1
|
Arbulu M, Sampedro MC, Gómez-Caballero A, Goicolea MA, Barrio RJ. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines. Anal Chim Acta 2014; 858:32-41. [PMID: 25597799 DOI: 10.1016/j.aca.2014.12.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC-ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
54 |
2
|
Hjelmeland AK, Zweigenbaum J, Ebeler SE. Profiling monoterpenol glycoconjugation in Vitis vinifera L. cv. Muscat of Alexandria using a novel putative compound database approach, high resolution mass spectrometry and collision induced dissociation fragmentation analysis. Anal Chim Acta 2015; 887:138-147. [PMID: 26320795 DOI: 10.1016/j.aca.2015.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/19/2022]
Abstract
In this work we present a novel approach for the identification of plant metabolites using ultrahigh performance liquid chromatography coupled to accurate mass time-of-flight mass spectrometry. The workflow involves developing an in-house compound database consisting of exact masses of previously identified as well as putative compounds. The database is used to screen accurate mass spectrometry (MS) data to identify possible compound matches. Subsequent tandem MS data is acquired for possible matches and used for structural elucidation. The methodology is applied to profile monoterpene glycosides in Vitis vinifera cv. Muscat of Alexandria grape berries over three developmental stages. Monoterpenes are a subclass of terpenes, the largest class of plant secondary metabolites, and are found in two major forms in the plant, "bound" to one or more sugar moieties or "free" of said sugar moieties. In the free form, monoterpenes are noted for their fragrance and play important roles in plant defense and as attractants for pollinators. However, glycoconjugation renders these compounds odorless, and it is this form that the plant uses for monoterpene storage. In order to gain insight into monoterpene biochemistry and their fate in the plant an analysis of intact glycosides is essential. Eighteen monoterpene glycosides were identified including a monoterpene trisaccharide glycoside, which is tentatively identified here for this first time in any plant. Additionally, while previous studies have identified monoterpene malonylated glucosides in other grapevine tissue, we tentatively identify them for the first time in grape berries. This analytical approach can be readily applied to other plants and the workflow approach can also be used for other classes of compounds. This approach, in general, provides researchers with data to support the identification of putative compounds, which is especially useful when no standard is available.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
34 |
3
|
Investigation of liquid chromatography quadrupole time-of-flight mass spectrometry performance for identification and determination of hydroxylated stilbene antioxidants in wine. J Chromatogr A 2014; 1337:162-70. [PMID: 24630056 DOI: 10.1016/j.chroma.2014.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/30/2014] [Accepted: 02/18/2014] [Indexed: 01/09/2023]
Abstract
The performance of liquid chromatography (LC) followed by quadrupole time-of-flight (QTOF) mass spectrometry (MS) for the determination of hydroxylated stilbene compounds in red and white wine samples is assessed. When combined with a solid-phase extraction step, LC-QTOF-MS allowed the selective determination of five target compounds (trans- and cis-resveratrol, trans-piceatannol, trans-piceid and trans-pterostilbene) attaining limits of quantification between 3 and 20ngmL(-1) and providing linear responses up to 4000ngmL(-1). Recoveries, established against standards prepared in methanol, varied between 93% and 115%. The distribution of the above species in wine is illustrated with the analysis of 15 samples. Trans-pterostilbene remained undetected in samples, whereas trans-piceid and trans-resveratrol maximum concentrations exceed the 6000ngmL(-1) level. Values for trans-piceatannol and cis-resveratrol ranged from non detected to 600ngmL(-1), and from 11 to more than 3200ngmL(-1), respectively. Accurate MS and MS/MS scan spectra were used to investigate the existence of reduced (dihydro) and oxidized (dehydro) forms of resveratrol and picetannol in the processed samples. Dihydro derivatives appeared, as free compounds, in 100% (dihydro-piceatannol) and 40% (dihydro-resveratrol) of the samples. On the other hand, dehydro derivatives were noticed as conjugated (glycosylated) species, with detection frequencies of 100% and 47% for dehydro-glucosyl-resveratrol and dehydro-glucosyl-piceatannol, respectively. Above findings confirm the suitability of LC-QTOF-MS for the comprehensive study of hydroxylated stilbene antioxidants in wine samples.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
27 |
4
|
Chan MZA, Lau H, Lim SY, Li SFY, Liu SQ. Untargeted LC-QTOF-MS/MS based metabolomics approach for revealing bioactive components in probiotic fermented coffee brews. Food Res Int 2021; 149:110656. [PMID: 34600658 DOI: 10.1016/j.foodres.2021.110656] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Amidst trends in non-dairy probiotic foods and functional coffees, we recently developed a fermented coffee brew containing high live counts of the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745. However, probiotic fermentation did not alter levels of principal coffee bioactive components based on targeted analyses. Here, to provide therapeutic justification compared to other non-fermented coffee brews, we aimed to discover postbiotics in coffee brews fermented with L. rhamnosus GG and/or S. boulardii CNCM-I745. By using an untargeted LC-QTOF-MS/MS based metabolomics approach coupled with validated multivariate analyses, 37 differential metabolites between fermentation treatments were putatively annotated. These include the production of postbiotics such as 2-isopropylmalate by S. boulardii CNCM-I745, and aromatic amino acid catabolites (indole-3-lactate, p-hydroxyphenyllactate, 3-phenyllactate), and hydroxydodecanoic acid by L. rhamnosus GG. Overall, LC-QTOF based untargeted metabolomics can be an effective approach to uncover postbiotics, which may substantiate additional potential functionalities of probiotic fermented foods compared to their non-fermented counterparts.
