabolism remained largely unknown. We reviewed published articles about effects of dietary fat intake on HDL metabolism. The substitution of fatty acids (FA) for carbohydrates is beneficially associated with HDL metabolism. Monounsaturated FA intake may not affect HDL-C. Trans-FA is significantly associated with reduction of HDL-C, and is also adversely related with total cholesterol/HDL-C. Fish oils consumption, especially docosahexaenoic acid consumption, may be favorably associated with HDL metabolism. Although plant sterols and stanols may not affect HDL-C, policosanol intake is associated with a clinically significant decrease in the LDL/HDL ratio.
Collapse
|
Review |
11 |
32 |
9
|
Barriuso B, Ansorena D, Astiasarán I. Oxysterols formation: A review of a multifactorial process. J Steroid Biochem Mol Biol 2017; 169:39-45. [PMID: 26921766 DOI: 10.1016/j.jsbmb.2016.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022]
Abstract
Dietary sterols are nutritionally interesting compounds which can suffer oxidation reactions. In the case of plant sterols, they are being widely used for food enrichment due to their hypocholesterolemic properties. Besides, cholesterol and plant sterols oxidation products are associated with the development of cardiovascular and neurodegenerative diseases, among others. Therefore, the evaluation of the particular factors affecting sterol degradation and oxysterols formation in foods is of major importance. The present work summarizes the main results obtained in experiments which aimed to study four aspects in this context: the effect of the heating treatment, the unsaturation degree of the surrounding lipids, the presence of antioxidants on sterols degradation, and at last, oxides formation. The use of model systems allowed the isolation of some of these effects resulting in more accurate data. Thus, these results could be applied in real conditions.
Collapse
|
Review |
8 |
31 |
10
|
Duong S, Strobel N, Buddhadasa S, Stockham K, Auldist M, Wales B, Orbell J, Cran M. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection. Food Chem 2016; 211:570-6. [PMID: 27283669 DOI: 10.1016/j.foodchem.2016.05.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022]
Abstract
A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%.
Collapse
|
Journal Article |
9 |
29 |
11
|
Phytosterols and phytosterolemia: gene-diet interactions. GENES AND NUTRITION 2010; 6:17-26. [PMID: 21437027 DOI: 10.1007/s12263-010-0182-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
Abstract
Phytosterol intake is recommended as an adjunctive therapy for hypercholesterolemia, and plant sterols/stanols can reduce cholesterol absorption at the intestinal lumen through the Niemann-Pick C1 Like 1 (NPC1L1) transporter pathway by competitive solubilization in mixed micelles. Phytosterol absorption is of less magnitude than cholesterol and is preferably secreted in the intestinal lumen by ABCG5/G8 transporters. Therefore, plasma levels of plant sterols/stanols are negligible compared with cholesterol, under an ordinary diet. The mechanisms of cholesterol and plant sterols absorption and the whole-body pool of sterols are discussed in this chapter. There is controversy about treatment with statins inducing further increase in plasma non-cholesterol sterols raising concerns about the safety of supplementation of plant sterols to such drugs. In addition, increase in plant sterols has also been reported upon consumption of plant sterol-enriched foods, regardless of other treatments. Rare mutations on ABCG5/G8 transporters affecting cholesterol/non-cholesterol extrusion, causing sitosterolemia with xanthomas and premature atheroslerotic disease are now known, and cholesterol/plant sterols absorption inhibitor, ezetimibe, emerges as the drug that reduces phytosterolemia and promotes xanthoma regression. On the other hand, common polymorphisms affecting the NPC1L1 transporter can interfere with the action of ezetimibe. Gene-diet interactions participate in this intricate network modulating the expression of genetic variants on specific phenotypes and can also affect the individual response to the hypolipidemic treatment. These very interesting aspects promoted a great deal of research in the field.
