Biosynthesis of selenium rich exopolysaccharide (Se-EPS) by
Pseudomonas PT-8 and characterization of its antioxidant activities.
Carbohydr Polym 2016;
142:230-9. [PMID:
26917395 DOI:
10.1016/j.carbpol.2016.01.058]
[Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
Biosynthesis of organo-selenium is achieved by submerged fermentation of selenium-tolerant Pseudomonas PT-8. The end product of metabolic process is selenium-bearing exopolysaccharide (Se-EPS), which contains a higher content of uronic acid than the exopolysaccharide (EPS) by the strain without selenium in the culture medium. Selenium content in Se-EPS reached a maximum yield of 256.7 mg/kg when using an optimized culture condition. Crude Se-EPS was purified into two fractions-a pH neutral Se-EPS-1 and an acidic Se-EPS-2. Structure and chemical composition of Se-EPS-2 were investigated by chromatographic analyses. Results showed that Se-EPS-2 was a homogenous polysaccharide with molecular weight of 7.3 kDa, consisting of monosaccharides, rhamnose, arabinose, xylose, mannose, glucose and galactose with a molar ratio of 19.58:19.28:5.97:18.99:23.70:12.48, respectively. Compared to the EPS, the content of rhamnose in Se-EPS increased and molecular weight decreased. The Se-EPS had strong scavenging actions on DPPH•, •OH and •O2(-), which is much higher than the EPS.
Collapse