Collapse
|
|
4 |
24 |
5
|
Xia B, Zhou Y, Tan HS, Ding LS, Xu HX. Advanced ultra-performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometric methods for simultaneous screening and quantification of triterpenoids in Poria cocos. Food Chem 2013; 152:237-244. [PMID: 24444932 DOI: 10.1016/j.foodchem.2013.11.151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/17/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
Abstract
A sensitive, precise and accurate method was developed to screen and quantify triterpenoids based on ultra-performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS). An exact neutral loss scan of 62.0004 Da (CH2O3) was used to selectively detect triterpenoids in Poria cocos, followed by a survey scan for exact masses of precursor and fragment ions of these triterpenoids. The developed method was applied to quantify seven major triterpenoids in 40 P. cocos samples of different origins within 18 min, and a total of 31 triterpenoids were unequivocally or tentatively identified. Principal component analysis of these samples showed a clear separation of three groups, and ten triterpenoids play key roles in differentiating these samples were obtained from the OPLS-DA variable influence on projection (VIP) plot and then unequivocally or tentatively identified. The developed method can be applied for rapid bitterness evaluation, quality control and authenticity establishment of P. cocos.
Collapse
|
|
12 |
23 |
6
|
Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent. J Chromatogr A 2018; 1537:10-20. [PMID: 29336808 DOI: 10.1016/j.chroma.2018.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/24/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
A simple and effective method of miniaturized solid-phase extraction (mini-SPE) was developed for the simultaneous purification and enrichment of macrolide antibiotics (MACs) (i.e. azithromycin, clarithromycin, erythromycin, lincomycin and roxithromycin) from honey and skim milk. Mesoporous MCM-41 silica was synthesized and used as sorbent in mini-SPE. Several key parameters affecting the performance of mini-SPE procedure were thoroughly investigated, including sorbent materials, amount of sorbent and elution solvents. Under the optimized condition, satisfactory linearity (r2 > 0.99), acceptable precision (RSDs, 0.3-7.1%), high sensitivity (limit of detection in the range of 0.01-0.76 μg/kg), and good recoveries (83.21-105.34%) were obtained. With distinct advantages of simplicity, reliability and minimal sample requirement, the proposed mini-SPE procedure coupled with ultrahigh performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry could become an alternative tool to analyze the residues of MACs in complex food matrixes.