Collapse
|
Journal Article |
15 |
29 |
12
|
Luister A, Schött HF, Husche C, Schäfers HJ, Böhm M, Plat J, Gräber S, Lütjohann D, Laufs U, Weingärtner O. Increased plant sterol deposition in vascular tissue characterizes patients with severe aortic stenosis and concomitant coronary artery disease. Steroids 2015; 99:272-80. [PMID: 25814070 DOI: 10.1016/j.steroids.2015.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
The aim of the study was to evaluate the relationship between phytosterols, oxyphytosterols, and other markers of cholesterol metabolism and concomitant coronary artery disease (CAD) in patients with severe aortic stenosis who were scheduled for elective aortic valve replacement. Markers of cholesterol metabolism (plant sterols and cholestanol as markers of cholesterol absorption and lathosterol as an indicator of cholesterol synthesis) and oxyphytosterols were determined in plasma and aortic valve tissue from 104 consecutive patients with severe aortic stenosis (n=68 statin treatment; n=36 no statin treatment) using gas chromatography-flame ionization and mass spectrometry. The extent of CAD was determined by coronary angiography prior to aortic valve replacement. Patients treated with statins were characterized by lower plasma cholesterol, cholestanol, and lathosterol concentrations. However, statin treatment did not affect the sterol concentrations in cardiovascular tissue. The ratio of campesterol-to-cholesterol was increased by 0.46±0.34μg/mg (26.0%) in plasma of patients with CAD. The absolute values for the cholesterol absorption markers sitosterol and campesterol were increased by 18.18±11.59ng/mg (38.8%) and 11.40±8.69ng/mg (30.4%) in the tissues from patients with documented CAD compared to those without concomitant CAD. Campesterol oxides were increased by 0.06±0.02ng/mg (17.1%) in the aortic valve cusps and oxidized sitosterol-to-cholesterol ratios were up-regulated by 0.35±0.2ng/mg (22.7%) in the plasma of patients with CAD. Of note, neither cholestanol nor the ratio of cholestanol-to-cholesterol was associated with CAD. Patients with concomitant CAD are characterized by increased deposition of plant sterols, but not cholestanol in aortic valve tissue. Moreover, patients with concomitant CAD were characterized by increased oxyphytosterol concentrations in plasma and aortic valve cusps.
Collapse
|
|
10 |
24 |
13
|
Menéndez-Carreño M, Knol D, Janssen HG. Development and validation of methodologies for the quantification of phytosterols and phytosterol oxidation products in cooked and baked food products. J Chromatogr A 2015; 1428:316-25. [PMID: 26435311 DOI: 10.1016/j.chroma.2015.09.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 01/26/2023]
Abstract
Chromatography-mass spectrometry (GC-MS) methodologies for the analysis of the main phytosterols (PS) and phytosterol oxidation products (POPs) present in 19 different foodstuffs cooked or baked using margarines with or without added plant sterols are presented. Various methods for fat extraction were evaluated to allow the GC-MS analysis of large numbers of prepared vegetable, fish and meat products, egg and bakery items in a practically feasible manner. The optimized methods resulted in a good sensitivity and allowed the analysis of both PS and POPs in the broad selection of foods at a wide range of concentrations. Calibration curves for both PS and POPs showed correlation coefficients (R(2)) better than 0.99. Detection limits were below 0.24mgkg(-1) for PS and 0.02mgkg(-1) for POPs, respectively. Average recovery data were between 81% and 105.1% for PS and between 65.5 and 121.8% for POPs. Good results were obtained for within- and between-day repeatability, with most values being below 10%. Entire sample servings were analyzed, avoiding problems with inhomogeneity and making the method an exact representation of the typical use of the food by the consumer.
