1
|
Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC PLANT BIOLOGY 2021; 21:248. [PMID: 34058997 PMCID: PMC8165784 DOI: 10.1186/s12870-021-03053-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. RESULTS Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. CONCLUSIONS We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Collapse
|
research-article |
4 |
65 |
2
|
Li X, Yang JB, Wang H, Song Y, Corlett RT, Yao X, Li DZ, Yu WB. Plastid NDH Pseudogenization and Gene Loss in a Recently Derived Lineage from the Largest Hemiparasitic Plant Genus Pedicularis (Orobanchaceae). PLANT & CELL PHYSIOLOGY 2021; 62:971-984. [PMID: 34046678 PMCID: PMC8504446 DOI: 10.1093/pcp/pcab074] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/08/2021] [Accepted: 08/09/2021] [Indexed: 05/28/2023]
Abstract
The plastid genome (plastome) is highly conserved in both gene order and content and has a lower mutation rate than the nuclear genome. However, the plastome is more variable in heterotrophic plants. To date, most such studies have investigated just a few species or only holoheterotrophic groups, and few have examined plastome evolution in recently derived lineages at an early stage of transition from autotrophy to heterotrophy. In this study, we investigated the evolutionary dynamics of plastomes in the monophyletic and recently derived Pedicularis sect. Cyathophora (Orobanchaceae). We obtained 22 new plastomes, 13 from the six recognized species of section Cyathophora, six from hemiparasitic relatives and three from autotrophic relatives. Comparative analyses of gene content, plastome structure and selection pressure showed dramatic differences among species in section Cyathophora and in Pedicularis as a whole. In comparison with autotrophic relatives and other Pedicularis spp., we found that the inverted repeat (IR) region in section Cyathophora had expansions to the small single-copy region, with a large expansion event and two independent contraction events. Moreover, NA(D)H dehydrogenase, accD and ccsA have lost function multiple times, with the function of accD being replaced by nuclear copies of an accD-like gene in Pedicularis spp. The ccsA and ndhG genes may have evolved under selection in association with IR expansion/contraction events. This study is the first to report high plastome variation in a recently derived lineage of hemiparasitic plants and therefore provides evidence for plastome evolution in the transition from autotrophy to heterotrophy.
Collapse
|
research-article |
4 |
40 |
3
|
Liu WH, Tsai ZTY, Tsai HK. Comparative genomic analyses highlight the contribution of pseudogenized protein-coding genes to human lincRNAs. BMC Genomics 2017; 18:786. [PMID: 29037146 PMCID: PMC5644071 DOI: 10.1186/s12864-017-4156-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/02/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The regulatory roles of long intergenic noncoding RNAs (lincRNAs) in humans have been revealed through the use of advanced sequencing technology. Recently, three possible scenarios of lincRNA origins have been proposed: de novo origination from intergenic regions, duplication from other long noncoding RNAs, and pseudogenization from protein-coding genes. The first two scenarios are largely studied and supported, yet few studies focused on the evolution from pseudogenized protein-coding sequence to lincRNA. Due to the non-mutually exclusive nature of these three scenarios and the need of systematic investigation of lincRNA origination, we conducted a comparative genomics study to investigate the evolution of human lincRNAs. RESULTS Combining with syntenic analysis and stringent Blastn e-value cutoff, we found that the majority of lincRNAs are aligned to intergenic regions of other species. Interestingly, 193 human lincRNAs could have protein-coding orthologs in at least two of nine vertebrates. Transposable elements in these conserved regions in human genome are much less than expectation. Moreover, 19% of these lincRNAs have overlaps with or are close to pseudogenes in the human genome. CONCLUSIONS We suggest that a notable portion of lincRNAs could be derived from pseudogenized protein-coding genes. Furthermore, based on our computational analysis, we hypothesize that a subset of these lincRNAs could have potential to regulate their paralogs by functioning as competing endogenous RNAs. Our results provide evolutionary evidence of the relationship between human lincRNAs and protein-coding genes.
