1
|
Neufurth M, Wang X, Schröder HC, Feng Q, Diehl-Seifert B, Ziebart T, Steffen R, Wang S, Müller WEG. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials 2014; 35:8810-8819. [PMID: 25047630 DOI: 10.1016/j.biomaterials.2014.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
Abstract
Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca(2+)-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca(2+)-complex, the cells proliferate with a generation time of approximately 47-55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence of the polymer. The reduced Young's modulus for the alginate/gelatin hydrogel is approximately 13-14 kPa, and this value drops to approximately 0.5 kPa after incubation of the cell containing scaffolds for 5 d. In the presence of 100 μm polyP·Ca(2+)-complex, the reduced Young's modulus increases to about 22 kPa. The hardness of the polyP·Ca(2+)-complex containing hydrogel remains essentially constant if cells are absent in the matrix, but it drops to 3.2 kPa after a 5 d incubation period in the presence of SaOS-2 cells, indicating that polyP·Ca(2+)-complex becomes metabolized, degraded, by the cells. The alginate/gelatine-agarose system with polyP·Ca(2+)-complex cause a significant increase in the mineralization of the cells. SEM analyses revealed that the morphology of the mineral nodules formed on the surface of the cells embedded in the alginate/gelatin hydrogel do not significantly differ from the nodules on cells growing in monolayer cultures. The newly developed technique, using cells encapsulated into an alginate/gelatin hydrogel and a secondary layer containing the morphogenetically active, growth promoting polymer polyP·Ca(2+)-complex opens new possibilities for the application of 3D bioprinting in bone tissue engineering.
Collapse
|
|
11 |
119 |
2
|
Neufurth M, Wang X, Wang S, Steffen R, Ackermann M, Haep ND, Schröder HC, Müller WEG. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium- polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 2017; 64:377-388. [PMID: 28966095 DOI: 10.1016/j.actbio.2017.09.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/18/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023]
Abstract
UNLABELLED Here we describe the formulation of a morphogenetically active bio-ink consisting of amorphous microparticles (MP) prepared from Ca2+ and the physiological inorganic polymer, polyphosphate (polyP). Those MP had been fortified by mixing with poly-ε-caprolactone (PCL) to allow 3D-bioprinting. The resulting granular PCL/Ca-polyP-MP hybrid material, liquefied by short-time heating to 100 °C, was used for the 3D-printing of tissue-like scaffolds formed by strands with a thickness of 400 µm and a stacked architecture leaving ≈0.5 mm2-sized open holes enabling cell migration. The printed composite scaffold turned out to combine suitable biomechanical properties (Young's modulus of 1.60 ± 0.1 GPa; Martens hardness of 153 ± 28 MPa), matching those of cortical and trabecular bone, with morphogenetic activity. This scaffold was capable of attracting and promoting the growth of human bone-related SaOS-2 cells as demonstrated by staining for cell viability (Calcein AM), cell density (DRAQ5) and SEM studies. Furthermore, the hybrid material was demonstrated to upregulate the steady-state-expression of the cell migration-inducing chemokine SDF-1α. EDX analysis and FTIR measurements revealed the presence of hydroxyapatite in the mineral deposits formed on the scaffold surface. Based on the results we conclude that granular PCL/Ca-polyP-MP hybrid material is suitable for the fabrication of bioprintable scaffold which comprises not only biomechanical stability but also morphogenetic potential. STATEMENT OF SIGNIFICANCE In present-day regenerative engineering efforts, biomaterial- and cell-based strategies are proposed that meet the required functional and spatial characteristics and variations, especially in the transition regions between soft (cartilage, tendon or ligament) and hard (bone) tissues. In a biomimetic approach we succeeded to fabricate amorphous Ca-polyP nanoparticles/microparticles which are highly biocompatible. Together with polycaprolactone (PCL), polyP can be bio-printed. This hybrid material attracts the cells, as documented optically as well as by a gene-expression studies. Since PCL is already a FDA-approved organic and inert polymer and polyP a physiological biologically active component this new bio-hybrid material has the potential to restore physiological functions, including bone remodelling and regeneration if used as implant.
