1
|
Jiang M, Song Y, Kanwar MK, Ahammed GJ, Shao S, Zhou J. Phytonanotechnology applications in modern agriculture. J Nanobiotechnology 2021; 19:430. [PMID: 34930275 PMCID: PMC8686395 DOI: 10.1186/s12951-021-01176-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
With the rapidly changing global climate, the agricultural systems are confronted with more unpredictable and harsh environmental conditions than before which lead to compromised food production. Thus, to ensure safer and sustainable crop production, the use of advanced nanotechnological approaches in plants (phytonanotechnology) is of great significance. In this review, we summarize recent advances in phytonanotechnology in agricultural systems that can assist to meet ever-growing demands of food sustainability. The application of phytonanotechnology can change traditional agricultural systems, allowing the target-specific delivery of biomolecules (such as nucleotides and proteins) and cater the organized release of agrochemicals (such as pesticides and fertilizers). An amended comprehension of the communications between crops and nanoparticles (NPs) can improve the production of crops by enhancing tolerance towards environmental stresses and optimizing the utilization of nutrients. Besides, approaches like nanoliposomes, nanoemulsions, edible coatings, and other kinds of NPs offer numerous selections in the postharvest preservation of crops for minimizing food spoilage and thus establishing phtonanotechnology as a sustainable tool to architect modern agricultural practices.
Collapse
|
Review |
4 |
38 |
2
|
Jiang Y, Yin H, Zhou X, Wang D, Zhong Y, Xia Q, Deng Y, Zhao Y. Antimicrobial, antioxidant and physical properties of chitosan film containing Akebia trifoliata (Thunb.) Koidz. peel extract/montmorillonite and its application. Food Chem 2021; 361:130111. [PMID: 34044213 DOI: 10.1016/j.foodchem.2021.130111] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
A novel active packaging film was prepared in this study that incorporated Akebia trifoliata (Thunb.) Koidz. peel extracts (APE) and montmorillonite (MMT) into chitosan (CH) films. Compared with the pure CH film, the CH/APE film showed significantly higher tensile strength, elongation at break, UV light resistance, and antibacterial activity; the CH/MMT film displayed significant increases in contact angle, antioxidant activity, oxygen permeability, and thermal stability. SEM and AFM analyses showed that the additions were well-distributed into the CH matrix, but MMT induced a more compact and rougher structure. The CH-based film formula was optimized using the single-factor test and Box-Behnken design and was 0.15% MMT, 0.15% APE, and 1.50% CH. Besides, the optimized coating was applied in the postharvest preservation of A. trifoliata fruits, which yielded a significant effect on the delaying crack and mature of the fruits during 35 days of storage at 5 °C.
Collapse
|
Journal Article |
4 |
30 |
3
|
Abdalla G, Mussagy CU, Sant'Ana Pegorin Brasil G, Scontri M, da Silva Sasaki JC, Su Y, Bebber C, Rocha RR, de Sousa Abreu AP, Goncalves RP, Burd BS, Pacheco MF, Romeira KM, Picheli FP, Guerra NB, Farhadi N, Floriano JF, Forster S, He S, Nguyen HT, Peirsman A, Tirpáková Z, Huang S, Dokmeci MR, Ferreira ES, Dos Santos LS, Piazza RD, Marques RFC, Goméz A, Jucaud V, Li B, de Azeredo HMC, Herculano RD. Eco-sustainable coatings based on chitosan, pectin, and lemon essential oil nanoemulsion and their effect on strawberry preservation. Int J Biol Macromol 2023; 249:126016. [PMID: 37516224 DOI: 10.1016/j.ijbiomac.2023.126016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Films and coatings manufactured with bio-based renewable materials, such as biopolymers and essential oils, could be a sustainable and eco-friendly alternative for protecting and preserving agricultural products. In this work, we developed films and coatings from pectin and chitosan to protect strawberries (Fragaria x ananassa Duch.) from spoilage and microbial contamination. We developed three coatings containing equal amounts of glycerol and Sicilian lemon essential oil (LEO) nanoemulsion. We identified seventeen chemicals from LEO by GC-MS chromatogram, including d-limonene, α-Pinene, β-Pinene, and γ-Terpinene. The pectin and chitosan coatings were further characterized using different physicochemical, mechanical, and biological methods. The films demonstrated satisfactory results in strength and elongation at the perforation as fruit packaging. In addition, the coatings did not influence the weight and firmness of the strawberry pulps. We observed that 100 % essential oil was released in 1440 min resulting from the erosion process. Also, the oil preserved the chemical stability of the films. Antioxidant activity (AA), measured by Electron Paramagnetic Resonance (EPR), showed that the coatings loaded with 2 % LEO nanoemulsion (PC + oil) showed that almost 50 % of AA from LEO nanoemulsion was preserved. The chitosan and the pectin-chitosan coatings (PC + oil) inhibited filamentous fungi and yeast contaminations in strawberries for at least 14 days, showing a relationship between the AA and antimicrobial results.