Collapse
|
Journal Article |
7 |
23 |
7
|
Fan C, Deng J, Yang Y, Liu J, Wang Y, Zhang X, Fai K, Zhang Q, Ye W. Multi-ingredients determination and fingerprint analysis of leaves from Ilex latifolia using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2013; 84:20-9. [PMID: 23777644 DOI: 10.1016/j.jpba.2013.05.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022]
Abstract
An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method integrating multi-ingredients determination and fingerprint analysis has been established for quality assessment and control of leaves from Ilex latifolia. The method possesses the advantages of speediness, efficiency, accuracy, and allows the multi-ingredients determination and fingerprint analysis in one chromatographic run within 13min. Multi-ingredients determination was performed based on the extracted ion chromatograms of the exact pseudo-molecular ions (with a 0.01Da window), and fingerprint analysis was performed based on the base peak chromatograms, obtained by negative-ion electrospray ionization QTOF-MS. The method validation results demonstrated our developed method possessing desirable specificity, linearity, precision and accuracy. The method was utilized to analyze 22 I. latifolia samples from different origins. The quality assessment was achieved by using both similarity analysis (SA) and principal component analysis (PCA), and the results from SA were consistent with those from PCA. Our experimental results demonstrate that the strategy integrated multi-ingredients determination and fingerprint analysis using UPLC-QTOF-MS technique is a useful approach for rapid pharmaceutical analysis, with promising prospects for the differentiation of origin, the determination of authenticity, and the overall quality assessment of herbal medicines.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
22 |
8
|
Wei M, Chen L, Liu J, Zhao J, Liu W, Feng F. Protective effects of a Chotosan Fraction and its active components on β-amyloid-induced neurotoxicity. Neurosci Lett 2016; 617:143-9. [PMID: 26876445 DOI: 10.1016/j.neulet.2016.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/08/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Chotosan (CTS) is a traditional Kampo prescription used to treat chronic headache and hypertension. Recent clinical studies demonstrated that CTS has ameliorative effects on dementia. This study aims to identify the anti-Alzheimer components in CTS. β-amyloid (Aβ) is considered to play a central role in the pathophysiology of Alzheimer's disease. CTS-E, a fraction of CTS, showed significant protective effects on Aβ-induced neurotoxicity. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used for the qualitative analysis of it. Among the identified constituents, neuroprotective effects against Aβ(25-35)-induced neurotoxicity of 10 major compounds were tested by MTT assay. Their inhibitory action on Aβ(1-42) self-induced aggregation was measured by Thioflavin T-binding assay. The results showed that caffeic acid, chlorogenic acid, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid had significant neuroprotective effects on Aβ(25-35)-induced neurotoxicity. Besides these phenolic acids, nobiletin and hesperidin could also inhibit Aβ(1-42) self-induced aggregation. In conclusion, the neuroprotective fraction, CTS-E, could protect PC12 cells from Aβ-induced neurotoxicity. Anti-oxidative effects may at least partly mediate the neuroprotective effects of it. Phenolic acids from Chrysanthemi Flos and flavonoids from Citri Reticulatae Pericarpium might be the effective constituents in CTS-E.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
21 |
9
|
Yefremova Y, Opuni KFM, Danquah BD, Thiesen HJ, Glocker MO. Intact Transition Epitope Mapping (ITEM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1612-1622. [PMID: 28616748 DOI: 10.1007/s13361-017-1654-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Intact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering. Subsequently, immune complexes are dissociated by collision induced fragmentation and the ion signals of the "complex-released peptides," which in effect are the epitope peptides, are recorded in the time-of-flight analyzer of the mass spectrometer. Mixing of an antibody solution with a solution in which antigens or antigen-derived peptides are dissolved is, together with antigen proteolysis, the only required in-solution handling step. Simplicity of sample handling and speed of analysis together with very low sample consumption makes ITEM faster and easier to perform than other experimental epitope mapping methods. Graphical Abstract ᅟ.
Collapse
|
|
8 |
20 |
10
|
Cao J, Peng LQ, Xu JJ. Microcrystalline cellulose based matrix solid phase dispersion microextration for isomeric triterpenoid acids in loquat leaves by ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry. J Chromatogr A 2016; 1472:16-26. [PMID: 27776775 DOI: 10.1016/j.chroma.2016.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/17/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022]
Abstract
An analytical procedure based on matrix solid phase dispersion (MSPD) microextration and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed for the determination of isomeric triterpenoid acids (maslinic acid, corosolic acid, oleanolic acid and ursolic acid) in loquat leaves. Microcrystalline cellulose was used for the first time as a solid sorbent in MSPD microextration. Compared with the traditional extraction methods, the proposed method possessed the advantages of shorter extraction time, and lower consumption of sample, sorbent and organic solvent. The MSPD parameters that influenced the extraction efficiency of isomeric analytes were investigated and optimized in detail. Under the optimized conditions, good linearity was obtained with correlation coefficients higher than 0.9990. The limits of detection and quantification were 19.6-51.6μg/kg and 65.3-171.8μg/kg, respectively. Meanwhile, the recoveries obtained for all the analytes were ranging from 90.1% to 107.5%. Finally, the optimized method was successfully applied for analyzing these isomeric acids in loquat leaves samples obtained from different cultivated areas.