Collapse
|
Journal Article |
8 |
16 |
4
|
Liu G, Walter L, Tang S, Tan X, Shi F, Pan H, Roos C, Liu Z, Li M. Differentiated adaptive evolution, episodic relaxation of selective constraints, and pseudogenization of umami and sweet taste genes TAS1Rs in catarrhine primates. Front Zool 2014; 11:79. [PMID: 25389445 PMCID: PMC4226867 DOI: 10.1186/s12983-014-0079-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/16/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Umami and sweet tastes are two important basic taste perceptions that allow animals to recognize diets with nutritious carbohydrates and proteins, respectively. Until recently, analyses of umami and sweet taste were performed on various domestic and wild animals. While most of these studies focused on the pseudogenization of taste genes, which occur mostly in carnivores and species with absolute feeding specialization, omnivores and herbivores were more or less neglected. Catarrhine primates are a group of herbivorous animals (feeding mostly on plants) with significant divergence in dietary preference, especially the specialized folivorous Colobinae. Here, we conducted the most comprehensive investigation to date of selection pressure on sweet and umami taste genes (TAS1Rs) in catarrhine primates to test whether specific adaptive evolution occurred during their diversification, in association with particular plant diets. RESULTS We documented significant relaxation of selective constraints on sweet taste gene TAS1R2 in the ancestral branch of Colobinae, which might correlate with their unique ingestion and digestion of leaves. Additionally, we identified positive selection acting on Cercopithecidae lineages for the umami taste gene TAS1R1, on the Cercopithecinae and extant Colobinae and Hylobatidae lineages for TAS1R2, and on Macaca lineages for TAS1R3. Our research further identified several site mutations in Cercopithecidae, Colobinae and Pygathrix, which were detected by previous studies altering the sensitivity of receptors. The positively selected sites were located mostly on the extra-cellular region of TAS1Rs. Among these positively selected sites, two vital sites for TAS1R1 and four vital sites for TAS1R2 in extra-cellular region were identified as being responsible for the binding of certain sweet and umami taste molecules through molecular modelling and docking. CONCLUSIONS Our results suggest that episodic and differentiated adaptive evolution of TAS1Rs pervasively occurred in catarrhine primates, most concentrated upon the extra-cellular region of TAS1Rs.
Collapse
|
research-article |
11 |
12 |
5
|
Stark TL, Liberles DA, Holland BR, O'Reilly MM. Analysis of a mechanistic Markov model for gene duplicates evolving under subfunctionalization. BMC Evol Biol 2017; 17:38. [PMID: 28143390 PMCID: PMC5282866 DOI: 10.1186/s12862-016-0848-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication has been identified as a key process driving functional change in many genomes. Several biological models exist for the evolution of a pair of duplicates after a duplication event, and it is believed that gene duplicates can evolve in different ways, according to one process, or a mix of processes. Subfunctionalization is one such process, under which the two duplicates can be preserved by dividing up the function of the original gene between them. Analysis of genomic data using subfunctionalization and related processes has thus far been relatively coarse-grained, with mathematical treatments usually focusing on the phenomenological features of gene duplicate evolution. RESULTS Here, we develop and analyze a mathematical model using the mechanics of subfunctionalization and the assumption of Poisson rates of mutation. By making use of the results from the literature on the Phase-Type distribution, we are able to derive exact analytical results for the model. The main advantage of the mechanistic model is that it leads to testable predictions of the phenomenological behavior (instead of building this behavior into the model a priori), and allows for the estimation of biologically meaningful parameters. We fit the survival function implied by this model to real genome data (Homo sapiens, Mus musculus, Rattus norvegicus and Canis familiaris), and compare the fit against commonly used phenomenological survival functions. We estimate the number of regulatory regions, and rates of mutation (relative to silent site mutation) in the coding and regulatory regions. We find that for the four genomes tested the subfunctionalization model predicts that duplicates most-likely have just a few regulatory regions, and the rate of mutation in the coding region is around 5-10 times greater than the rate in the regulatory regions. This is the first model-based estimate of the number of regulatory regions in duplicates. CONCLUSIONS Strong agreement between empirical results and the predictions of our model suggest that subfunctionalization provides a consistent explanation for the evolution of many gene duplicates.