Collapse
|
Journal Article |
10 |
23 |
14
|
Plasma fat-soluble vitamin and carotenoid concentrations after plant sterol and plant stanol consumption: a meta-analysis of randomized controlled trials. Eur J Nutr 2016; 56:909-923. [PMID: 27591863 PMCID: PMC5346416 DOI: 10.1007/s00394-016-1289-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022]
Abstract
Purpose Plant sterols and stanols interfere with intestinal cholesterol absorption, and it has been questioned whether absorption and plasma concentrations of fat-soluble vitamins and carotenoids are also affected. We conducted a meta-analysis to assess the effects of plant sterol and stanol consumption on plasma fat-soluble vitamin and carotenoid concentrations. Methods Forty-one randomized controlled trials involving 3306 subjects were included. Weighted absolute and relative changes of non-standardized and total cholesterol (TC)-standardized values (expressed as summary estimates and 95 % CIs) were calculated for three fat-soluble vitamins (α- and γ-tocopherol, retinol and vitamin D) and six carotenoids (β-carotene, α-carotene, lycopene, lutein, zeaxanthin and β-cryptoxanthin) using a random effects model. Heterogeneity was assessed using predefined subject and treatment characteristics. Results Average plant sterol or stanol intake was 2.5 g/d. Relative non-standardized and TC-standardized concentrations of β-carotene decreased by, respectively, −16.3 % (95 % CI −18.3; −14.3) and −10.1 % (−12.3; −8.0), α-carotene by −14.4 % (−17.5; 11.3) and −7.8 % (−11.3; −4.3), and lycopene by −12.3 % (−14.6; −10.1) and −6.3 % (−8.6; −4.0). Lutein concentrations decreased by −7.4 % (−10.1; −4.8), while TC-standardized concentrations were not changed. For zeaxanthin, these values were −12.9 % (−18.9; −6.8) and −7.7 % (−13.8; −1.7) and for β-cryptoxanthin −10.6 % (−14.3; −6.9) and −4.8 % (−8.7; −0.9). Non-standardized α-tocopherol concentrations decreased by −7.1 % (−8.0; −6.2) and γ-tocopherol by −6.9 % (−9.8; −3.9), while TC-standardized tocopherol concentrations were not changed. Non-standardized retinol and vitamin D concentrations were not affected. Results were not affected by baseline concentrations, dose, duration and type of plant sterols/stanols, except for significant effects of duration (≤4 vs. >4 weeks) on TC-standardized lutein concentrations (1.0 vs. −5.6 %) and type of plant sterol/stanol on TC-standardized β-carotene concentrations (−8.9 vs. −14.2 %). Conclusions Plant sterol and stanol intake lowers TC-standardized hydrocarbon carotenoid concentrations, differently affects TC-standardized oxygenated carotenoid concentrations, but does not affect TC-standardized tocopherol concentrations or absolute retinol and vitamin D concentrations. Observed concentrations remained within normal ranges. Electronic supplementary material The online version of this article (doi:10.1007/s00394-016-1289-7) contains supplementary material, which is available to authorized users.
Collapse
|
Review |
9 |
23 |
15
|
Blom WAM, Koppenol WP, Hiemstra H, Stojakovic T, Scharnagl H, Trautwein EA. A low-fat spread with added plant sterols and fish omega-3 fatty acids lowers serum triglyceride and LDL-cholesterol concentrations in individuals with modest hypercholesterolaemia and hypertriglyceridaemia. Eur J Nutr 2018; 58:1615-1624. [PMID: 29725824 PMCID: PMC6561982 DOI: 10.1007/s00394-018-1706-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
Abstract