Collapse
|
|
2 |
20 |
4
|
Dai L, Wang X, Mao X, He L, Li C, Zhang J, Chen Y. Recent advances in starch-based coatings for the postharvest preservation of fruits and vegetables. Carbohydr Polym 2024; 328:121736. [PMID: 38220350 DOI: 10.1016/j.carbpol.2023.121736] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Efficient and low-cost postharvest preservation of fruits and vegetables has always been one of the urgent problems to be solved in the food field. Due to the wide sources, good environmental and human safety, and high biodegradability, starch-based coating preservation method has great application prospects in the postharvest preservation of fruits and vegetables. However, starch materials also have the disadvantages of poor mechanical properties and easy water absorption performance, which makes it difficult to fully meet the requirements in practical production. Therefore, starch is often used in combination with other components to form composite materials. This paper began with an introduction to the preservation principles of edible starch-based coatings, including inherent properties and extra functional properties. Besides, the preservation principles of edible coatings and the recent advances in the field of fruit and vegetable preservation were also comprehensively reviewed, focusing on the preparation and application of starch-based coatings. The information will contribute to the further development of starch-based coatings to improve the postharvest preservation effect of fruits and vegetables.
Collapse
|
Review |
1 |
13 |
5
|
Gonçalves DDC, Ribeiro WR, Gonçalves DC, Menini L, Costa H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res Int 2021; 150:110758. [PMID: 34865776 DOI: 10.1016/j.foodres.2021.110758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
The world population growth has raised concerns about food security. Agricultural systems are asked to satisfy a growing demand for food with increasingly limited resources, and simultaneously still must reduce the impacts on the environment. This scenario encourages the search for safe and sustainable production strategies. Reducing losses in the production process can be one of the main ways to guarantee food safety. In fruticulture, it is estimated that more than 50% of the production can be lost between harvest and the final consumer due to postharvest diseases caused by phytopathogenic fungi. The fungi of the genus Colletotrichum are opportunistic and are associated with several diseases, being the anthracnose the most relevant in terms of the quality and yield losses in fruit species around worldwide. To control these diseases, the use of synthetic fungicides has been the main instrument utilized, however, because of their phytotoxicity to human health, the environment, and strong selection pressure imposed by continuous applications, the fungicides have caused resistance in the pathogen populations. So reducing the excessive application of these products is indispensable for human health and for sustainable Agriculture. Towards this purpose, research has been carried out to identify the phytopathological potentiality of essential oils (EOs) extracted from plants. Therefore, this review aims to contribute to the formation of knowledge bases, about the discoveries, recent advances, and the use of EOs as a strategy to alternatively control fungal disease caused by Colletotrichum spp. in postharvest fruits. Here, we provide valuable information exploring the application potential of essential oils as commercially useful biorational pesticides for food preservation, contributing to sustainable production and global food security.
Collapse
|
Review |
4 |
13 |
6
|
Sęczyk Ł, Ozdemir FA, Kołodziej B. In vitro bioaccessibility and activity of basil (Ocimum basilicum L.) phytochemicals as affected by cultivar and postharvest preservation method - Convection drying, freezing, and freeze-drying. Food Chem 2022; 382:132363. [PMID: 35158270 DOI: 10.1016/j.foodchem.2022.132363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
The effects of convection drying, freezing, and freeze-drying, on phytochemicals content, in vitro activity and bioaccessibility of sweet basil, cinnamon basil, red rubin basil, and lemon basil were investigated. For evaluation of bioaccessibility, rosmarinic acid content, phenolic content, and antioxidant potential of samples before and after gastric and intestinal steps of digestion were determined. Results showed that the content, activity and bioaccessibility of basil phytochemicals varied depending on the cultivar as well as the applied postharvest preservation. It was found that the frozen and freeze-dried plant materials were characterized by a higher phenolic level and antioxidant activity compared to the convection dried. However, in general, convection drying allows obtaining samples with higher bioaccessibility of phytochemicals compared to the low-temperature processed samples. These findings highlight the need for evaluation of basil cultivars and postharvest preservation methods regarding phytochemicals bioaccessibility, which might help in the classification in terms of pro-health quality.