Collapse
|
|
8 |
12 |
6
|
Ochi H, Kawaguchi A, Tanouchi M, Suzuki N, Kumada T, Iwata Y, Ogino H. Co-accumulation of cis-regulatory and coding mutations during the pseudogenization of the Xenopus laevis homoeologs six6.L and six6.S. Dev Biol 2017; 427:84-92. [PMID: 28501477 DOI: 10.1016/j.ydbio.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
Common models for the evolution of duplicated genes after genome duplication are subfunctionalization, neofunctionalization, and pseudogenization. Although the crucial roles of cis-regulatory mutations in subfunctionalization are well-documented, their involvement in pseudogenization and/or neofunctionalization remains unclear. We addressed this issue by investigating the evolution of duplicated homeobox genes, six6.L and six6.S, in the allotetraploid frog Xenopus laevis. Based on a comparative expression analysis, we observed similar eye-specific expression patterns for the two loci and their single ortholog in the ancestral-type diploid species Xenopus tropicalis. However, we detected lower levels of six6.S expression than six6.L expression. The six6.S enhancer sequence was more highly diverged from the orthologous enhancer of X. tropicalis than the six6.L enhancer, and showed weaker activity in a transgenic reporter assay. Based on a phylogenetic analysis of the protein sequences, we observed greater divergence between X. tropicalis Six6 and Six6.S than between X. tropicalis Six6 and Six6.L, and the observed mutations were reminiscent of a microphthalmia mutation in human SIX6. Misexpression experiments showed that six6.S has weaker eye-enlarging activity than six6.L, and targeted disruption of six6.L reduced the eye size more significantly than that of six6.S. These results suggest that enhancer attenuation stimulates the accumulation of hypomorphic coding mutations, or vice versa, in one duplicated gene copy and facilitates pseudogenization. We also underscore the value of the allotetraploid genome of X. laevis as a resource for studying latent pathogenic mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
11 |
7
|
Miao Y, Chen H, Xu W, Yang Q, Liu C, Huang L. Structural mutations of small single copy (SSC) region in the plastid genomes of five Cistanche species and inter-species identification. BMC PLANT BIOLOGY 2022; 22:412. [PMID: 36008757 PMCID: PMC9404617 DOI: 10.1186/s12870-022-03682-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cistanche is an important genus of Orobanchaceae, with critical medicinal, economic, and desertification control values. However, the phylogenetic relationships of Cistanche genus remained obscure. To date, no effective molecular markers have been reported to discriminate effectively the Cistanche closely related species reported here. In this study, we obtained and characterized the plastomes of four Cistanche species from China, to clarify the phylogenetic relationship within the genus, and to develop molecular markers for species discrimination. RESULTS: Four Cistanche species (Cistanche deserticola, Cistanche salsa, Cistanche tubulosa and Cistanche sinensis), were deep-sequenced with Illumina. Their plastomes were assembled using SPAdes and annotated using CPGAVAS2. The plastic genomes were analyzed in detail, finding that all showed the conserved quadripartite structure (LSC-IR-SSC-IR) and with full sizes ranging from 75 to 111 Kbp. We observed a significant contraction of small single copy region (SSC, ranging from 0.4-29 Kbp) and expansion of inverted repeat region (IR, ranging from 6-30 Kbp), with C. deserticola and C. salsa showing the smallest SSCs with only one gene (rpl32). Compared with other Orobanchaceae species, Cistanche species showed extremely high rates of gene loss and pseudogenization, as reported for other parasitic Orobanchaceae species. Furthermore, analysis of sequence divergence on protein-coding genes showed the three genes (rpl22, clpP and ycf2) had undergone positive selection in the Cistanche species under study. In addition, by comparison of all available Cistanche plastomes we found 25 highly divergent intergenic spacer (IGS) regions that were used to predict two DNA barcode markers (Cis-mk01 and Cis-mk02 based on IGS region trnR-ACG-trnN-GUU) and eleven specific DNA barcode markers using Ecoprimer software. Experimental validation showed 100% species discrimination success rate with both type of markers. CONCLUSION Our findings have shown that Cistanche species are an ideal model to investigate the structure variation, gene loss and pseudogenization during the process of plastome evolution in parasitic species, providing new insights into the evolutionary relationships among the Cistanche species. In addition, the developed DNA barcodes markers allow the proper species identification, ensuring the effective and safe use of Cistanche species as medicinal products.
Collapse
|
research-article |
3 |
9 |
8
|
Omelchenko DO, Krinitsina AA, Belenikin MS, Konorov EA, Kuptsov SV, Logacheva MD, Speranskaya AS. Complete plastome sequencing of Allium paradoxum reveals unusual rearrangements and the loss of the ndh genes as compared to Allium ursinum and other onions. Gene 2019; 726:144154. [PMID: 31589962 DOI: 10.1016/j.gene.2019.144154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/12/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
In this work the complete chloroplast DNAs of Allium paradoxum and Allium ursinum, two edible species of Allium subg. Amerallium (the first lineage), were sequenced, assembled, annotated, and compared with complete Allium plastomes of the second and third evolutionary lines from GenBank database. The A. ursinum plastome contains 90 predicted genes (81 unique) including 5 pseudogenes, while A. paradoxum has 88 predicted genes (79 unique) including 19 pseudogenes. The comparative analysis has revealed that the A. paradoxum plastome differs markedly from those of other species. Due to many deletions, the A. paradoxum plastome is the shortest of known for Allium species, being only 145,819 bp long. The most prominent distinctions are (1) a 4825 bp long local inversion that spans from the ndhE to the rpl32 gene in the small single copy region and (2) pseudogenization, or the loss of all NADH-genes. In contrast, the plastome of A. ursinum - a species from the first evolutionary line (as well as A. paradoxum) - resembles the Allium species of the second and third evolutionary lines, showing no large rearrangements or discrepancies in gene content. It is unclear yet whether only A. paradoxum was affected by some evolutionary events or its close relatives from both sect. Briseis and other sections of Amerallium were altered as well. We speculate the sunlight-intolerant, shade-loving nature of A. paradoxum and the impairment of the ndh genes in its plastome could be interrelated phenomena.