Purpose The primary and secondary objectives were to investigate the triglyceride (TG) and LDL-cholesterol (LDL-C) lowering effects of a spread with added plant sterols (PS) and fish oil as compared to a placebo spread. Methods This study had a randomized, double-blind, placebo-controlled, parallel group design with two intervention arms. Following a 2-week placebo run-in period, 260 healthy individuals with modestly elevated blood TG (≥ 1.4 mmol/L) and LDL-C (≥ 3.4 mmol/L) concentrations consumed either the placebo or intervention spread for 4 weeks. The intervention spread contained 2.0 g/day PS and 1.0 g/day eicosapentaenoic acid (EPA) + docosahexanoic acid (DHA) from fish oil. Fasting serum lipids and apolipoproteins (Apo) (exploratory) were measured at the end of the run-in and intervention phases. Results Four-week consumption of the intervention spread resulted in significantly lower TG (− 10.6%, 95% CI − 16.0 to − 4.9%; P < 0.001) and LDL-C concentrations (− 5.2%; 95% CI − 7.8 to − 2.4%) as compared to placebo. Total cholesterol (− 3.9%; 95% CI − 6.1 to − 1.5%), non-HDL-C (− 5.4%; 95% CI − 8.1 to − 2.7%), remnant-cholesterol (− 8.1%; 95% CI − 3.4 to − 12.5%), ApoAII (− 2.9%; 95% CI − 5.5 to − 0.2%), ApoCIII (− 7.7%; 95% CI − 12.1 to − 3.1%) and ApoB (− 3.2%; 95% CI − 5.9 to − 0.4%) concentrations were also significantly lower, as compared to placebo. No significant treatment effects were found for HDL-cholesterol, ApoAI, ApoCII, Apo E or ApoB/ApoAI. Conclusions Four-week consumption of the intervention spread led to significant and clinically relevant decreases in serum TG, LDL-C and other blood lipid concentrations. The study was registered at clinicaltrials.gov (NCT 02728583). Electronic supplementary material The online version of this article (10.1007/s00394-018-1706-1) contains supplementary material, which is available to authorized users.
Collapse
|
Randomized Controlled Trial |
7 |
22 |
16
|
Baumgartner S, Mensink RP, Konings M, Schött HF, Friedrichs S, Husche C, Lütjohann D, Plat J. Postprandial plasma oxyphytosterol concentrations after consumption of plant sterol or stanol enriched mixed meals in healthy subjects. Steroids 2015; 99:281-6. [PMID: 25656784 DOI: 10.1016/j.steroids.2015.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/20/2022]
Abstract
Epidemiological studies have reported inconsistent results on the relationship between increased plant sterol concentrations with cardiovascular risk, which might be related to the formation of oxyphytosterols (plant sterol oxidation products) from plant sterols. However, determinants of oxyphytosterol formation and metabolism are largely unknown. It is known, however, that serum plant sterol concentrations increase after daily consumption of plant sterol enriched products, while concentrations decrease after plant stanol consumption. Still, we have earlier reported that fasting oxyphytosterol concentrations did not increase after consuming a plant sterol- or a plant stanol enriched margarine (3.0g/d of plant sterols or stanols) for 4weeks. Since humans are in a non-fasting state for most part of the day, we have now investigated effects on oxyphytosterol concentrations during the postprandial state. For this, subjects consumed a shake (50g of fat, 12g of protein, 67g of carbohydrates), containing no, or 3.0g of plant sterols or plant stanols. Blood samples were taken up to 8h and after 4h subjects received a second shake (without plant sterols or plant stanols). Serum oxyphytosterol concentrations were determined in BHT-enriched EDTA plasma via GC-MS/MS. 7β-OH-campesterol and 7β-OH-sitosterol concentrations were significantly higher after consumption of a mixed meal enriched with plant sterol esters compared to the control and plant stanol ester meal. These increases were seen only after consumption of the second shake, illustrative for a second meal effect. Non-oxidized campesterol and sitosterol concentrations also increased after plant sterol consumption, in parallel with 7β-OH concentrations and again only after the second meal. Apparently, plant sterols and oxyphytosterols follow the same second meal effect as described for dietary cholesterol. However, the question remains whether the increase in oxyphytosterols in the postprandial phase is due to absorption or endogenous formation.
