1
|
Tay CY, Yuan L, Leong DT. Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS NANO 2015; 9:5609-17. [PMID: 25906327 DOI: 10.1021/acsnano.5b01954] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rapid and precise in situ detection of gene expressions within a single cell is highly informative and offers valuable insights into its state. Detecting mRNA within single cells in real time and nondestructively remains an important challenge. Using DNA nanotechnology and inspired by nature's many examples of "protective-yet-accessible" exoskeletons, we designed our mRNA nanosensor, nano-snail-inspired nucleic acid locator (nano-SNEL), to illustrate these elements. The design of the nano-SNEL is composed of a sensory molecular beacon module to detect mRNA and a DNA nanoshell component, mimicking the functional anatomy of a snail. Accurate and sensitive visualization of mRNA is achieved by the exceptional protection conferred by the nanoshell to the sensory component from nucleases-mediated degradation by approximately 9-25-fold compared to its unprotected counterpart. Our nano-SNEL design strategy improved cell internalization is a demonstration of accurate, dynamic spatiotemporal resolved detection of RNA transcripts in living cells.
Collapse
|
|
10 |
144 |
2
|
Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X. Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular Micro RNA Detection and Multiphoton Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4158-4164. [PMID: 26033986 DOI: 10.1002/smll.201500208] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/15/2015] [Indexed: 06/04/2023]
Abstract
Molybdenum disulfide (MoS2 ) quantum dots (QDs) (size <10 nm) possess attractive new properties due to the quantum confinement and edge effects as graphene QDs. However, the synthesis and application of MoS2 QDs has not been investigated in great detail. Here, a facile and efficient approach for synthesis of controllable-size MoS2 QDs with excellent photoluminescence (PL) by using a sulfuric acid-assisted ultrasonic route is developed for this investigation. Various MoS2 structures including monolayer MoS2 flake, nanoporous MoS2 , and MoS2 QDs can be yielded by simply controlling the ultrasonic durations. Comprehensive microscopic and spectroscopic tools demonstrate that the MoS2 QDs have uniform lateral size and possess excellent excitation-independent blue PL. The as-generated MoS2 QDs show high quantum yield of 9.65%, long fluorescence lifetime of 4.66 ns, and good fluorescent stability over broad pH values from 4 to 10. Given the good intrinsic optical properties and large surface area combined with excellent physiological stability and biocompatibility, a MoS2 QDs-based intracellular microRNA imaging analysis system is successfully constructed. Importantly, the MoS2 QDs show good performance as multiphoton bioimaging labeling. The proposed synthesis strategy paves a new way for facile and efficient preparing MoS2 QDs with tunable-size for biomedical imaging and optoelectronic devices application.
Collapse
|
|
10 |
115 |
3
|
Abstract
We report a novel spherical nucleic acid (SNA) gold nanoparticle conjugate, termed the Sticky-flare, which enables facile quantification of RNA expression in live cells and spatiotemporal analysis of RNA transport and localization. The Sticky-flare is capable of entering live cells without the need for transfection agents and recognizing target RNA transcripts in a sequence-specific manner. On recognition, the Sticky-flare transfers a fluorophore-conjugated reporter to the transcript, resulting in a turning on of fluorescence in a quantifiable manner and the fluorescent labeling of targeted transcripts. The latter allows the RNA to be tracked via fluorescence microscopy as it is transported throughout the cell. We use this novel nanoconjugate to analyze the expression level and spatial distribution of β-actin mRNA in HeLa cells and to observe the real-time transport of β-actin mRNA in mouse embryonic fibroblasts. Furthermore, we investigate the application of Sticky-flares for tracking transcripts that undergo more extensive compartmentalization by fluorophore-labeling U1 small nuclear RNA and observing its distribution in the nucleus of live cells.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
91 |
4
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
|
Review |
2 |
61 |
5
|
Shawky SM, Awad AM, Allam W, Alkordi MH, El-Khamisy SF. Gold aggregating gold: A novel nanoparticle biosensor approach for the direct quantification of hepatitis C virus RNA in clinical samples. Biosens Bioelectron 2017; 92:349-356. [PMID: 27836599 PMCID: PMC5345390 DOI: 10.1016/j.bios.2016.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The affordable and reliable detection of Hepatitis C Virus (HCV) RNA is a cornerstone in the management and control of infection, affecting approximately 3% of the global population. However, the existing technologies are expensive, labor intensive and time consuming, posing significant limitations to their wide-scale exploitation, particularly in economically deprived populations. Here, we utilized the unique optical and physicochemical properties of gold nanoparticles (AuNPs) to develop a novel assay platform shown to be rapid and robust in sensing and quantifying unamplified HCV RNA in clinical samples. The assay is based on inducing aggregation of citrate AuNPs decorated with a specific nucleic acid probe. Two types of cationic AuNPs, cysteamine and CTAB capped, were compared to achieve maximum assay performance. The technology is simple, rapid, cost effective and quantitative with 93.3% sensitivity, high specificity and detection limit of 4.57IU/µl. Finally, our data suggest that RNA folding impact the aggregation behavior of the functionalized AuNPs, with broader applications in other nucleic acid detection technologies.