Collapse
|
|
9 |
16 |
11
|
Tak V, Purohit A, Pardasani D, Goud DR, Jain R, Dubey DK. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography- quadrupole time-of-flight mass spectrometry. J Chromatogr A 2014; 1370:80-92. [PMID: 25454132 DOI: 10.1016/j.chroma.2014.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Environmental markers of chemical warfare agents (CWAs) comprise millions of chemical structures. The simultaneous detection and identification of these environmental markers poses difficulty due to their diverse chemical properties. In this work, by using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF), a generic analytical method for the detection and identification of wide range of environmental markers of CWAs (including precursors, degradation and co-products of nerve agents and sesqui-mustards) in drinking water, was developed. The chromatographic analysis of 55 environmental markers of CWAs including isomeric and isobaric compounds was accomplished within 20 min, using 1.8 μm particle size column. Subsequent identification of the compounds was achieved by the accurate mass measurement of either protonated molecule [M+H](+) or ammonium adduct [M+NH4](+) and fragment ions. Isomeric and isobaric compounds were distinguished by chromatographic retention time, characteristic fragment ions generated by both in-source collision induced dissociation (CID) and CID in the collision cell by MS/MS experiments. The exact mass measurement errors for all ions were observed less than 3 ppm with internal calibration. The method limits of detection (LODs) and limits of quantification (LOQs) were determined in drinking water and found to be 1-50 ng mL(-1) and 5-125 ng mL(-1), respectively. Applicability of the proposed method was proved by determining the environmental markers of CWAs in aqueous samples provided by Organization for the Prohibition of Chemical Weapons during 34th official proficiency test.
Collapse
|
Journal Article |
11 |
15 |
12
|
Characterization of rational biomarkers accompanying fever in yeast-induced pyrexia rats using urine metabolic footprint analysis. J Pharm Biomed Anal 2014; 95:68-75. [PMID: 24631712 DOI: 10.1016/j.jpba.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/21/2022]
Abstract
Fever is a prominent feature of diseases and is an ongoing process that is always accompanied by metabolic changes in the body system. Despite the success of temperature regulation theory, the underlying biological process remains unclear. To truly understand the nature of the febrile response, it is crucial to confirm the biomarkers during the entire biological process. In the current study, a 73-h metabolic footprint analysis of the urine from yeast-induced pyrexia rats was performed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Potential biomarkers were selected using orthogonal partial least squares-discriminate analysis (OPLS-DA), the rational biomarkers were verified by Pearson correlation analysis, and the predictive power was evaluated using receiver operator characteristic (ROC) curves. A metabolic network constructed using traditional Chinese medicine (TCM) grammar systems was used to validate the rationality of the verified biomarkers. Finally, five biomarkers, including indoleacrylic acid, 3-methyluridine, tryptophan, nicotinuric acid and PI (37:3), were confirmed as rational biomarkers because their correlation coefficients were all greater than 0.87 and because all of the correlation coefficients between any pair of these biomarkers were higher than 0.75. The areas under the ROC curves were all greater than 0.84, and their combined predictive power was considered reliable because the greatest area under the ROC curve was 0.968. A metabolic network also demonstrated the rationality of these five biomarkers. Therefore, these five metabolites can be adopted as rational biomarkers to reflect the process of the febrile response in inflammation-induced pyrexia.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
12 |
13
|
Bai Y, Chang C, Du F, Tan Z, Bai Y, Liu H. Combination of dynamic pH junction with capillary electrophoresis-mass spectrometry for the determination of systemins in plant samples. Electrophoresis 2014; 35:1984-8. [PMID: 24668451 DOI: 10.1002/elps.201300434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2023]
Abstract
Systemin is an important group of plant peptide hormones participating in the regulation of plant defensive responses. An improved method, based on dynamic pH junction and capillary electrophoresis-quadrupole time-of-flight mass spectrometry, was developed for online enrichment and sensitive determination of trace systemins in plants. After optimization, the online enrichment factors for six target systemins ranged from 90- to 127-fold. The detection limits reached lower than 0.5 nM, which were comparable with the sensitivity of LC-MS method. Satisfactory quantitative results were obtained in terms of linearity (R(2) ≥ 0.993), dynamic range (3-120 ng/mL), and reproducibility (≤6.7%). For the analysis of real plant samples, a rapid sample preparation method was developed, using two steps of SPE purification with different retention and separation mechanisms. Finally, this method realized the successful detection of tomato systemin and tobacco hydroxyproline-rich systemin I from plant leaves with shorter analysis time.