Collapse
|
|
3 |
8 |
7
|
Wabali VC, Esiri A, Zitte L. A sensory assessment of color and textural quality of refrigerated tomatoes preserved with different concentrations of potassium permanganate. Food Sci Nutr 2016; 5:434-438. [PMID: 28572927 PMCID: PMC5448385 DOI: 10.1002/fsn3.410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/19/2016] [Accepted: 06/29/2016] [Indexed: 11/07/2022] Open
Abstract
Freshly harvested mature tomato fruits were treated with different concentrations of potassium permanganate to evaluate their effect on color and texture of the fruits. This was to determine the degree of acceptability and shelf life of the tomatoes. Fifty grams of mature unripe tomato fruits was washed and weighed into a transparent plastic container containing different concentrations of potassium permanganate (control, 2.5 ppm, 5.0 ppm, 7.5 ppm. 10.0 ppm, 12.5 ppm, and 15.0 ppm). The experiment was carried out in a complete randomized design and replicated four times. All the treatments were refrigerated at a temperature range 14-18°C and a sensory assessment of color and textural changes was carried out through a team of selected panelists using the hedonic scale ranking to determine the degree of acceptability. Results obtained were analyzed using analysis of variance DMRT at 5% level of probability and least significant difference (LSD). Results obtained indicated that 7.5 ppm of potassium permanganate had a preservative effect on color and texture of refrigerated tomatoes. Therefore, the tomatoes were of acceptable color and texture for a period of 21 days as revealed in the result. Color quality had a mean score of 1.64 and texture ranking was 1.73 after 3 weeks of storage.
Collapse
|
|
9 |
7 |
8
|
Nano-emulsification essential oil of Monarda didyma L. to improve its preservation effect on postharvest blueberry. Food Chem 2023; 417:135880. [PMID: 36924719 DOI: 10.1016/j.foodchem.2023.135880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
The reduction in blueberry harvest due to pathogen infection was reported to reach 80%. Essential oil (EO) can provide a new way to preserve blueberry. Here, in search for plants volatiles with preservation ability, a novel device was designed for the screening of aromatic plants led to the discovery of hit plant Monarda didyma L. Consequently, antifungi activity of M. didyma EO (MEO) and its nano-emulsion (MNE) were tested. 2 species of pathogenic fungi were isolated from blueberries, namely Alternaria sp. and Colletotrichum sp. were used as the target strains. In the in vitro activity test, the pathogenic were completely inhibited when the EO was 4 µL or 1.0 µL/mL. Compared with EO, MNE exhibited superior antimicrobial activity. Moreover, MNE can cause serious morphological changes and result in a decrease in the rot and weightlessness rate of blueberry. Hence, NME represents a promising agent for the preservation of postharvest blueberry.
Collapse
|
|
2 |
7 |
9
|
Zhang P, Wang Y, Wang J, Li G, Li S, Ma J, Peng X, Yin J, Liu Y, Zhu Y. Transcriptomic and physiological analyses reveal changes in secondary metabolite and endogenous hormone in ginger (Zingiber officinale Rosc.) in response to postharvest chilling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107799. [PMID: 37271022 DOI: 10.1016/j.plaphy.2023.107799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.