Collapse
|
Journal Article |
6 |
7 |
9
|
Castillo AI, Andreína Pacheco M, Escalante AA. Evolution of the merozoite surface protein 7 (msp7) family in Plasmodium vivax and P. falciparum: A comparative approach. INFECTION GENETICS AND EVOLUTION 2017; 50:7-19. [PMID: 28163236 DOI: 10.1016/j.meegid.2017.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/17/2023]
Abstract
Malaria parasites (genus Plasmodium) are a diverse group found in many species of vertebrate hosts. These parasites invade red blood cells in a complex process comprising several proteins, many encoded by multigene families, one of which is merozoite surface protein 7 (msp7). In the case of Plasmodium vivax, the most geographically widespread human-infecting species, differences in the number of paralogs within multigene families have been previously explained, at least in part, as potential adaptations to the human host. To explore this in msp7, we studied its orthologs in closely related nonhuman primate parasites; investigating both paralog evolutionary history and genetic polymorphism. The emerging patterns were then compared with the human parasite Plasmodium falciparum. We found that the evolution of the msp7 family is consistent with a birth-and-death model, where duplications, pseudogenizations, and gene loss events are common. However, all paralogs in P. vivax and P. falciparum had orthologs in their closely related species in non-human primates indicating that the ancestors of those paralogs precede the events leading to their origins as human parasites. Thus, the number of paralogs cannot be explained as an adaptation to human hosts. Although there is no functional information for msp7 in P. vivax, we found evidence for purifying selection in the genetic polymorphism of some of its paralogs as well as their orthologs in closely related non-human primate parasites. We also found evidence indicating that a few of P. vivax's paralogs may have diverged from their orthologs in non-human primates by episodic positive selection. Hence, they may had been under selection when the lineage leading to P. vivax diverged from the Asian non-human primates and switched into Homininae. All these lines of evidence suggest that msp7 is functionally important in P. vivax.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
7 |
10
|
Guo X, Liu C, Wang H, Zhang G, Yan H, Jin L, Su W, Ji Y. The complete plastomes of two flowering epiparasites (Phacellaria glomerata and P. compressa): Gene content, organization, and plastome degradation. Genomics 2020; 113:447-455. [PMID: 33370586 DOI: 10.1016/j.ygeno.2020.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/10/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
A plant parasite obligately parasitizing another plant parasite is referred to as epiparasite, which is extremely rare in angiosperms, and their complete plastome sequences have not been characterized to date. In this study, the complete plastomes of two flowering epiparasites: Phacellaria compressa and P. glomerata (Amphorogynaceae, Santalales) were sequenced. The plastomes of both species are of similar size, structure, gene content, and arrangement of genes to other hemiparasites in Santalales. Their plastomes were characterized by the functional loss of plastid-encoded NAD(P)H-dehydrogenase and infA genes, which strongly coincides with the general pattern of plastome degradation observed in Santalales hemiparasites. Our study demonstrates that the relatively higher level of nutritional reliance on the host plants and the reduced vegetative bodies of P. compressa and P. glomerata do not appear to cause any unique plastome degradation compared with their closely related hemiparasites.
Collapse
|
Journal Article |
5 |
5 |
11
|
Abstract
In the human the peptide Humanin is produced from the small Humanin gene which is embedded as a gene-within-a-gene in the 16S ribosomal molecule of the mitochondrial DNA (mtDNA). The peptide itself appears to be significant in the prevention of cell death in many tissues and improve cognition in animal models. By using simple data mining techniques, it is possible to show that 99.4% of the human Humanin sequences in the GenBank database are unaffected by mutations. However, in other vertebrates, pseudogenization of the Humanin gene is a common feature; occurring apparently randomly in some species and not others. The persistence, or loss, of a functional Humanin gene may be an important factor in laboratory animals, especially if they are being used as animal models in studies of Alzheimer's disease (AD). The exact reason why Humanin underwent pseudogenization in some vertebrate species during their evolution remains to be determined. This study was originally planned to review the available information about Humanin and it was a surprise to be able to show that pseudogenization has occurred in a gene in the mtDNA and is not restricted solely to chromosomal genes.