Collapse
|
|
8 |
78 |
3
|
Müller WEG, Tolba E, Feng Q, Schröder HC, Markl JS, Kokkinopoulou M, Wang X. Amorphous Ca²⁺ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells. J Cell Sci 2015; 128:2202-2207. [PMID: 25908856 DOI: 10.1242/jcs.170605] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/16/2015] [Indexed: 01/08/2023] Open
Abstract
Polyphosphate (polyP) is a physiologically occurring polyanion that is synthesized especially in bone-forming osteoblast cells and blood platelets. We used amorphous polyP nanoparticles, complexed with Ca(2+), that have a globular size of ∼100 nm. Because polyP comprises inorganic orthophosphate units that are linked together through high-energy phosphoanhydride bonds, we questioned whether the observed morphogenetic effect, elicited by polyP, is correlated with the energy-generating machinery within the cells. We show that exposure of SaOS-2 osteoblast-like cells to polyP results in a strong accumulation of mitochondria and a parallel translocation of the polyP-degrading enzyme alkaline phosphatase to the cell surface. If SaOS-2 cells are activated by the mineralization activation cocktail (comprising β-glycerophosphate, ascorbic acid and dexamethasone) and additionally incubated with polyP, a tenfold intracellular increase of the ATP level occurs. Even more, in those cells, an intensified release of ATP into the extracellular space is also seen. We propose and conclude that polyP acts as metabolic fuel after the hydrolytic cleavage of the phosphoanhydride linkages, which contributes to hydroxyapatite formation on the plasma membranes of osteoblasts.
Collapse
|
|
10 |
65 |
4
|
Lander N, Ulrich PN, Docampo R. Trypanosoma brucei vacuolar transporter chaperone 4 (TbVtc4) is an acidocalcisome polyphosphate kinase required for in vivo infection. J Biol Chem 2013; 288:34205-34216. [PMID: 24114837 DOI: 10.1074/jbc.m113.518993] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polyphosphate (polyP) is an anionic polymer of orthophosphate groups linked by high energy bonds that typically accumulates in acidic, calcium-rich organelles known as acidocalcisomes. PolyP synthesis in eukaryotes was unclear until it was demonstrated that the protein named Vtc4p (vacuolar transporter chaperone 4) is a long chain polyP kinase that localizes to the yeast vacuole. Here, we report that TbVtc4 (Vtc4 ortholog of Trypanosoma brucei) encodes, in contrast, a short chain polyP kinase that localizes to acidocalcisomes. The subcellular localization of TbVtc4 was demonstrated by fluorescence and electron microscopy of cell lines expressing TbVtc4 in its endogenous locus fused to an epitope tag and by purified polyclonal antibodies against TbVtc4. Recombinant TbVtc4 was expressed in bacteria, and polyP kinase activity was assayed in vitro. The in vitro growth of conditional knock-out bloodstream form trypanosomes (TbVtc4-KO) was significantly affected relative to the parental cell line. This mutant had reduced polyP kinase activity and short chain polyP content and was considerably less virulent in mice. The wild-type phenotype was recovered when an ectopic copy of the TbVtc4 gene was expressed in the presence of doxycycline. The mutant also exhibited a defect in volume recovery under osmotic stress conditions in vitro, underscoring the relevance of polyP in osmoregulation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
63 |
5
|
Travers RJ, Smith SA, Morrissey JH. Polyphosphate, platelets, and coagulation. Int J Lab Hematol 2016; 37 Suppl 1:31-5. [PMID: 25976958 DOI: 10.1111/ijlh.12349] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 01/21/2023]
Abstract
While we have understood the basic outline of the enzymes and reactions that make up the traditional blood coagulation cascade for many years, recently our appreciation of the complexity of these interactions has greatly increased. This has resulted in unofficial 'revisions' of the coagulation cascade to include new amplification pathways and connections between the standard coagulation cascade enzymes, as well as the identification of extensive connections between the immune system and the coagulation cascade. The discovery that polyphosphate is stored in platelet dense granules and is secreted during platelet activation has resulted in a recent burst of interest in the role of this ancient molecule in human biology. Here we review the increasingly complex role of platelet polyphosphate in hemostasis, thrombosis, and inflammation that has been uncovered in recent years, as well as novel therapeutics centered on modulating polyphosphate's roles in coagulation and inflammation.