Collapse
|
|
2 |
3 |
10
|
Yang J, Yin J, Wang K, Zhao L, Yang Z, Cai Y, Lou J, Huang C, Shen Q. Advanced technology in fruit preservation: Effects of nanoscale charged water particles on storage quality and reactive oxygen species in blueberries. Food Res Int 2024; 198:115331. [PMID: 39643367 DOI: 10.1016/j.foodres.2024.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
During the postharvest period, blueberries with a short shelf life due to microbial activity and an overload of reactive oxygen species (ROS) were still a major unresolved problem. In this study, the effect of nanoscale charged water particles (NCWP) treatment on the postharvest characteristics and ROS metabolism in blueberries (Vaccinium ashei Reade) were investigated. The results showed that NCWP treatment significantly inhibited microbial growth, maintained high firmness and commercial acceptability, and extended the storage period of blueberries. The nutrient of blueberries was retained and elevated after NCWP treatment, especially in the 6 d of NCWP-9 h treatment, the total phenol and anthocyanin content reached the peak at 565.1 mg/L and 5.26 mg/g, which contribute to the total antioxidant capacity of blueberries increased. SEM showed that NCWP-9 h treatment maintained the integrity of the cuticular wax of the blueberry peel, which indirectly decelerated the decline of blueberry firmness. The NCWP treatment significantly enhanced the antioxidant enzyme system of blueberry peel. On days 2, 4 and 6 after NCWP-9 h treatment, the CAT, SOD and APX activities were significantly different from the control group (P < 0. 05), with 585.09 ΔA/min/g, 79.34 U/g and 3.32 umol/min/g, respectively, which effectively scavenged the oxidative stress markers (H2O2, O2-) accumulated in the blueberry peels, and slowed down the aging and deteriorated of the blueberry process. This finding demonstrates that NCWP is an effective postharvest preservation method for blueberries and provides a viable strategy for quality maintenance in the postharvest fruit and vegetable sector.
Collapse
|
|
1 |
|
11
|
Bao Y, Huang JY. Effect of microbubbles on immersion freezing of grape tomato. Food Chem 2024; 454:139813. [PMID: 38810460 DOI: 10.1016/j.foodchem.2024.139813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Microbubbles (MBs) were incorporated into calcium chloride solution as a novel freezing medium for immersion freezing of grape tomato. The effects of MB size (39, 43, 48 μm mean diameter), entrapped gas (air, N2, CO2) and freezing temperature (-10, -15, -20 °C) on the freezing behavior and quality attributes of tomato were investigated. MBs increased the nucleation temperature from -7.4 to -3.5 °C and reduced the onset time of nucleation from 5.8 to 2.9 min at freezing temperature of -20 °C, which facilitated the formation of small ice crystals within tomato. MB-assisted freezing reduced the drip loss by 13.7-17.0% and improved the firmness of tomato, particularly when MB size and freezing temperature decreased. Freezing tomato with air-MBs did not compromise its nutritional quality, using N2- and CO2-MBs even increased its lycopene content, by 31% and 23%, respectively. The results proved the preservation effect of MBs on fruit during immersion freezing. This study can benefit the fruit and vegetable industry by providing an efficient freezing technology for producing frozen products with high sensory and nutritional quality.
Collapse
|
Evaluation Study |
1 |
|
12
|
Lv H, Cui C, Wang Z, Liu Y, Liu S, Qi T, Li Y, Zhao Y. Anti-mildew and fresh-keeping effect of Lactiplantibacillus paraplantarum P3 cell-free supernatant on fresh in-shell peanuts during storage process. Int J Food Microbiol 2024; 418:110719. [PMID: 38688186 DOI: 10.1016/j.ijfoodmicro.2024.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Lactiplantibacillus paraplantarum P3 (L. paraplantarum P3) cell-free supernatant (CFS) with good antifungal effect was sprayed on fresh in-shell peanuts stored at 5 °C and 30 °C to explore its effect on the microorganisms and quality of fresh in-shell peanuts during storage process. Results showed that L. paraplantarum P3 CFS effectively maintained good quality of fresh in-shell peanuts by not only reducing fungi amount and the mildew rate, but also improving the morphology, color and flavor. Besides, L. paraplantarum P3 CFS activated plant mitogen-activated protein kinase signaling pathway and plant hormone signaling pathway to produce more ethylene, gibberellin regulatory proteins and other substances to enhance plant resistance to pathogenic microorganisms. L. paraplantarum P3 CFS could also induce the biosynthesis of glycerophospholipid and arginine to increase the stress resistance of fresh peanuts. This study provides research data for the application of L. paraplantarum P3 CFS in the preservation and antimildew of fresh in-shell peanuts.