Collapse
|
|
7 |
3 |
12
|
Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC PLANT BIOLOGY 2021; 21:248. [PMID: 34058997 DOI: 10.21203/rs.3.rs-257472/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. RESULTS Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. CONCLUSIONS We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Collapse
|
|
4 |
2 |
13
|
Neves F, Abrantes J, Lopes AM, Fusinatto LA, Magalhães MJ, van der Loo W, Esteves PJ. Evolution of CCL16 in Glires (Rodentia and Lagomorpha) shows an unusual random pseudogenization pattern. BMC Evol Biol 2019; 19:59. [PMID: 30786851 PMCID: PMC6383237 DOI: 10.1186/s12862-019-1390-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Background The C-C motif chemokine ligand 16 (CCL16) is a potent pro-inflammatory chemokine and a chemoattractant for monocytes and lymphocytes. In normal plasma, it is present at high concentrations and elicits its effects on cells by interacting with cell surface chemokine receptors. In the European rabbit and in rodents such as mouse, rat and guinea pig, CCL16 was identified as a pseudogene, while in the thirteen-lined ground squirrel it appears to be potentially functional. To gain insight into the evolution of this gene in the superorder Glires (rodents and lagomorphs), we amplified the CCL16 gene from eleven Leporidae and seven Ochotonidae species. Results We compared our sequences with CCL16 sequences of twelve rodent species retrieved from public databases. The data show that for all leporid species studied CCL16 is a pseudogene. This is primarily due to mutations at the canonical Cys Cys motif, creating either premature stop codons, or disrupting amino acid replacements. In the Mexican cottontail, CCL16 is pseudogenized due to a frameshift deletion. Additionally, in the exon 1 (signal peptide), there are frameshift deletions present in all leporids studied. In contrast, in Ochotona species, CCL16 is potentially functional, except for an allele in Hoffmann’s pika. In rodents, CCL16 is functional in a number of species, but patterns of pseudogenization similar to those observed in lagomorphs also exist. Conclusions Our results suggest that while functional in the Glires ancestor, CCL16 underwent pseudogenization in some species. This process occurred stochastically or in specific lineages at different moments in the evolution of Glires. These observations suggest that the CCL16 had different evolutionary constrains in the Glires group that could be associated with the CCL16 biological function. Electronic supplementary material The online version of this article (10.1186/s12862-019-1390-7) contains supplementary material, which is available to authorized users.
Collapse
|
|
6 |
2 |
14
|
Jia Y, Liu X. Polyploidization and pseudogenization in allotetraploid frog Xenopus laevis promote the evolution of aquaporin family in higher vertebrates. BMC Genomics 2020; 21:525. [PMID: 32727380 PMCID: PMC7392679 DOI: 10.1186/s12864-020-06942-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aquaporins (AQPs), as members of the major intrinsic protein (MIP) superfamily, facilitated the permeation of water and other solutes and are involved in multiple biological processes. AQP family exists in almost all living organisms and is highly diversified in vertebrates in both classification and function due to genome wide duplication. While some AQP orthologs have been lost in higher vertebrates through evolution. RESULT Genome-wide comparative analyses of the AQP family between allotetraploid frog Xenopus laevis (Xla) and diploid frog Xenopus tropicalis (Xtr), based on the genome assemblies, revealed that the number of AQPs in Xla genome nearly doubled that in Xtr (32 vs. 19). Synteny analysis indicated that the distribution of the retained AQPs in Xla subgenomes (17 in Xla. L, the longer homeolog of Xla genome and 15 in Xla. S, the shorter homeolog of Xla genome) were highly symmetrical when compared with that in Xtr genome. Remarkably, two members in Xla. L and four members in Xla. S were lost through evolution. Blast analysis revealed that the lost AQPs in Xla are pseudogenized via either the deletion of some exons or some single nucleotide insertions or deletions that lead the reading frame shift. Additionally, comparative genomic analyses suggested that the orthologs of AQPs that with one copy absence in Xla are also prone to be lost in higher vertebrates. CONCLUSION This study revealed that polyploidization and subsequent pseudogenization and deletion in Xla genome promote the evolution of AQP family in higher vertebrates. Besides, our results would also contribute to understanding the evolution of AQP family.