Collapse
|
Review |
9 |
48 |
6
|
Choi SH, Smith SA, Morrissey JH. Polyphosphate accelerates factor V activation by factor XIa. Thromb Haemost 2014; 113:599-604. [PMID: 25338662 DOI: 10.1160/th14-06-0515] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/16/2014] [Indexed: 01/14/2023]
Abstract
Factor Va enhances the rate of prothrombin activation by factor Xa by four to five orders of magnitude. Production of initiating levels of factor Va from its precursor, factor V, is a critical event early in haemostasis, as factor V exhibits negligible cofactor activity. While thrombin is the most potent physiological back-activator of factor V, the first prothrombinase complexes require a source of factor Va prior to thrombin generation. A recent study by Whelihan et al. (J Thromb Haemost 2010; 8:1532-1539) identified factor XIa as a candidate for the initial thrombin-independent activation of factor V, although this reaction was slow and required relatively high concentrations of factors V and XIa. Activated platelets secrete polyphosphate, which we previously showed to be potently procoagulant. We now report that polyphosphate greatly accelerates factor V activation by factor XIa, and that this is supported by polyphosphate polymers of the size secreted by activated human platelets. This finding provides additional evidence that factor XIa-mediated generation of factor Va may contribute to the initiation of haemostasis.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
48 |
7
|
Neufurth M, Wang X, Tolba E, Lieberwirth I, Wang S, Schröder HC, Müller WEG. The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochem Pharmacol 2020; 182:114215. [PMID: 32905794 PMCID: PMC7474874 DOI: 10.1016/j.bcp.2020.114215] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Inorganic polyphosphate (polyP) is a morphogenetically active and metabolic energy-delivering physiological polymer that is released from blood platelets. Here, we show that polyP efficiently inhibits the binding of the envelope spike (S)-protein of the coronavirus SARS-CoV-2, the causative agent of COVID-19, to its host cell receptor ACE2 (angiotensin-converting enzyme 2). To stabilize polyP against the polyP-degrading alkaline phosphatase, the soluble polymer was encapsulated in silica/polyP nanoparticles. Applying a binding assay, soluble Na-polyP (sizes of 40 Pi and of 3 Pi units) as well as silica-nanoparticle-associated polyP significantly inhibit the interaction of the S-protein with ACE2 at a concentration of 1 µg/mL, close to the level present in blood. This inhibition is attributed to an interaction of polyP with a basic amino acid stretch on the surface of the receptor binding domain of S-protein. PolyP retains its activity in a flushing solution, opening a new strategy for the prevention and treatment of SARS-CoV-2 infection in the oropharyngeal cavity. The data suggest that supplementation of polyP might contribute to a strengthening of the human innate immunity system in compromised, thrombocytopenic COVID-19 patients.
Collapse
|
research-article |
5 |
46 |
8
|
Wan L, Chen X, Deng Q, Yang L, Li X, Zhang J, Song C, Zhou Y, Cao X. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession. HARMFUL ALGAE 2019; 84:46-55. [PMID: 31128812 DOI: 10.1016/j.hal.2019.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Dolichospermum (formerly Anabaena) and Microcystis cause harmful cyanobacterial blooms in freshwater ecosystems worldwide. Input reduction of both nitrogen (N) and phosphorus (P) are commonly recognized as basic ways of controlling blooms, but little is known about the roles of nutrients and their using strategy among cyanobacteria in triggering the succession of diazotrophic to non-diazotrophic cyanobacteria. In this study, we investigated in situ responses of cyanobactria to ambient P status during the transition from Dolichospermum flos-aquae to Microcystis spp. in Lake Taihu and Lake Chaohu. While dominant in phytoplankton community, D. flos-aquae experienced P deficiency as evidenced by qualitative detection of extracellular phosphatase via enzyme labeled fluorescence (ELF). The percentage of ELF-labelled D. flos-aquae cells was 33% when it dominated the phytoplankton community, and was 78% when it co-dominated with Microcystis spp., indicating an increase in P deficiency. Meanwhile, no ELF-labelled Microcystis cells were observed while polyphosphate body (PPB) were present, suggesting that Microcystis spp. were not P deficient. Additionally, the percentages of Microcystis cells containing PPB showed an inverted "U-shaped" relationship with concentrations on soluble reactive phosphorus (SRP). To validate the field observation, a laboratory study of the monocultures of the dominant cyanobacteria was conducted. Extracellular alkaline phosphatase activity (APA) and PPB accumulation were regulated by P availability in monocultures of D. flos-aquae. Interestingly, no cell bound extracellular phosphatase was found on Microcystis aeruginasa even in the culture without P supply. Consistently, the expressions of phosphatase encoding gene phoX showed no differences among the treatments. The way in which PPB accumulation occurred in Microcystis spp. in response to P availability in the cultures was similar to that observed in the field, demonstrating a strategy of energy conservation over P accumulation. The competitive advantage of Microcystis spp. was displayed at low P concentrations: where it could rapidly uptake and store inorganic P, which also increased the P deficiency of the coexisting phytoplankton species. Responses of P-transport gene pstS confirmed this hypothesis. The physiological and molecular mechanisms mentioned above enable Microcystis to survive and proliferate in environment with low available P supply more efficiently. In conclusion, different cyanobacterial species have distinct ways of responding to P availability, suggesting that the control of cyanobacterial blooms by targeted nutrient reduction is largely dependent upon the dominant species. P reduction is more effective in controlling diazotrophic cyanobacteria than non-diazotrophic cyanobacteria.