Collapse
|
|
1 |
|
13
|
Zhou Z, Chen F, Jiang Q, Li W, Zhang X, Zhang H, Yang X, Lei B. Effects of Moringa oleifera leaf-derived carbon dots treatment on ROS metabolism regulation for postharvest flowering Chinese cabbage preservation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109613. [PMID: 39933428 DOI: 10.1016/j.plaphy.2025.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Postharvest flowering Chinese cabbage is prone to rapid senescence and quality deterioration during storage at room temperature. The imbalance of reactive oxygen species (ROS) metabolism is one of the critical factors leading to this process. In this study, we synthesized Moringa oleifera leaf-derived carbon dots (MoCDs) and investigated the effects of MoCDs treatment on ROS metabolism regulation for postharvest flowering Chinese cabbage preservation. The results showed that MoCDs exhibited more efficient antioxidant activity than M. oleifera extract, attributed to their abundant surface functional groups, including hydroxyl, carboxyl, and amino groups, and an extensive sp2-hybridized carbon network. Moreover, MoCDs treatment could reduce the accumulation of hydrogen peroxide and superoxide anion radical in postharvest flowering Chinese cabbage by generally enhancing the activities of a series of key antioxidant enzymes and increasing the contents of non-enzymatic antioxidants, which significantly delayed leaf senescence and deterioration of appearance and nutritional quality of postharvest flowering Chinese cabbage during storage. In summary, as an effective antioxidant, MoCDs entered leaf cells to scavenge excessive ROS directly; as an elicitor, MoCDs enhanced the ROS scavenging ability of the endogenous antioxidant defense system in postharvest flowering Chinese cabbage. These dual protective mechanisms synergistically regulated ROS metabolism, thus benefiting the postharvest preservation of flowering Chinese cabbage.
Collapse
|
|
1 |
|
14
|
Wu M, Deng ZA, Shen C, Yang Z, Cai Z, Wu D, Chen K. Fabrication of antimicrobial PCL/EC nanofibrous films containing natamycin and trans-cinnamic acid by microfluidic blow spinning for fruit preservation. Food Chem 2024; 442:138436. [PMID: 38244441 DOI: 10.1016/j.foodchem.2024.138436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Fruit is susceptible to various postharvest pathogens; thus, the development of multifunctional preservation materials that can achieve the broad-spectrum inhibition of different pathogens is a current research hotspot. Here, microfluidic blow spinning was used to create a biodegradable polycaprolactone/ethyl cellulose (PCL/EC) nanofibrous film that incorporated two naturally-sourced compounds, natamycin and trans-cinnamic acid, resulting in multi-microbial inhibition. The PCL/EC-based film had a smooth and even morphology, indicating the favorable integration of PCL and EC. After the incorporation of ingredients, the film exhibited good inhibitory activity against Escherichia coli, Staphylococcus aureus, and Botrytis cinerea, and it had finer fiber diameters, higher permeability, and antioxidant properties. We further demonstrated that strawberries that were padded with the film had good resistance to Botrytis cinerea. Also, the film did not interference with the qualities of the strawberries during storage. The study demonstrates a promising application for multi-antimicrobial and bio-friendly packaging materials in postharvest fruit preservation.
Collapse
|
|
1 |
|
15
|
Zhang X, Sun H, Song S, Li Y, Zhang X, Zhang W. Preparation and characterization of polyvinyl alcohol/pullulan/ZnO-Nps composite film and its effect on the postharvest quality of Allium mongolicum Regel. Int J Biol Macromol 2024; 279:135380. [PMID: 39245089 DOI: 10.1016/j.ijbiomac.2024.135380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Allium mongolicum Regel is prone to rapid senescence and quality deterioration during postharvest storage. Herein, polyvinyl alcohol/pullulan/ZnO nanoparticles (PVA/PUL/ZnO-Nps) composite films were prepared via solution casting and studied to analyze the effects of ZnO-Nps on the PVA/PUL film matrix. Results revealed that the incorporation of suitable ZnO-Nps effectively reduced the light transmittance, improved water contact angle, water vapor permeability, and mechanical properties of the composite films, as well as enhanced their antimicrobial activity. The composite films were used for the postharvest preservation of A. mongolicum Regel. Results revealed that the PVA/PUL/ZnO-Nps film effectively reduced malondialdehyde accumulation content, superoxide radical generation rate, hydrogen peroxide content, improve the activity of related enzymes, and extend the storage time compared with that of polyethylene films. Therefore, the PVA/PUL/ZnO-Nps film can be used as a novel packaging material for the postharvest preservation of A. mongolicum Regel.