Collapse
|
|
5 |
1 |
15
|
Almeida-Silva MA, Braga-Ferreira RS, Targueta CP, Corvalán LCJ, Silva-Neto CM, Franceschinelli EV, Sobreiro MB, Nunes R, Telles MPC. Chloroplast genomes of Simarouba Aubl., molecular evolution and comparative analyses within Sapindales. Sci Rep 2024; 14:21358. [PMID: 39266625 PMCID: PMC11393331 DOI: 10.1038/s41598-024-71956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Simarouba, a neotropical genus in the family Simaroubaceae, currently lacks comprehensive genomic data in existing databases. This study aims to fill this gap by providing genomic resources for three Simarouba species, S. amara, S. versicolor, and S. glauca. It also aims to perform comparative molecular evolutionary analyses in relation to other species within the order Sapindales. The analysis of these three Simarouba species revealed the presence of the typical quadripartite structure expected in plastomes. However, some pseudogenization events were identified in the psbC, infA, rpl22, and ycf1 genes. In particular, the CDS of the psbC gene in S. amara was reduced from 1422 bp to 584 bp due to a premature stop codon. Nucleotide diversity data pointed to gene and intergenic regions as promising candidates for species and family discrimination within the group, specifically matK, ycf1, ndhF, rpl32, petA-psbJ, and trnS-trnG. Selection signal analyses showed strong evidence for positive selection on the rpl23 gene. Phylogenetic analyses indicated that S. versicolor and S. glauca have a closer phylogenetic relationship than S. amara. We provide chloroplast genomes of three Simaruba species and use them to elucidate plastome evolution, highlight the presence of pseudogenization, and identify potential DNA barcode regions.
Collapse
|
Comparative Study |
1 |
|
16
|
Gene loss, pseudogenization, and independent genome reduction in non-photosynthetic species of Cryptomonas (Cryptophyceae) revealed by comparative nucleomorph genomics. BMC Biol 2022; 20:227. [PMID: 36209116 PMCID: PMC9548191 DOI: 10.1186/s12915-022-01429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cryptophytes are ecologically important algae of interest to evolutionary cell biologists because of the convoluted history of their plastids and nucleomorphs, which are derived from red algal secondary endosymbionts. To better understand the evolution of the cryptophyte nucleomorph, we sequenced nucleomorph genomes from two photosynthetic and two non-photosynthetic species in the genus Cryptomonas. We performed a comparative analysis of these four genomes and the previously published genome of the non-photosynthetic species Cryptomonas paramecium CCAP977/2a. Results All five nucleomorph genomes are similar in terms of their general architecture, gene content, and gene order and, in the non-photosynthetic strains, loss of photosynthesis-related genes. Interestingly, in terms of size and coding capacity, the nucleomorph genome of the non-photosynthetic species Cryptomonas sp. CCAC1634B is much more similar to that of the photosynthetic C. curvata species than to the non-photosynthetic species C. paramecium. Conclusions Our results reveal fine-scale nucleomorph genome variation between distantly related congeneric taxa containing photosynthetic and non-photosynthetic species, including recent pseudogene formation, and provide a first glimpse into the possible impacts of the loss of photosynthesis on nucleomorph genome coding capacity and structure in independently evolved colorless strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01429-6.
Collapse
|
|
3 |
|
17
|
Eckhart L, Sachslehner AP, Steinbinder J, Fischer H. Caspase Domain Duplication During the Evolution of Caspase-16. J Mol Evol 2025:10.1007/s00239-025-10252-w. [PMID: 40392285 DOI: 10.1007/s00239-025-10252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
Caspases are cysteine-dependent aspartate-directed proteases which have critical functions in programmed cell death and inflammation. Their catalytic activity depends on a catalytic dyad of cysteine and histidine within a characteristic protein fold, the so-called caspase domain. Here, we investigated the evolution of caspase-16 (CASP16), an enigmatic member of the caspase family, for which only a partial human gene had been reported previously. The presence of CASP16 orthologs in placental mammals, marsupials and monotremes suggests that caspase-16 originated prior to the divergence of the main phylogenetic clades of mammals. Caspase-16 proteins of various species contain a carboxy-terminal caspase domain and an amino-terminal prodomain predicted to fold into a caspase domain-like structure, which is a unique feature among caspases known so far. Comparative sequence analysis indicates that the prodomain of caspase-16 has evolved by the duplication of exons encoding the caspase domain, whereby the catalytic site was lost in the amino-terminal domain and conserved in the carboxy-terminal domain of caspase-16. The murine and human orthologs of CASP16 contain frameshift mutations and therefore represent pseudogenes (CASP16P). CASP16 of the chimpanzee displays more than 98% nucleotide sequence identity with the human CASP16P gene but, like CASP16 genes of other primates, has an intact protein coding sequence. We conclude that caspase-16 structurally differs from other mammalian caspases, and the pseudogenization of CASP16 distinguishes humans from their phylogenetically closest relatives.