Collapse
|
|
6 |
46 |
9
|
Cosmidis J, Benzerara K, Nassif N, Tyliszczak T, Bourdelle F. Characterization of Ca-phosphate biological materials by scanning transmission X-ray microscopy (STXM) at the Ca L2,3-, P L2,3- and C K-edges. Acta Biomater 2015; 12:260-269. [PMID: 25305511 DOI: 10.1016/j.actbio.2014.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/19/2014] [Accepted: 10/02/2014] [Indexed: 02/05/2023]
Abstract
Several naturally occurring biological materials, including bones and teeth, pathological calcifications, microbial mineral deposits formed in marine phosphogenesis areas, as well as bio-inspired cements used for bone and tooth repair are composed of Ca-phosphates. These materials are usually identified and characterized using bulk-scale analytical tools such as X-ray diffraction, Fourier transform infrared spectroscopy or nuclear magnetic resonance. However, there is a need for imaging techniques that provide information on the spatial distribution and chemical composition of the Ca-phosphate phases at the micrometer- and nanometer scales. Such analyses provide insightful indications on how the materials may have formed, e.g. through transient precursor phases that eventually remain spatially separated from the mature phase. Here, we present scanning transmission X-ray microscopy (STXM) analyses of Ca-phosphate reference compounds, showing the feasibility of fingerprinting Ca-phosphate-based materials. We calibrate methods to determine important parameters of Ca-phosphate phases, such as their Ca/P ratio and carbonate content at the ∼25nm scale, using X-ray absorption near-edge spectra at the C K-, Ca L2,3- and P L2,3-edges. As an illustrative case study, we also perform STXM analyses on hydroxyapatite precipitates formed in a dense fibrillar collagen matrix. This study paves the way for future research on Ca-phosphate biomineralization processes down to the scale of a few tens of nanometers.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
45 |
10
|
Hassanian SM, Ardeshirylajimi A, Dinarvand P, Rezaie AR. Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β-catenin signaling in endothelial cells. J Thromb Haemost 2016; 14:2261-2273. [PMID: 27546592 PMCID: PMC5116009 DOI: 10.1111/jth.13477] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/09/2016] [Indexed: 02/04/2023]
Abstract
Essentials Polyphosphate (polyP) activates mTOR but its role in Wnt/β-catenin signaling is not known. PolyP-mediated cyclin D1 expression (β-catenin target gene) was monitored in endothelial cells. PolyP and boiled platelet-releasates induced the expression of cyclin D1 by similar mechanisms. PolyP establishes crosstalk between mTOR and Wnt/β-catenin signaling in endothelial cells. SUMMARY Background Inorganic polyphosphate (polyP) elicits intracellular signaling responses in endothelial cells through activation of mTOR complexes 1 and 2. Glycogen synthase kinase 3 (GSK-3) is known to be a negative regulator of mTOR and Wnt/β-catenin signaling pathways. Objective The objective of this study was to investigate the effect of polyP on the expression, degradation and subcellular localization of the Wnt/β-catenin target gene, cyclin D1, in endothelial cells. Methods Regulation of cyclin D1 expression, phosphorylation and subcellular localization by polyP or platelet releasates was monitored in the absence and presence of pharmacological inhibitors and/or siRNA for specific molecules of the upstream mTOR/Wnt/β-catenin signaling network by established methods. Results Both synthetic polyP and boiled-platelet releasates induced the phosphorylation-dependent inactivation of GSK-3, thereby increasing the expression and nuclear localization, but inhibiting the degradation of cyclin D1. Inhibitors of mTORC1 (PI3K, AKT, PLC, PKC), rapamycin and siRNA for raptor (mTORC1-specific component) and β-catenin, all inhibited polyP-mediated regulation of cyclin D1 expression, phosphorylation and subcellular localization in endothelial cells. The signaling effect of polyP was effectively inhibited by the recombinant extracellular domain of the receptor for advanced glycation end products (RAGE) and/or by the RAGE siRNA. Specific pharmacological inhibitors and siRNA knockdown of ERK1/2 and NF-κB pathways indicated that polyP-mediated cyclin D1 expression and nuclear localization are IKKɑ and ERK1/2 dependent, whereas its inhibitory effect on phosphorylation-dependent degradation of cyclin D1 is IKKβ-dependent. Conclusion We conclude that a RAGE-dependent polyP-mediated crosstalk between mTOR and the GSK-3/Wnt/β-catenin signaling network can modulate important physiological processes in endothelial cells.