Collapse
|
|
1 |
|
16
|
Gong M, Zhang T, Wu Y, Shang J, Su E, Cao Y, Zhang J. Synergizing postharvest physiology and nanopackaging for edible mushroom preservation. Food Chem 2025; 463:141099. [PMID: 39260167 DOI: 10.1016/j.foodchem.2024.141099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The cultivation of edible mushrooms is increasing because of their widely recognized nutritional benefits. Advancements in cultivation techniques have facilitated large-scale mushroom production, meeting the growing consumer demand. This rise in cultivation has led to an increasingly urgent demand for advanced postharvest preservation methods to extend the shelf life of these mushrooms. The postharvest preservation of fresh edible mushrooms involves complex physiological changes and metabolic activities closely associated with gas composition, microbial presence, moisture content, ambient temperature, and enzymatic activity. Preserving edible mushrooms through various preservation strategies (physical, chemical, biological, and nanopackaging approaches) relies on regulating postharvest factors. Nanopackaging can preserve mushrooms' sensory and nutritional qualities due to the specific characteristics of nanomaterials, such as antimicrobial properties and gas/moisture barriers. Furthermore, the review explores current trends, fundamental mechanisms, and upcoming challenges in utilizing nanomaterials, particularly their capacity to enhance the "cell wall" integrity of edible mushrooms by regulating postharvest factors.
Collapse
|
Review |
1 |
|
17
|
Huang J, Sun R, Cao X, Hu N, Xia B, Yi Y, Zhou S, Zhou H. Preservation effect of Lactobacillus plantarum O 2 fermentation supernatant on postharvest pepper and its induced resistance to Phytophthora capsici. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108098. [PMID: 37879128 DOI: 10.1016/j.plaphy.2023.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Research of lactic acid bacteria and its metabolites on biological preservatives becomes a hot topic. Lactobacillus plantarum O2, with good inhibition on Phytophthora capsici (P. capsici), was isolated from the pickle. In this study, the effects of L. plantarum O2 fermentation supernatant (FS) on pepper postharvest preservation and its induced resistance to P. capsici were studied. Results showed that weight loss rate, rot index, respiration rate, relative electrical conductivity, loss of chlorophyll content and VC of pepper in FS treatment group were decreased by 18 %, 64 %, 15 %, 26 %, 33 % and 20 % compared with blank control (BC) after 20 d storage. L* and b*-value of pepper in FS group were lower than those in the BC group. In addition, the damage-induced resistance test found that the infection rate in the FS group was reduced by 39 %, compared with CK2 after 12 d storage. Moreover, phenylalanine ammonia-lyase activity, peroxidase activity, polyphenol oxidase activity, proline content, total phenol content and flavonoid content increased by 14 %, 9 %, 30 %, 8 %, 8 % and 9 %, respectively, while malondialdehyde content decreased by 13 %. These results indicated that FS treatment showed good fresh-keeping effects on postharvest pepper. It could enhance the tolerance of pepper under stress by improving defensive enzyme activities, slowing down the damage caused by P. capsici, and inducing pepper resistance to P. capsici. Therefore, FS can be used as a microbial source bio-preservative for postharvest pepper.
Collapse
|
|
2 |
|
18
|
Zuo X, Wang J, Cao S, Zheng Y. Research Progress of Hydrogen Rich Water in Preservation of Postharvest Horticultural Products: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9478-9488. [PMID: 40208773 DOI: 10.1021/acs.jafc.5c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
The perishable nature of horticultural products and unfavorable factors during storage lead to postharvest losses and shelf life limitations. As an effective hydrogen (H2) supplier, hydrogen-rich water (HRW) is regarded as a new green postharvest preservation strategy of horticultural products. This review presents a complete overview of the application advance of HRW for the preservation of horticultural products, including the potential production mechanisms of hydrogen in plants, the preparation and application methods of HRW, and potential mechanisms of HRW in improving the quality of postharvest horticultural products. The findings show that HRW can maintain the quality and stress tolerance of horticultural products by regulating metabolic pathways and molecular responses, including oxidative defense, energy homeostasis, respiration, cell-wall intergrity, ethylene biosynthesis, related gene expression and phytohormones signaling crosstalk. The information obtained in this review is expected to provide a scientific basis for the application of HRW for the preservation of postharvest horticultural products.