Collapse
|
|
1 |
|
18
|
Yoon YB, Woo JW, Jun Park B, Park K, Kang S, Chung D, Lee DH, Do Y, Park SC, Cho SJ. Multiple diptericins of the black soldier fly (Hermetia illucens) differentially respond to bacterial challenges. J Invertebr Pathol 2024; 207:108234. [PMID: 39542086 DOI: 10.1016/j.jip.2024.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Due to its significant bioconversion potential, the black soldier fly (BSF), Hermetia illucens, shows great promise as a cost-effective alternative for recycling biological waste. BSF larvae (BSFL) are constantly exposed high levels of pathogenic microorganisms, including bacteria and fungi, which endows BSFL with a robust immune system. Diptericin, a type of glycine-rich antimicrobial peptide (AMP) that exhibits activity against gram-negative bacteria, contains proline-rich domains (P-domains) and glycine-rich domains (G-domains); these domains are separated by a furin cleavage site. Although the presence and expression patterns of BSFL diptericins have been documented, their basic molecular properties remain unclear. To the best of our knowledge, in the present study, we report, for the first time, the molecular characteristics of seven full-length cDNA sequences of H. illucens diptericins and their expression patterns following challenges with gram-positive or gram-negative bacteria. Seven diptericin paralogs are located in tandem on chromosome 2, spanning a total length of 38.6 kb, with an average intergenic distance of approximately 5.5 kb. Sequence analysis revealed that three diptericins (HipDptA/B/C) are pseudogenized due to premature stop codons. In contrast, the other diptericins (HiDpt1/2/3/4) possess mature-sized G-domains rich in glycine at the C-terminus, which are essential for AMP activity, along with proline-rich domain (P-domain) in the N-terminal and either two (HiDpt1/2/3) or one (HiDpt4) putative furin cleavage sites (R-X-R/K-R) between these domains. These furin cleavage sites possibly produce a glycine-rich AMP and one or two additional peptides with unknown functions. Similar to other diptericins, the expression of HiDpt1/2/3/4 mRNAs is predominantly induced by gram-negative bacteria, increasing typically by ≥ 1,000-fold (up to 5,000-fold). Additionally, HiDpt1/3/4 show significant responses to gram-positive bacteria such as Micrococcus luteus, though not as strongly as to gram-negative bacteria. These findings suggest that HiDpts function as a rapid, effective, and broad-spectrum first-line defense mechanism in the BSFL immune system.
Collapse
|
|
1 |
|
19
|
Zaccaron AZ, Stergiopoulos I. Analysis of five near-complete genome assemblies of the tomato pathogen Cladosporium fulvum uncovers additional accessory chromosomes and structural variations induced by transposable elements effecting the loss of avirulence genes. BMC Biol 2024; 22:25. [PMID: 38281938 PMCID: PMC10823647 DOI: 10.1186/s12915-024-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.
Collapse
|
research-article |
1 |
|
20
|
Nagasawa K, Kitano T. Pseudogenization of the Hair-Related Genes PADI3 and S100A3 in Cetaceans and Hippopotamus amphibius. J Mol Evol 2023; 91:745-760. [PMID: 37787841 DOI: 10.1007/s00239-023-10133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Hair-related genes in mammals play important roles in the development and maintenance of hair and other keratinous structures in mammals. The peptidyl arginine deiminase 3 (PADI3) gene encodes an enzyme that catalyzes the conversion of arginine residues to citrulline. The S100 calcium binding protein A3 (S100A3) gene encodes a protein that is highly expressed in the hair cuticle and contains arginine residues that are converted to citrullines by PADI enzymes. In this study, we investigated the pseudogenization events of PADI3 and S100A3 in cetaceans and Hippopotamus amphibius. We found that PADI3 underwent three independent pseudogenization events during cetacean evolution, in baleen whales, toothed cetaceans other than Physeter catodon, and P. catodon. Notably, the entire PADI3 gene is absent in the baleen whales. Pseudogenization of S100A3 occurred independently in cetaceans and H. amphibius. Interestingly, we found that in cetaceans S100A3 underwent pseudogenization before PADI3, suggesting that differential selection pressures were acting on the two genes. Our findings provide valuable insights into the molecular evolution of these genes in cetaceans and hippopotamuses, highlighting their importance for understanding the evolution of hair-related genes.