Collapse
|
research-article |
9 |
44 |
11
|
Wang X, Schröder HC, Müller WEG. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications. Biotechnol J 2016; 11:11-30. [PMID: 26356505 DOI: 10.1002/biot.201500168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
Collapse
|
Review |
9 |
44 |
12
|
Li Y, Xue C, Quan W, Qin F, Wang Z, He Z, Zeng M, Chen J. Assessment the influence of salt and polyphosphate on protein oxidation and Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine formation in roasted beef patties. Meat Sci 2021; 177:108489. [PMID: 33714683 DOI: 10.1016/j.meatsci.2021.108489] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
The impact of NaCl and tripolyphosphate (TPP)/pyrophosphate (PP) on protein oxidation and Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) formation in roasted beef patties was investigated. The content of CML and CEL in patties treated with salts was approximately 1.1-1.7 and 1.2-3.2 times higher than that of the control samples, respectively. An increase in salt content caused higher oxidation of tryptophan and protein carbonylation with a decrease in Schiff bases (P < 0.05) and a slight decrease in lipid oxidation (P < 0.05). Significant correlations (P < 0.05) between CML, CEL, and protein oxidation measurements was found. The higher salts content, causing less cooking loss and higher moisture content, significantly correlated (P < 0.05) with CML, CEL content, and protein oxidation of the patties. The increase in CML and CEL content and protein oxidation in roasted patties with salts might be related to the pro-oxidation of salts, and also partly due to the temperature changes caused by the water-holding capacity of salts.
Collapse
|
Journal Article |
4 |
43 |
13
|
Yoo NG, Dogra S, Meinen BA, Tse E, Haefliger J, Southworth DR, Gray MJ, Dahl JU, Jakob U. Polyphosphate Stabilizes Protein Unfolding Intermediates as Soluble Amyloid-like Oligomers. J Mol Biol 2018; 430:4195-4208. [PMID: 30130556 DOI: 10.1016/j.jmb.2018.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/06/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023]
Abstract
Inorganic polyphosphate (polyP) constitutes one of the most conserved and ubiquitous molecules in biology. Recent work in bacteria demonstrated that polyP increases oxidative stress resistance by preventing stress-induced protein aggregation and promotes biofilm formation by stimulating functional amyloid formation. To gain insights into these two seemingly contradictory functions of polyP, we investigated the effects of polyP on the folding model lactate dehydrogenase. We discovered that the presence of polyP during the thermal unfolding process stabilizes folding intermediates of lactate dehydrogenase as soluble micro-β-aggregates with amyloid-like properties. Size and heterogeneity of the oligomers formed in this process were dependent on the polyP chain length, with longer chains forming smaller, more homogenous complexes. This ability of polyP to stabilize thermally unfolded proteins even upon exposure to extreme temperatures appears to contribute to the observed resistance of uropathogenic Escherichia coli toward severe heat shock treatment. These results suggest that the working mechanism of polyP is the same for both soluble and amyloidogenic proteins, with the ultimate outcome likely being determined by a combination of polyP chain length and the client protein itself. They help to explain how polyP can simultaneously function as general stress-protective chaperone and instigator of amyloidogenic processes in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
43 |
14
|
Müller WEG, Tolba E, Schröder HC, Diehl-Seifert B, Wang X. Retinol encapsulated into amorphous Ca(2+) polyphosphate nanospheres acts synergistically in MC3T3-E1 cells. Eur J Pharm Biopharm 2015; 93:214-223. [PMID: 25900862 DOI: 10.1016/j.ejpb.2015.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
Abstract
Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the expression of collagen type V gene, were significantly enhanced if retinol is added together with aCa-polyP-NP. This synergistic effect was especially pronounced for the expression of the collagen type III gene. We propose that the synergistic effect of the retinol/aCa-polyP-NS on cell growth and collagen type III expression is induced via two routes, first through cellular uptake of the 45 nm nanospheres by clathrin-mediated endocytosis and second through extracellular disintegration of the nanospheres resulting in the release of retinol which is then taken up into the cells after binding to the retinal binding protein receptor.
Collapse
|
|
10 |
37 |
15
|
Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. PROTOPLASMA 2017; 254:1323-1340. [PMID: 27677801 DOI: 10.1007/s00709-016-1024-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/08/2016] [Indexed: 05/22/2023]
Abstract
Vacuole is a multifunctional compartment central to a large number of functions (storage, catabolism, maintenance of the cell homeostasis) in oxygenic phototrophs including microalgae. Still, microalgal cell vacuole is much less studied than that of higher plants although knowledge of the vacuolar structure and function is essential for understanding physiology of nutrition and stress tolerance of microalgae. Here, we combined the advanced analytical and conventional transmission electron microscopy methods to obtain semi-quantitative, spatially resolved at the subcellular level information on elemental composition of the cell vacuoles in several free-living and symbiotic chlorophytes. We obtained a detailed record of the changes in cell and vacuolar ultrastructure in response to environmental stimuli under diverse conditions. We suggested that the vacuolar inclusions could be divided into responsible for storage of phosphorus (mainly in form of polyphosphate) and those accommodating non-protein nitrogen (presumably polyamine) reserves, respectively.The ultrastructural findings, together with the data on elemental composition of different cell compartments, allowed us to speculate on the role of the vacuolar membrane in the biosynthesis and sequestration of polyphosphate. We also describe the ultrastructural evidence of possible involvement of the tonoplast in the membrane lipid turnover and exchange of energy and metabolites between chloroplasts and mitochondria. These processes might play a significant role in acclimation in different stresses including nitrogen starvation and extremely high level of CO2 and might also be of importance for microalgal biotechnology. Advantages and limitations of application of analytical electron microscopy to biosamples such as microalgal cells are discussed.
