Zakharova NM, Tarahovsky YS, Komelina NP, Khrenov MO, Kovtun AL. Pharmacological torpor prolongs rat survival in lethal normobaric hypoxia.
J Therm Biol 2021;
98:102906. [PMID:
34016333 DOI:
10.1016/j.jtherbio.2021.102906]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Resistance to hypoxia is one of the most prominent features of natural hibernation and is expected to be present in the pharmacological torpor (PT) that simulates hibernation. We studied resistance to lethal hypoxia (3.5% oxygen content) in rats under PT. To initiate PT, we used the previously developed pharmacological composition (PC) which, after a single intravenous injection, can induce a daily decrease in Tb by 7 °C-8 °C at the environmental temperature of 22 °C-23 °C. Half-survival (median) time of rats in lethal hypoxia was found to increase from 5 ± 0.8 min in anesthetized control rats to 150 ± 12 min in rats injected with PC, which is a 30-fold increase. Behavioral tests after PT and hypoxia, including the traveling distance, the number of rearing and grooming episodes, revealed that animal responses are significantly restored within a week. It is assumed that the discovered unprecedented resistance of artificially torpid rats to lethal hypoxia may open up broad prospects for the therapeutic use of PT for preconditioning to various damaging factors, treatment of diseases, and extend the so-called "golden hour" for lifesaving interventions.
Collapse