Collapse
|
|
11 |
11 |
14
|
León C, Boix C, Beltrán E, Peñuela G, López F, Sancho JV, Hernández F. Study of cyanotoxin degradation and evaluation of their transformation products in surface waters by LC-QTOF MS. CHEMOSPHERE 2019; 229:538-548. [PMID: 31100625 DOI: 10.1016/j.chemosphere.2019.04.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In the present work, the degradation of three cyanotoxins from the hepatotoxins group was investigated under laboratory-controlled experiments in water samples. Surface waters spiked with microcystin-LR (MC-LR), nodularin (NOD) and cylindrospermopsin (CYN) were subjected to hydrolysis, chlorination and photo-degradation, under both sunlight (SL) and ultraviolet (UV) radiation. A total of 12 transformation products (TPs) were detected and tentatively identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF MS). These comprised: 6 chlorination TPs (3 from CYN and 3 from MC-LR, 2 isomers); 4 UV TPs (all from CYN); and 2 sunlight TPs (one isomer from MC-LR and another from NOD). No TPs were observed under hydrolysis conditions. The chemical structures for all TPs were tentatively proposed based on the accurate-mass QTOF MS full-spectra. Analysis of real-world samples collected from the Peñol reservoir (Antioquia, Colombia) revealed the presence of MC-LR and CYN as well as a sunlight TP identified in the laboratory experiments. Data presented in this article will assist further research on TPs potentially formed in future tertiary degradation processes applied for the removal of organic micro-pollutants in water; as well as improving available knowledge on the toxic implications of cyanobacterial toxins TPs in surface waters.
Collapse
|
|
6 |
9 |
15
|
Meng X, Zhang N, Sun X, Niu Z, Deng Y, Xu J, Bai H, Ma Q. Suspect screening of 200 hazardous substances in plastic toys using ultra-high-performance liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry. J Chromatogr A 2019; 1617:460830. [PMID: 31902577 DOI: 10.1016/j.chroma.2019.460830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
There is an urgent need for the development of efficient and comprehensive analytical methods for organic chemical compounds due to their increasing number and diversity in children's toy products. The presence of these chemicals in toys poses an extreme risk for the health and development of children. In this study, an analytical methodology has been developed using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). This hybrid instrumentation together with an in-house accurate-mass database and a mass spectral library, allows for wide-scope screening and identification of hazardous substances in plastic toys. A total number of 200 compounds belonging to eight chemical families were investigated, such as coloring agents, plasticizers, fragrance allergens, nitrosamines, primary aromatic amines, flame retardants, perfluorinated compounds, and endocrine disruptors. Following a straightforward and efficient dissolution/precipitation method for sample preparation, chemical screening and confirmation were conducted by comparing the experimentally measured exact mass, retention time, and isotopic pattern with the accurate-mass database and by matching the acquired MS/MS spectra against the mass spectral library. The matrix effect, linearity, sensitivity, precision, and recovery of the proposed method were properly evaluated. The obtained limits of detection (LODs) and quantitation (LOQs) were in the range of 0.01-0.98 mg kg-1 and 0.03-2.99 mg kg-1, respectively. The applicability of the developed protocol was verified through the analysis of 55 real plastic toy products.
Collapse
|
Journal Article |
6 |
8 |
16
|
A multidimensional chromatography/high-resolution mass spectrometry approach for the in-depth metabolites characterization of two Astragalus species. J Chromatogr A 2023; 1688:463718. [PMID: 36565652 DOI: 10.1016/j.chroma.2022.463718] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
To address the chemical complexity is indispensable in a number of research fields. Herb metabolome is typically composed by more than one class of structure analogs produced via different biosynthetic pathways. Multidimensional chromatography (MDC), due to the greatly enhanced separation space, offers the potential solution to comprehensive characterization of herbal metabolites. Here, we presented a strategy, by integrating MDC and quadrupole time-of-flight mass spectrometry (QTOF-MS), to accomplish the in-depth herbal metabolites characterization. Using the metabolome of two Astragalus species (A. membranaceus var. mongholicus,AMM; A. membranaceus, AM) as the case, an off-line three-dimensional liquid chromatography (3D-LC) system was established: hydrophilic interaction chromatography using an XAmide column as the first dimension (1D) for fractionating the total extract, on-line reversed-phase × reversed-phase liquid chromatography separately configuring a CSH Fluoro-Phenyl column and a Cosmocore C18 column as the second dimension (2D) and the third dimension (3D) of chromatography to enable the explicit separation of three well fractionated samples. Moreover, the negative-mode collision-induced dissociation by QTOF-MS under the optimized condition could provide diversified fragments that were useful for the structural elucidation of AMM and AM. An in-house library (composed by 247 known compounds) and comparison with 43 reference standards were utilized to assist more reliable characterization. We could characterize 513 compounds from two Astragalus species (344 from AMM and 323 from AM), including 236 flavonoids, 150 triterpenoids, 18 organic acids, and 109 others. Conclusively, the established MDC approach gained excellent performance favoring the analogs-oriented in-depth characterization of herbal metabolites, but received uncompromising analytical efficiency.