Collapse
|
|
8 |
37 |
16
|
Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae. Acta Biomater 2014; 10:3899-910. [PMID: 24948547 DOI: 10.1016/j.actbio.2014.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/22/2022]
Abstract
Elasmobranchs (e.g. sharks and rays), like all fishes, grow continuously throughout life. Unlike other vertebrates, their skeletons are primarily cartilaginous, comprising a hyaline cartilage-like core, stiffened by a thin outer array of mineralized, abutting and interconnected tiles called tesserae. Tesserae bear active mineralization fronts at all margins and the tesseral layer is thin enough to section without decalcifying, making this a tractable but largely unexamined system for investigating controlled apatite mineralization, while also offering a potential analog for endochondral ossification. The chemical mechanism for tesserae mineralization has not been described, but has been previously attributed to spherical precursors, and alkaline phosphatase (ALP) activity. Here, we use a variety of techniques to elucidate the involvement of phosphorus-containing precursors in the formation of tesserae at their mineralization fronts. Using Raman spectroscopy, fluorescence microscopy and histological methods, we demonstrate that ALP activity is located with inorganic phosphate polymers (polyP) at the tessera-uncalcified cartilage interface, suggesting a potential mechanism for regulated mineralization: inorganic phosphate (Pi) can be cleaved from polyP by ALP, thus making Pi locally available for apatite biomineralization. The application of exogenous ALP to tissue cross-sections resulted in the disappearance of polyP and the appearance of Pi in uncalcified cartilage adjacent to mineralization fronts. We propose that elasmobranch skeletal cells control apatite biomineralization by biochemically controlling polyP and ALP production, placement and activity. Previous identification of polyP and ALP shown previously in mammalian calcifying cartilage supports the hypothesis that this mechanism may be a general regulating feature in the mineralization of vertebrate skeletons.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
35 |
17
|
Müller WEG, Tolba E, Ackermann M, Neufurth M, Wang S, Feng Q, Schröder HC, Wang X. Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Acta Biomater 2017; 50:89-101. [PMID: 28017868 DOI: 10.1016/j.actbio.2016.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Here we describe the fabrication process of amorphous strontium-polyphosphate microparticles ("Sr-a-polyP-MP"). The effects of these particles on growth and gene expression were investigated with SaOS-2 cells as well as with human mesenchymal stem cells (MSC) and compared with those particles prepared of amorphous calcium-polyphosphate ("Ca-a-polyP-MP") and of strontium salt. The results revealed a markedly higher stimulation of growth of MSC by "Sr-a-polyP-MP" compared to "Ca-a-polyP-MP" and a significant increase in mineralization of SaOS-2 cells, as well as an enhanced upregulation of the expression of the genes encoding for alkaline phosphatase and the bone morphogenetic protein 2 (BMP-2), likewise performed with SaOS-2 cells. On the other hand, "Sr-a-polyP-MP" only slightly changes the expression of the osteocyte-specific sclerostin, a negative regulator of the canonical Wnt signaling pathway and an inhibitor of bone cell differentiation as well as of mineralization in SaOS-2 cells. In contrast, "Ca-a-polyP-MP" strongly increased the steady-state expression of the SOST (sclerostin) gene. In animal studies poly(d,l-lactide-co-glycolide (PLGA) microspheres, containing polyP particles, were implanted into critical-size calvarial defects in rats. The results show that the amorphous Sr-polyP-containing microspheres caused an increased healing/mineralization of the bone defect even after short implantation periods of 8-12weeks, if compared to the β-tri-calcium phosphate control as well as to Ca-polyP. It is proposed that "Sr-a-polyP-MP" might elicit suitable properties to be applied as a regeneratively active implant material for bone repair. STATEMENT OF SIGNIFICANCE In this manuscript, we fabricated amorphous strontium-polyphosphate microparticles ("Sr-a-polyP-MP") and studied their effects on bone mineral formation in vitro as well as in vivo. In vitro, those particles substantially increased the expression of the genes encoding for alkaline phosphatase, the bone morphogenetic protein 2 and the mineralization. In vivo, the "Sr-a-polyP-MP" packed into PLGA microspheres and implanted into critical-size calvarial defects in rats resulted in a speeded up of the healing/mineralization of the bone defect. Those properties qualify Sr-a-polyP as a suitable biomaterial for bone regenerative implants.