Collapse
|
Clinical Trial |
10 |
22 |
17
|
Ho XL, Liu JJH, Loke WM. Plant sterol-enriched soy milk consumption modulates 5-lipoxygenase, 12-lipoxygenase, and myeloperoxidase activities in healthy adults - a randomized-controlled trial. Free Radic Res 2016; 50:1396-1407. [PMID: 27776459 DOI: 10.1080/10715762.2016.1252839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A randomized, double blind, placebo-controlled and crossover study was conducted to simultaneously measure the effects, after 3-h and 4-week daily exposure to plant sterols-enriched food product, on inflammation, oxidative status, 5-lipoxygenase, 12-lipoxygenase, and myeloperoxidase activities in healthy adults. Eighteen healthy participants (67% female, 35.3 (mean) ± 9.5 (SD) years, mean body mass index 22.8 kg m-2) received two soy milk (20g) treatments daily: placebo and one containing 2.0 g free plant sterols equivalent of their palmitates (β-sitosterol, 55%; campesterol, 29%; stigmasterol, 23%). F2-isoprostanes, leukotriene B4, sitosterol, campesterol, and stigmasterol concentrations were measured in the blood plasma and urine, using stable isotope-labeled gas chromatography-mass spectrometry. High-sensitivity c-reactive protein, tumor necrosis factor-α, and lipoxin A4 concentrations in blood serum were measured using commercially available enzyme immunoassays. Myeloperoxidase activity, serum lipid hydroperoxides, plasma and urinary F2-isoprostanes, plasma and urinary leukotriene B4, and plasma high-sensitivity c-reactive protein concentrations were significantly reduced, while circulating lipoxin A4 concentrations were significantly elevated after 4-week plant sterols treatment. Plant sterols treatment decreased plasma leukotriene B4 and increased plasma lipoxin A4 concentrations acutely. Total plant sterols, β-sitosterol, campesterol, and stigmasterol concentrations were significantly elevated after 4-week treatments compared with the pre-treatment concentrations. Our results suggest that dietary plant sterols, in the combination used, can alleviate lipid peroxidation and inflammatory events in vivo. These effects are possibly exerted via the modulation of myeloperoxidase, 5-lipoxygenase, and 12-lipoxygenase activities.
Collapse
|
Randomized Controlled Trial |
9 |
19 |
18
|
Rysz J, Franczyk B, Olszewski R, Banach M, Gluba-Brzozka A. The Use of Plant Sterols and Stanols as Lipid-Lowering Agents in Cardiovascular Disease. Curr Pharm Des 2018; 23:2488-2495. [PMID: 28302025 DOI: 10.2174/1381612823666170316112344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/09/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of premature atherosclerosis and cardiovascular disease (CVD) is constantly increasing worldwide. It has been proved that LDL-cholesterol (LDL-C) plays causal role in the development of coronary atherosclerosis. The fact that atherosclerosis is a chronic and progressive disease which onsets during the first three decades of life bores questions what to do to maintain LDL-C at low levels throughout life and thus to delay and/or prevent the progress this disease. Currently, most of public health expenses are spared on treatment, but not on prophylaxis. METHODS This is a review article summarizing novel reports concerning the efficacy of sterols/stanols as lipidlowering agents, assessing their influence on cardiovascular risk and safety. RESULTS It has been suggested that sterols and stanols are effective in the lowering of low-density cholesterol levels and diminishing cardiovascular risk. However, the results of other studies suggest that phytosterols may not exert positive effects during atherogenesis. Firstly, patients with phytosterolaemia (genetic disease in which high plant sterol plasma concentrations are observed) develop malignant premature atherosclerosis. Moreover, several epidemiological studies demonstrated the association between upper normal plasma concentrations of plant sterols and increased risk of cardiovascular events. Finally, the supplementation with plant stanols and plant sterols may be not beneficial due to their incorporation in various tissues and potentially resulting in adverse effects. CONCLUSION Despite the worldwide promotion of sterols as health improving supplements, it seems that in some people responding with relatively high phytosterol serum levels after its consumption such additives may turn out to be as good as it has been believed.
Collapse
|
Review |
7 |
18 |
19
|
Ras RT, Koppenol WP, Garczarek U, Otten-Hofman A, Fuchs D, Wagner F, Trautwein EA. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism. Nutr Metab Cardiovasc Dis 2016; 26:302-309. [PMID: 26806045 DOI: 10.1016/j.numecd.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. METHODS AND RESULTS The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). CONCLUSIONS Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178).