Collapse
|
|
2 |
8 |
17
|
Abstract
Lipids are primary metabolites used for energy storage, signal transduction, and pigmentation, besides being common membrane components. Considering the importance of comprehensive lipid analysis (lipidomics) for a detailed understanding of cellular metabolic states, this chapter introduces liquid chromatography-quadrupole time-of-flight mass spectrometry as a powerful untargeted plant lipidomics technique.
Collapse
|
|
7 |
8 |
18
|
Mao WW, Gao W, Liang ZT, Li P, Zhao ZZ, Li HJ. Characterization and quantitation of aristolochic acid analogs in different parts of Aristolochiae Fructus, using UHPLC-Q/TOF-MS and UHPLC-QqQ-MS. Chin J Nat Med 2018; 15:392-400. [PMID: 28558875 DOI: 10.1016/s1875-5364(17)30060-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 01/20/2023]
Abstract
Aristolochiae Fructus, a Chinese herbal medicine derived from the fruit of Aristolochia contorta Bge., contains nephrotoxic aristolochic acid analogues (AAAs). According to ancient medical texts, various medicinal parts of the fruit of A. contorta were ever used. In order to reveal which part could be safely and effectively used, it is necessary to analyze the chemical profiles of different medicinal parts. Herein we compared the chemical compositions and determined aristolochic acid I (AA-I) and aristolochic acid II (AA-II) in the four parts viz. outer pericarp, inner pericarp, septum, and seed. Ultra-high performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was applied for chemical profiling. Ultra-high performance liquid coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) was employed to quantify AA-I and AA-II in different parts. It was found that the chemical compositions of the four parts varied both qualitatively and quantitatively. A total of 10 AAAs, including 5 aristolochic acids and 5 aristolactams, together with 3 alkaloids, were unambiguously or tentatively identified by UHPLC-QTOF-MS. The quantitatively analytical results obtained by UHPLC-QqQ-MS showed that AA-I and AA-II exclusively accumulate in the seeds of A. contorta. These findings provide supporting data for the rational selection of medicinal parts.
Collapse
|
Journal Article |
7 |
7 |
19
|
Castillo NI, Ibáñez M, Beltrán E, Rivera-Monroy J, Ochoa JC, Páez-Castillo M, Posada-Buitrago ML, Sulyok M, Hernández F. Identification of mycotoxins by UHPLC-QTOF MS in airborne fungi and fungi isolated from industrial paper and antique documents from the Archive of Bogotá. ENVIRONMENTAL RESEARCH 2016; 144:130-138. [PMID: 26599591 DOI: 10.1016/j.envres.2015.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Mold deterioration of historical documents in archives and libraries is a frequent and complex phenomenon that may have important economic and cultural consequences. In addition, exposure to toxic fungal metabolites might produce health problems. In this work, samples of broths of fungal species isolated from the documentary material and from indoor environmental samples of the Archive of Bogotá have been analyzed to investigate the presence of mycotoxins. High resolution mass spectrometry made possible to search for a large number of mycotoxins, even without reference standards available at the laboratory. For this purpose, a screening strategy based on ultra-high pressure liquid chromatography coupled to quadrupole-time of flight mass spectrometry (UHPLC-QTOF MS) under MS(E) mode was applied. A customized home-made database containing elemental composition for around 600 mycotoxins was compiled. The presence of the (de)protonated molecule measured at its accurate mass was evaluated in the samples. When a peak was detected, collision induced dissociation fragments and characteristic isotopic ions were also evaluated and used for tentative identification, based on structure compatibility and comparison with literature data (if existing). Up to 44 mycotoxins were tentatively identified by UHPLC-QTOF MS. 34 of these tentative compounds were confirmed by subsequent analysis using a targeted LC-MS/MS method, supporting the strong potential of QTOF MS for identification/elucidation purposes. The presence of mycotoxins in these samples might help to reinforce safety measures for researchers and staff who work on reception, restoration and conservation of archival material, not only at the Archive of Bogotá but worldwide.