Collapse
|
|
8 |
29 |
18
|
Long X, Tang R, Fang Z, Xie C, Li Y, Xian G. The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal. CHEMOSPHERE 2017; 189:679-688. [PMID: 28965063 DOI: 10.1016/j.chemosphere.2017.09.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Extracellular polymeric substances (EPS) have be founded to participate in the process of enhanced biological phosphorus removal (EBPR), but the exact role of EPS in EBPR process is unclear. In this work, the roles of loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and microbial cell in EBPR were explored, taking the activated sludge from 4 lab-scale A/O-SBR reactors with different temperatures and organic substrates as objects. It was founded that the P of EBPR activated sludge was mainly stored in TB-EPS, but the P of non-EBPR activated sludge was primarily located in microbial cell. The P release and uptake of EBPR activated sludge was attributed to the combined action of TB-EPS and microbial cell. Furthermore, TB-EPS played an more important role than microbial cell in EBPR process. With the analysis of 31P NMR spectroscopy, both polyP and orthoP were the main phosphorus species of TB-EPS in EBPR sludge, but only orthoP was the main phosphorus species of LB-EPS and microbial cell. During the anaerobic-aerobic cycle, the roles of LB-EPS, TB-EPS and microbial cell in transfer and transformation of P in EBPR sludge were obviously different. LB-EPS transported and retained orthoP, and microbial cell directly anaerobically released or aerobically absorbed orthoP. Importantly, TB-EPS not only transported and retained orthoP, but also participated in biological phosphorus accumulation. The EBPR performance of sludge was closely related with the polyp in TB-EPS, which might be synthesized and decomposed by extracellular enzyme.
Collapse
|
|
8 |
28 |
19
|
Müller WEG, Tolba E, Schröder HC, Muñoz-Espí R, Diehl-Seifert B, Wang X. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro. Acta Biomater 2016; 31:358-367. [PMID: 26654764 DOI: 10.1016/j.actbio.2015.11.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED There is increasing evidence that inorganic calcium-polyphosphates (polyP) are involved in human bone hydroxyapatite (HA) formation. Here we investigated the morphology of the particles, containing calcium phosphate (CaP) with different concentrations of various Na-polyP concentrations, as well as their effects in cell culture. We used both SaOS-2 cells and human mesenchymal stem cells. The polymeric phosphate readily binds calcium ions under formation of insoluble precipitates. We found that addition of low concentrations of polyP (<10wt.%, referred to the CaP deposits) results in an increased size of the HA crystals. Surprisingly, at higher polyP concentrations (>10wt.%) the formation of crystalline HA is prevented and amorphous polyP/HA hybrid particles with a size of ≈50nm are formed, most likely consisting of polyP molecules linked via Ca(2+) bridges to the surface of the CaP deposits. Further studies revealed that the polyP-CaP particles cause a strong upregulation of the expression of the genes encoding for two marker proteins of bone formation, collagen type I and alkaline phosphatase. Based on their morphogenetic activity the amorphous polyP-CaP particles offer a promising material for the development of bone implants, formed from physiological inorganic precursors/polymers. STATEMENT OF SIGNIFICANCE Hydroxyapatite (HA) is a naturally occurring mineral of vertebrate bone. Natural HA, a bio-ceramic material which is crystalline to different scale, has been used as a biomaterial to fabricate scaffolds for in situ bone regeneration and other tissue engineering purposes. In contrast to natural HA, synthetic apatite is much less effective. In general, while HA is bioactive, its interaction and biocompatibility with existing bone tissue is low. These properties have been attributed to a minimal degradability in the physiological environment. In the present study we introduce a new Ca-phosphate (CaP) fabrication technology, starting from calcium chloride and dibasic ammonium phosphate with the HA characteristic Ca/P molar ratio of 10:6 and report that after addition >10% (by weight) of polyphosphate (polyP) amorphous CaP/HA samples were obtained. Those samples elicits strong morphogenetic activity let us to conclude that polyP/HA-based material might be beneficial for application as bone substitute implant.
Collapse
|
|
9 |
28 |
20
|
Fradinho J, Allegue LD, Ventura M, Melero JA, Reis MAM, Puyol D. Up-scale challenges on biopolymer production from waste streams by Purple Phototrophic Bacteria mixed cultures: A critical review. BIORESOURCE TECHNOLOGY 2021; 327:124820. [PMID: 33578354 DOI: 10.1016/j.biortech.2021.124820] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The increasing volume of waste streams require new biological technologies that can address pollution concerns while offering sustainable products. Purple phototrophic bacteria (PPB) are very versatile organisms that present a unique metabolism that allows them to adapt to a variety of environments, including the most complex waste streams. Their successful adaptation to such demanding conditions is partly the result of internal polymers accumulation which can be stored for electron/energy balance or as carbon and nutrients reserves for deprivation periods. Polyhydroxyalkanoates, glycogen, sulphur and polyphosphate are examples of polymers produced by PPB that can be economically explored due to their applications in the plastic, energy and fertilizers sectors. Their large-scale production implies the outdoor operation of PPB systems which brings new challenges, identified in this review. An overview of the current PPB polymer producing technologies and prospects for their future development is also provided.