Collapse
|
Randomized Controlled Trial |
9 |
17 |
20
|
Scolaro B, Nogueira MS, Paiva A, Bertolami A, Barroso LP, Vaisar T, Heffron SP, Fisher EA, Castro IA. Statin dose reduction with complementary diet therapy: A pilot study of personalized medicine. Mol Metab 2018; 11:137-144. [PMID: 29503145 PMCID: PMC6001350 DOI: 10.1016/j.molmet.2018.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Statin intolerance, whether real or perceived, is a growing issue in clinical practice. Our aim was to evaluate the effects of reduced-dose statin therapy complemented with nutraceuticals. METHODS First phase: Initially, 53 type 2 diabetic statin-treated patients received a supplementation with fish oil (1.7 g EPA + DHA/day), chocolate containing plant sterols (2.2 g/day), and green tea (two sachets/day) for 6 weeks. Second phase: "Good responders" to supplementation were identified after multivariate analysis (n = 10), and recruited for a pilot protocol of statin dose reduction. "Good responders" were then provided with supplementation for 12 weeks: standard statin therapy was kept during the first 6 weeks and reduced by 50% from weeks 6-12. RESULTS First phase: After 6 weeks of supplementation, plasma LDL-C (-13.7% ± 3.7, P = .002) and C-reactive protein (-35.5% ± 5.9, P = .03) were reduced. Analysis of lathosterol and campesterol in plasma suggested that intensity of LDL-C reduction was influenced by cholesterol absorption rate rather than its synthesis. Second phase: no difference was observed for plasma lipids, inflammation, cholesterol efflux capacity, or HDL particles after statin dose reduction when compared to standard therapy. CONCLUSIONS Although limited by the small sample size, our study demonstrates the potential for a new therapeutic approach combining lower statin dose and specific dietary compounds. Further studies should elucidate "good responders" profile as a tool for personalized medicine. This may be particularly helpful in the many patients with or at risk for CVD who cannot tolerate high dose statin therapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT02732223.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
16 |
21
|
Shuang R, Rui X, Wenfang L. Phytosterols and Dementia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:347-354. [PMID: 27663717 DOI: 10.1007/s11130-016-0574-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As the aging of the world's population is becoming increasingly serious, dementia-related diseases have become a hot topic in public health research. In recent years, human epidemiological studies have focused on lipid metabolism disorders and dementia. The efficacy of phytosterol intake as a cholesterol-lowering agent has been demonstrated. Phytosterols directly serve as ligands of the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), activating Sirtuin 1 (SIRT-1), which are involved in the regulation of lipid metabolism and the pathogenesis of dementia. Moreover, phytosterols mediate cell and membrane cholesterol efflux or beta amyloid (Aβ) metabolism, which have preventative and therapeutic effects on dementia. Additionally, incorporation of plant sterols in lipid rafts can effectively reduce dietary fat and alter the dietary composition of fiber, fat and cholesterol to regulate appetite and calories. Overall, the objectives of this review are to explore whether phytosterols are a potentially effective target for the prevention of dementia and to discuss a possible molecular mechanism by which phytosterols play a role in the pathogenesis of dementia via the PPARs-SIRT-1 pathway.