Collapse
|
|
9 |
5 |
20
|
Suppajariyawat P, Gonzalez-Rodriguez J. Application of LC-QTOF/MS for the validation and determination of organic explosive residues on Ionscan® swabs. Sci Justice 2021; 61:697-703. [PMID: 34802643 DOI: 10.1016/j.scijus.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
The identification and confirmation of trace explosive residues along with potential precursors and degradation products require a comprehensive laboratory analysis procedure. This study presents the determination of organic explosives consisting of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), 2,4,6,N-tetranitro-N-methylaniline (Tetryl), 1,3,5-trinitrobenzene (1,3,5-TNB) and pentaerythritol tetranitrate (PETN) by a high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). The qualitative information including retention time, collision energy, precursor ions, and characteristic fragmentation pattern of each explosive were collected using an atmospheric pressure chemical ionization (APCI) in negative ion mode. The separation efficiency among five compounds was greatly achieved in this study. Four real explosive samples consisting of TNT, RDX, PETN and Tetryl and 12 Ionscan® quality control swabs from the Royal Thai Army were also tested to validate and verify the viability of the GC-MS method used to validate results from an Ionscan® system. The results showed that LC-QTOF/MS is a powerful technique for the identification and confirmation of thermally unstable organic explosives on Ionscan® swabs compared to a conventional GC-MS technique.
Collapse
|
|
4 |
2 |
21
|
Park M, Snyder SA. Statistical profiling for identifying transformation products in an engineered treatment process. CHEMOSPHERE 2020; 251:126401. [PMID: 32146183 DOI: 10.1016/j.chemosphere.2020.126401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
This study demonstrated statistical profiling consisting of the analysis of variance (ANOVA) and fold change to efficiently identify transformation products of an organic model compound (i.e., carbamazepine, CBZ) in ozonation. To this end, liquid chromatography (LC)-quadrupole time-of-flight mass spectrometry (QTOF-MS) was employed to measure the accurate masses of CBZ transformation products. Subsequently, statistical profiling was applied to differentiating features that are uniquely present in the ozonated samples from those in blanks and control (i.e., CBZ sample without ozonation). The identified transformation products had significant statistical power (i.e., power, 1-β > 0.8) in post hoc power analysis, which suggests that the profiling procedure can be an efficient means of reducing false negative in data analysis. 2-quinazolinone was newly reported here as a tentative transformation of CBZ during ozonation. In addition, a transformation product with one less carbon than CBZ, often called "anomalous" transformation product, was also found. While statistical profiling was applied to a model experiment, such an approach can be further utilized to screen many features with a higher data complexity such as non-targeted screening (NTS) and non-target analysis (NTA) for environmental samples.
Collapse
|
|
5 |
1 |
22
|
Nan Y, Shi Y, Song J, Liang H, Zheng W, Tian X, Yao L, Chen X, Jia X, Chai R, Ma B. Comprehensive profiling and identification of C21 steroids in the root of Marsdenia tenacissima (Dai-Bai-Jie) using offline two-dimensional chromatography (LC × SFC) with Q-TOF/MS. J Chromatogr A 2025; 1739:465527. [PMID: 39591790 DOI: 10.1016/j.chroma.2024.465527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Dai-Bai-Jie, the root of the plant Marsdenia tenacissima from the Asclepiadaceae family, is well-known for its therapeutic effects in clearing heat, detoxifying, reducing swelling, and relieving pain as one of the most commonly used Dai medicine. Due to numerous structurally similar C21 steroidal compounds in Dai-Bai-Jie, chemical composition profiling has been substantially challenged. In this study, an offline two-dimensional chromatographic method (LC × SFC separation system) was developed to address these issues. Using the Hypersil Gold (1stD LC column) and 2-PIC (2ndD SFC column) based on 40 reference standards, the orthogonality was as high as 83.83 %. Most profiled ion peaks were tentatively identified through quadrupole time-of-flight mass spectrometry and a self-built compound virtual library. Consequently, the integrated method effectively addressed and resolved the issues associated with co-elution, thus significantly expanding the peak capacity. This advancement identified 362 C21 steroidal components, 319 of which were speculated to be potentially novel compounds. Furthermore, 86 groups of isomeric compounds were distinguished. This method provides a comprehensive understanding of chemical composition of Dai-Bai-Jie and an integrated qualitative analysis method for the C21 steroids.