Collapse
|
|
2 |
|
21
|
Liu Y, Wang L, Chen J, Solangi TH, Li R, Le M, Xiangpeng Y. ZNF280AY: A Pseudogene on the Ovine Y Chromosome and Its Copy Number Variation (CNV) Associated with Testicular Size in Hu Sheep. J Anim Sci 2025:skaf202. [PMID: 40514799 DOI: 10.1093/jas/skaf202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Indexed: 06/16/2025] Open
Abstract
Y-chromosome gene copy number variations (CNV) are closely associated with testicular development and male fertility. ZNF280AY, originating from the transposition of the ZNF280A gene, has been identified as a multicopy gene in the male-specific region of the Y chromosome within the Bovidae family. However, the genomic structure of ZNF280AY and its impact on male fertility through CNV remain poorly characterized. Our study revealed that ZNF280AY exhibits pseudogene characteristics in sheep, as evidenced by disrupted coding sequences and the absence of mRNA expression across seven somatic tissues (heart, liver, spleen, lung, kidney, testes, muscle) at 6 months of age. The absence of expression was further found at various developmental stages (0-12 months). Comparative genomic analysis confirmed sequence homology (>88%) with bovine orthologs, while structural divergence supports its pseudogenization trajectory. Large-scale qPCR analysis of 723 rams from eight breeds revealed substantial CNV (15-122 copies, median=42), with significant negative correlations between ZNF280AY copy number and testicular morphometric parameters (left testicular length: r = -0.096, P = 0.044; left testicular width: r = -0.112, P = 0.020; right testicular length: r = -0.136, P = 0.005). These findings establish ZNF280AY CNV as a novel molecular marker for ram testicular development evaluation, providing critical insights for marker-assisted selection in sheep breeding programs.
Collapse
|
|
1 |
|
22
|
Nagashima A, Nagai N, Ota C, Ushio K, Kato A. Retention and pseudogenization of aquaporin-10 in Rodentia. Biochem Biophys Res Commun 2025; 756:151608. [PMID: 40086358 DOI: 10.1016/j.bbrc.2025.151608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Vertebrates exhibit diversity in the presence and number of aquaporin (Aqp)-10 genes. In Rodentia, mice possess an Aqp10 pseudogene, whereas guinea pigs possess an intact Aqp10. However, Aqp10 retention and pseudogenization history in various rodent lineages remains unclear. Therefore, in this study, we aimed to investigate the molecular evolution of Aqp10 using the recent increasingly decoded rodent genome sequences. We analyzed Aqp10 in the genomes of 43 rodent species belonging to 14 families and found that Aqp10 was pseudogenized in 13 species of three families in the Myomorpha suborder. In contrast, a single intact Aqp10 was retained in the other 30 rodent species, with no Aqp10 pseudogene found in the Castorimorpha, Hystricomorpha, and Sciuromorpha suborders. Additionally, we investigated the tissue expression levels of aquaglyceroporin genes in guinea pigs and rats via reverse transcription-polymerase chain reaction and detected Aqp10 expression in the guinea pig intestines. Notably, none of the examined rat organs expressed Aqp10; however, Aqp7 was expressed in the rat intestines. In situ hybridization showed that guinea pig Aqp10 was expressed in the intestinal epithelial cells. Moreover, AQP10 was permeable to water, glycerol, urea, and boric acid in Xenopus oocytes. Overall, these results clarify the Aqp10 pseudogenization history in Rodentia and suggest guinea pigs as excellent small animal models to analyze the intestinal AQP10 functions.
Collapse
|
|
1 |
|
23
|
Tang L, Wang T, Hou L, Zhang G, Deng M, Guo X, Ji Y. Comparative and phylogenetic analyses of Loranthaceae plastomes provide insights into the evolutionary trajectories of plastome degradation in hemiparasitic plants. BMC PLANT BIOLOGY 2024; 24:406. [PMID: 38750463 PMCID: PMC11097404 DOI: 10.1186/s12870-024-05094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.
Collapse
|
Comparative Study |
1 |
|