Collapse
|
Review |
9 |
15 |
22
|
Wang JF, Zhang HM, Li YY, Xia S, Wei Y, Yang L, Wang D, Ye JJ, Li HX, Yuan J, Pan RR. A combination of omega-3 and plant sterols regulate glucose and lipid metabolism in individuals with impaired glucose regulation: a randomized and controlled clinical trial. Lipids Health Dis 2019; 18:106. [PMID: 31043161 PMCID: PMC6495649 DOI: 10.1186/s12944-019-1048-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
Background Lipid metabolism imbalance has been recognized as one of the major drivers of impaired glucose metabolism in the context of type 2 diabetes mellitus (T2DM), the rates of which are steadily increasing worldwide. Impaired glucose regulation (IGR) plays a vital role in the prevention and treatment of T2DM. The goal of this study was to further clarify whether the combination of plant sterols (PS) and omega-3 fatty acids yields any synergistic effect that enhances the prevention and treatment of IGR. Methods A total of 200 participants were randomized to receive PS and omega-3 fatty acids (n = 50), PS alone (n = 50), omega-3 fatty acids alone (n = 50), or placebo soy bean powder plus placebo capsules (n = 50) for 12 weeks. Patient characteristics including body composition, blood pressure, glucose metabolism (Fasting plasma glucose (FPG), fasting insulin (FINS), glycosylated hemoglobin (HbA1c), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR)), lipid metabolism (TG, TC, HDL-C, LDL-C) and inflammatory factors (Hs-CRP, IL-6) were all monitored in these IGR individuals. Results Compared to the placebo group, the group receiving the combined intervention exhibited significantly decreased TG, HDL-C, FBG, HOMA-IR and HbA1c. Omega-3 fatty acids alone were associated with significant reductions in waistline, TG, FBG, HOMA-IR and Hs-CRP. PS alone was only associated with decreased TG and Hs-CRP. No interventions produced significant changes in body weight, BMI, blood pressure, FINS, body fat percentage, visceral fat rating, TC, LDL-C or IL-6. Conclusions In summary, this study has demonstrated for the first time that PS, omega-3 fatty acids or the combination thereof significantly improved inflammation, insulin resistance, as well as glucose and lipid metabolism in IGR individuals. These findings may provide a scientific basis for the development of nutritional products incorporating PS and omega-3 fatty acids, and also for the development of nutritional supplement strategies aimed at preventing the development of disease in the IGR population.
Collapse
|
Randomized Controlled Trial |
6 |
13 |
23
|
Schött HF, Husche C, Friedrichs S, Miller CM, McCarthy FO, Laufs U, Plat J, Weingärtner O, Lütjohann D. 7β-Hydroxysitosterol crosses the blood-brain barrier more favored than its substrate sitosterol in ApoE-/- mice. Steroids 2015; 99:178-82. [PMID: 25795151 DOI: 10.1016/j.steroids.2015.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023]
Abstract
In this study, we compare the distribution of intraperitoneally injected sitosterol, 7β-hydroxysitosterol or vehicle only (control) for 28days in male ApoE-/- mice. Furthermore we examine its impact on surrogate markers of cholesterol biosynthesis and sterol absorption rate in plasma, brain and liver tissues from these animals. Injection of sitosterol revealed a 32.1% (P=0.013) lower plasma total cholesterol compared with control. Cholesterol corrected plasma and absolute brain and liver levels of sitosterol are 4.1-, 1.7-, and 7.2-fold (P<0.001 for all) higher, respectively. This is in accordance with a reduced plasma campesterol to cholesterol ratio (-16.2%; P=0.018) together with a 24.1% (P=0.047) lower concentration of hepatic lathosterol. After injection of 7β-hydroxysitosterol the concentrations of 7β-hydroxysitosterol in plasma, brain and liver are 21.0-, 65.8- and 42.7-fold (P<0.001 for all) higher, respectively, compared with control. Injection of 7β-hydroxysitosterol revealed significantly lower plasma cholesterol corrected cholestanol and campesterol (-44.2%; P=0.001 and -24.5; P=0.004) as well as lower absolute liver cholestanol levels (-31.9%; P<0.001) compared with control. Intraperitoneally injected sitosterol and 7β-hydroxysitosterol differently influence cholesterol metabolism in plasma and liver. We conclude that the polar 7β-hydroxysitosterol compound can pass the blood brain barrier with higher efficacy than its substrate, sitosterol. Though present in higher amounts in the brain, both, sitosterol and 7β-hydroxysitosterol do not influence cholesterol metabolism in the brain as proven by our surrogate markers.