Collapse
|
|
1 |
|
23
|
Lai SJ, Kameda T, Morita M, Yamagata Y, Nishizaka K, Horiuchi Y, Kobayashi Y, Usami Y, Liu JJ, Kasama T, Tozuka M, Ohkawa R. Characterization of novel truncated apolipoprotein A-I in human high-density lipoprotein generated by sequential treatment with myeloperoxidase and chymase. Biochimie 2024; 218:34-45. [PMID: 37774825 DOI: 10.1016/j.biochi.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
High-density lipoprotein (HDL) cholesterol is a well-known biomarker, which has been associated with reduction in the risk of cardiovascular diseases (CVD). However, some HDL anti-atherosclerotic functions may be impaired without altered HDL-cholesterol (HDL-C) level via its dysfunctional proteins or other physiological reactions in vivo. We previously showed that activated mast cell-derived chymase could modestly cleave apolipoprotein A-I (apoA-I) in HDL3, and further easily cleave lipid-free apoA-I. In contrast, myeloperoxidase (MPO) secreted by macrophages, the main cell type in atherosclerotic plaques, could oxidize HDL proteins, which might modify their tertiary structures, increasing their susceptibility to other enzymes. Here we focused on the co-modification and impact of chymase and MPO, usually secreted during inflammation from cells with possible co-existence in atheromas, on HDL. Only after sequential treatment with MPO and then chymase, two novel truncated apoA-I fragments were generated from HDL. One fragment was 16.5 kDa, and the cleavage site by chymase after MPO modification was the C-terminal of Tyr100 in apoA-I, cross-validated by three different mass spectrometry methods. This novel apoA-I fragment can be trapped in HDL particles to avoid kidney glomerular filtration and has a specific site for antibody generation for ELISA tests. As such, its quantification can be useful in predicting patients with CVD having normal HDL-C levels.
Collapse
|
|
1 |
|
24
|
Ding M, Zheng L, Hua X, Chen M, Zhong Q, Huang T, Li P, Yang H. Simultaneous metabolomics and lipidomics analysis based on 4in1 online analysis system reveal metabolic signatures in atherosclerotic mice. Talanta 2025; 283:127109. [PMID: 39481347 DOI: 10.1016/j.talanta.2024.127109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Developing efficient and comprehensive analysis methods for metabolomics and lipidomics in the biological tissues and body fluids is essential for understanding the disease mechanisms. Although various two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) methods have been proposed to expand metabolite coverage, achieving higher efficiency in integrated metabolomics and lipidomics studies remains a technical challenge. In this work, a novel 4in1 online analysis system with excellent reproducibility and mass accuracy was constructed for metabolomics and lipidomics study in various biological samples from atherosclerotic mice. This system enabled the simultaneous detection in both positive and negative ion modes with extensive polarity separation in a single analytical run. Using the 4in1 online analysis system, we identified distinct but complementary metabolic signatures associated with atherosclerosis in different biological samples. Specifically, a total of 230 and 170 differential metabolites or lipids were detected in mice plasma samples and aortic tissue samples, respectively, including glycerophospholipids, sphingolipids, fatty acyls, glycerolipids, carboxylic acids, and pyrimidine nucleosides. Additionally, atherosclerosis-related metabolic pathways involved in biosynthesis of unsaturated fatty acids, sphingolipid metabolism, cholesterol metabolism, glycerophospholipid metabolism, and choline metabolism further revealed. These findings demonstrate that the novel 4in1 online analysis system is a faithful, stable and powerful tool for comprehensive metabolomics and lipidomics studies in complex biological matrices.
Collapse
|
|
1 |
|
25
|
Mori T, Rai A, Tsugawa H, Yamada Y, Saito K. A liquid chromatography-mass spectrometry-based metabolomics strategy to explore plant metabolic diversity. Methods Enzymol 2023; 680:247-273. [PMID: 36710013 DOI: 10.1016/bs.mie.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants are expert chemists producing millions of metabolites, only a fraction of which are known to date. Plant metabolomics explores the rationale for highly diverse metabolites evolved and synthesized by plants. Over two-thirds of modern medicines are somehow inspired and/or derived from plants, making the identification of phytochemicals a means of discovering new medicines to challenge existing and emerging diseases. This chapter introduces our established liquid chromatography-tandem mass spectrometry-based untargeted metabolomics approach centered around discovering specialized metabolites (so-called secondary metabolites) across broad lineages of nonmodel plant species. Detecting hundreds to thousands of metabolite peaks, including assigning chemical identity, makes metabolomics data generation and analysis a very complex process. Various mass spectrometry techniques are currently being developed to approach the comprehensive metabolome. Among them, untargeted metabolomics can provide new biological insights by simultaneously and unbiasedly measuring and analyzing all detected metabolites. We have provided a hands-on modular account for untargeted plant metabolomics, from preparing plant biological samples to data analysis and processing using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The methods described here offer a foundation and expert opinion on plant metabolome analysis.
Collapse
|
|
2 |
|