Collapse
|
Review |
1 |
|
19
|
Cui Y, Zhang R, Cheng M, Li M, Wang X. Development and application of mathematical modeling of thymol release from environmental-responsive potato starch active packaging films. Int J Biol Macromol 2024; 271:132353. [PMID: 38763250 DOI: 10.1016/j.ijbiomac.2024.132353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/10/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Traditional active packaging materials are easily affected by the environment, resulting in their inability to release active substances in specified quantities at specified times and locations. In this study, MCM-41 was used as a thymol (THY) carrier and added to the potato starch (PS) matrix to design an intelligent release active packaging film based on storage microenvironment. MCM-41 encapsulation improved thermal stability of THY. THY-MCM-41 addition significantly improved the tensile strength (TS, 7.18 MPa) of the film (P < 0.05) and endowed the film excellent gas and water barrier protection. THY release was responsive to temperature and relative humidity (RH), and the First-order model better explained the THY release pattern (R2 > 0.980). The THY-MCM-41/PS film exhibited long-term antibacterial effect during 10-day storage due to the sustained release of THY. Additionally, strawberries packaged in the THY-MCM-41/PS film exhibited the best sensory characteristics during 5-day storage (25 °C and 50 % RH). Overall, the present THY-MCM-41/PS film provides a novel alternative for the sustained release of active substances in order to achieve the excellent preservation of goods such as fruits and vegetables.
Collapse
|
|
1 |
|
20
|
Kumar S, Shukla P, Das K, Katiyar V. Chitosan/water caltrop pericarp extract reinforced active edible film and its efficacy as strawberry coating for prolonging shelf life. Int J Biol Macromol 2025; 307:142115. [PMID: 40090637 DOI: 10.1016/j.ijbiomac.2025.142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
This study focuses on developing and characterizing active and sustainable packaging films made from chitosan (CS), enriched with a novel bioactive extract sourced from water caltrop (Trapa bispinosa Roxb.) pericarp (WCPE). In this study, chitosan (1 % w/v) based biocomposite films were produced using varying concentrations of bioactive extracts (0,5,10,15 and 20 % w/w of CS) from water caltrop pericarp, obtained through ultrasound-assisted extraction. WCPE extract possess excellent antioxidant (89 ± 1.41 %), higher phenolics (120.48 ± 4.67 mg GAE g-1) and antimicrobial property. Similarly, developed biocomposite demonstrated superior UV barrier (OP600nm ∼4.30), lower swelling (21.43 ± 2.61 %), lower moisture content (17.15 ± 1.82 %), minimum water vapor permeability (1.28 ± 0.06 g m-1 day-1 Pa-1 (×10-10)), excellent antioxidant capacity (60.41 ± 1.52 % for DPPH and 70.80 ± 2.36 % for ABTS), greater phenolics content (168 ± 4.16 mg GAE/100 g) and good antimicrobial property. Additionally, all formulated coating solutions demonstrated biocompatibility (>85 % cell viability) with BHK-21 fibroblast cells. Finally, the CS-WCPE20 solution was evaluated for its practical use as an edible coating to preserve strawberry, under storage conditions of 20 ± 5 °C and 75 ± 5 % relative humidity. Developed coating successfully preserved quality attribute such as lower weight loss (∼17 %), higher texture (∼2.18 N), optimum TSS (∼8.44 % Brix), maximum antioxidant quality (∼50 % DPPH scavenging activity) and higher color and visual attribute upto 8 days at ambient temperature. Thus, the optimized formulation demonstrates significant potential for use as an active and intelligent packaging solution, effectively extending the shelf life of fruits and vegetables.
Collapse
|
|
1 |
|
21
|
Zuo X, Wang J, Li Y, Zhang J, Wu Z, Jin P, Cao S, Zheng Y. Recent advances in high relative humidity strategy for preservation of postharvest fruits and vegetables: A comprehensive review. Food Chem 2025; 481:144130. [PMID: 40179497 DOI: 10.1016/j.foodchem.2025.144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Postharvest water loss is a major factor resulting in quality deterioration and physiology disorders of fruits and vegetables, which is effectively inhibited by high relative humidity (RH) storage. High RH storage could retain quality attributes and stress tolerance, also influence physiological metabolisms and cellular level responses of postharvest horticultural products, involving cell ultrastructure integrity, degradation of bioactive compounds, antioxidant response, respiration processes, ripening and senescence. In addition, challenges for the implementation of high RH strategies in the preservation of fresh produces are receiving increasing attention. This review summarizes the advance of high RH storage in controlling quality deterioration and biochemical mechanisms. Furthermore, the major approaches applied to form high RH conditions are also detailed. The obtained information is expected to provide a further understanding and future research directions for application of high RH in preservation of fruits and vegetables.
Collapse
|
Review |
1 |
|