Collapse
|
|
10 |
13 |
24
|
Otto S, Lütjohann D, Kerksiek A, Friedrichs S, Christian Schulze P, Möbius-Winkler S, Pörner TC, Weingärtner O. Increased cholesterol absorption is associated with In-stent-restenosis after stent implantation for stable coronary artery disease. Steroids 2022; 187:109079. [PMID: 35835203 DOI: 10.1016/j.steroids.2022.109079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Blood cholesterol levels are regulated by competing mechanisms of cholesterol synthesis, absorption and excretion. Plant sterols are natural constituents of plants, are not synthesized in humans, and serve as markers for cholesterol absorption. Ezetimibe lowers the intestinal absorption of cholesterol and plant sterols. We analyzed the associations of differences in cholesterol metabolism, in particular increased cholesterol absorption, and the occurrence of in-stent restenosis (ISR) in patients with stable coronary artery disease. METHODS Elective stent implantation of de novo stenosis was conducted in 59 patients (74.6 % males, 67.2 ± 9.6 years). Cholesterol and non-cholesterol sterols were quantified in serum samples by gas chromatography or mass spectrometry. ISR was assessed by optical coherence tomography (OCT) and quantitative angiography (QCA) after six months. RESULTS Markers for cholesterol absorption (e.g. campesterol-to-cholesterol) were positively associated with ISR measured by QCA (%diameter stenosis, late lumen loss) and OCT (proliferation volume, %area stenosis), whereas markers for cholesterol synthesis (e.g. lathosterol-to-cholesterol) were negatively associated with ISR (%area stenosis: r = -0.271, p = 0.043). There was no association between ISR and total cholesterol, LDL, HDL, triglycerides. Markers for cholesterol absorption (e.g. campesterol-to-cholesterol) were significantly lower in ezetimibe-treated patients compared to patients on a statin only (1.29 ± 0.69 vs. 2.22 ± 1.23; p = 0.007). Combined lipid-lowering with ezetimibe plus statin reduced ISR compared to statin only (13.7 ± 10.4 vs. 22.5 ± 12.1 %diameter stenosis, p = 0.015). CONCLUSIONS Differences in cholesterol metabolism, more specifically increased cholesterol absorption, are associated with ISR.
Collapse
|
|
3 |
13 |
25
|
de Mello VDF, Lindström J, Eriksson JG, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Pihlajamäki J, Tuomilehto J, Uusitupa M. Markers of cholesterol metabolism as biomarkers in predicting diabetes in the Finnish Diabetes Prevention Study. Nutr Metab Cardiovasc Dis 2015; 25:635-642. [PMID: 25921846 DOI: 10.1016/j.numecd.2015.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS We examined the effect of serum markers of cholesterol synthesis and absorption on the incidence of type 2 diabetes (T2D) in the randomized Finnish Diabetes Prevention Study (DPS). We also explored a possible interaction of ABCG8 rs4299376 on sterol levels and lifestyle intervention. METHODS AND RESULTS We conducted a prospective cohort study including overweight, middle-aged people with impaired glucose tolerance at baseline who participated in the randomized DPS. The primary outcome of the DPS was the diagnosis of T2D based on repeated oral glucose tolerance tests (OGTTs). After active intervention (median of four years, 1994-2001), non-T2D participants were further followed until T2D diagnosis, dropout or the end of 2009. Of these, 340 participants who had β-sitosterol, campesterol, lathosterol and desmosterol measured by gas chromatography-mass spectrometry during the active four-year follow-up and who were not using cholesterol lowering medications were analysed. Surrogate indexes of insulin sensitivity (IS) and secretion were calculated from an OGTT. In adjusted models, plant sterols during the four-year follow-up were associated with lower T2D incidence during the extended eight-year follow-up (HR for 1-SD change in β-sitosterol and campesterol: 0.76 [0.63-0.92], and 0.81 [0.67-0.99], respectively). Lathosterol levels were associated with higher T2D incidence (HR: 1.35 [1.13-1.62]). These associations, though, were not independent of IS. There was an interaction between rs4299376 and study group on β-sitosterol (p = 0.001) and campesterol (p = 0.004) levels during the follow-up. CONCLUSIONS Markers of low absorption and high synthesis of cholesterol were associated with the risk of developing T2D, mostly ascribed to IS.
Collapse
|
Multicenter Study |
10 |
12 |