Collapse
|
Review |
4 |
27 |
21
|
Gonzalez-Esquer CR, Smarda J, Rippka R, Axen SD, Guglielmi G, Gugger M, Kerfeld CA. Cyanobacterial ultrastructure in light of genomic sequence data. PHOTOSYNTHESIS RESEARCH 2016; 129:147-157. [PMID: 27344651 DOI: 10.1007/s11120-016-0286-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Cyanobacteria are physiologically and morphologically diverse photosynthetic microbes that play major roles in the carbon and nitrogen cycles of the biosphere. Recently, they have gained attention as potential platforms for the production of biofuels and other renewable chemicals. Many cyanobacteria were characterized morphologically prior to the advent of genome sequencing. Here, we catalog cyanobacterial ultrastructure within the context of genomic sequence information, including high-magnification transmission electron micrographs that represent the diversity in cyanobacterial morphology. We place the image data in the context of tabulated protein domains-which are the structural, functional, and evolutionary units of proteins-from the 126 cyanobacterial genomes comprising the CyanoGEBA dataset. In particular, we identify the correspondence between ultrastructure and the occurrence of genes encoding protein domains related to the formation of cyanobacterial inclusions. This compilation of images and genome-level domain occurrence will prove useful for a variety of analyses of cyanobacterial sequence data and provides a guidebook to morphological features.
Collapse
|
Comparative Study |
9 |
27 |
22
|
Park T, Ampunan V, Lee S, Chung E. Chemical behavior of different species of phosphorus in coagulation. CHEMOSPHERE 2016; 144:2264-2269. [PMID: 26598995 DOI: 10.1016/j.chemosphere.2015.10.131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/21/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
Phosphorus is one of the elements that have a significant impact on such environmental problems as eutrophication or algal bloom. Phosphorus compounds in water can be hydrolyzed to orthophosphate that is the only form of phosphorus that algae can assimilate. In this study, phosphorus removal in terms of orthophosphate and total phosphorus from wastewater was studied using alum or ferric ions as coagulants. It was observed that alum shows higher phosphorus removal efficiency than ferric ions in the same mole ratio concentrations. The proportion of orthophosphate among total phosphorus did not change significantly during coagulation process when the coagulant concentration is low. However, the proportion becomes gradually decreased as the coagulant concentration increases. Not only the electrolyte concentration difference in solution, but the characteristics of orthophosphate and polyphosphate such as reactivity and ionic size might also cause the differences in the removal rate. Orthophosphate that has greater reactivity than other phosphorus species would be involved in chemical reactions dominantly when large amounts of coagulants are applied. However, the effect of reactivity was diminished due to the large ionic size of polyphosphate and low concentration of electrolyte in low coagulant concentration during the coagulation process.
Collapse
|
|
9 |
27 |
23
|
Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 2021; 67:331-346. [PMID: 33420907 DOI: 10.1007/s00294-020-01148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Polyphosphates (polyP) are polymers of inorganic phosphates joined by high-energy bonds to form long chains. These chains are present in all forms of life but were once disregarded as 'molecular fossils'. PolyP has gained attention in recent years following new links to diverse biological roles ranging from energy storage to cell signaling. PolyP research in humans and other higher eukaryotes is limited by a lack of suitable tools and awaits the identification of enzymatic players that would enable more comprehensive studies. Therefore, many of the most important insights have come from single-cell model systems. Here, we review determinants of polyP metabolism, regulation, and function in major microbial systems, including bacteria, fungi, protozoa, and algae. We highlight key similarities and differences that may aid in our understanding of how polyP impacts cell physiology at a molecular level.
Collapse
|
Review |
4 |
26 |
24
|
Mikami Y, Tsuda H, Akiyama Y, Honda M, Shimizu N, Suzuki N, Komiyama K. Alkaline phosphatase determines polyphosphate-induced mineralization in a cell-type independent manner. J Bone Miner Metab 2016; 34:627-637. [PMID: 26475372 DOI: 10.1007/s00774-015-0719-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.
Collapse
|
|
9 |
26 |
25
|
Desfougères Y, Neumann H, Mayer A. Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion. J Cell Sci 2016; 129:2817-28. [PMID: 27252384 DOI: 10.1242/jcs.184382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/26/2016] [Indexed: 11/20/2022] Open
Abstract
Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.
Collapse
|
Journal Article |
9 |
26 |