Collapse
|
Evaluation Study |
8 |
58 |
6
|
Poissy J, Goffard A, Parmentier-Decrucq E, Favory R, Kauv M, Kipnis E, Mathieu D, van der Werf S, Guery B. Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol 2014; 61:275-8. [PMID: 25073585 PMCID: PMC7106432 DOI: 10.1016/j.jcv.2014.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/25/2014] [Accepted: 07/04/2014] [Indexed: 01/20/2023]
Abstract
Lower respiratory tract excretion of MERS-CoV can be observed for more than one month. Viral excretion in multiple organs is possible, including viraemia. Prolonged infection prevention and control measures are necessary. Prolonged monitoring of respiratory excretion seems necessary. Background Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging coronavirus involved in severe acute respiratory distress syndrome (ARDS) and rapid renal failure. Hospital outbreak and nosocomial transmission were reported, however, several issues remain on the viral excretion course. Objectives Describe the kinetics and pattern of viral excretion in two infected patients. Study design After the initial diagnosis, blood, urine, rectal and respiratory samples were collected regularly, aliquoted and stored at −80 °C. Real-time reverse transcriptase polymerase chain reaction assay targeted the UpE and Orf1a regions of the MERS-CoV genome. Results In patient 1, who died of refractory ARDS and renal failure, MERS-CoV RNA was detected in pharyngeal and tracheal swabs, as well blood samples and urine samples until the 30th day. Rectal swabs were negative. Patient 2 also developed multiple-organ failure, but survived, with persisting renal insufficiency (creatinine clearance at 30 mL/min) and persistent interstitial syndrome albeit weaned off mechanical ventilation and no longer requiring oxygen. Tracheal aspirations were positive until the 33rd day, while nasopharyngeal swabs were negative. All other biological samples were negative. Discussion Lower respiratory tract excretion of MERS-CoV could be observed for more than one month. The most severely ill patient presented an expression of the virus in blood and urine, consistent with a type-1 interferon mediated immunological response impaired in patient 1, but developed by patient 2. These results suggest that infection control precautions must be adequately evaluated in clinical wards and laboratories exposed to MERS-CoV.
Collapse
|
Journal Article |
11 |
56 |
7
|
Boivin V, Deschamps-Francoeur G, Couture S, Nottingham RM, Bouchard-Bourelle P, Lambowitz AM, Scott MS, Abou-Elela S. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes. RNA (NEW YORK, N.Y.) 2018; 24:950-965. [PMID: 29703781 PMCID: PMC6004057 DOI: 10.1261/rna.064493.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/24/2018] [Indexed: 06/01/2023]
Abstract
Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. Structured noncoding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
50 |
8
|
Kevill JL, Pellett C, Farkas K, Brown MR, Bassano I, Denise H, McDonald JE, Malham SK, Porter J, Warren J, Evens NP, Paterson S, Singer AC, Jones DL. A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151916. [PMID: 34826466 PMCID: PMC8610557 DOI: 10.1016/j.scitotenv.2021.151916] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0-400 NTU), surfactant load (0-200 mg/l), and storage temperature (5-20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and <10% with IP in turbid samples, whilst viral recoveries for samples with additional surfactant were between 0-18% for AS and 0-5% for IP. Turbidity and sample storage temperature combined had no significant effect on SARS-CoV-2 recovery (p > 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples.
Collapse
|
research-article |
3 |
49 |
9
|
Ultrarapid detection of SARS-CoV-2 RNA using a reverse transcription-free exponential amplification reaction, RTF-EXPAR. Proc Natl Acad Sci U S A 2021; 118:2100347118. [PMID: 34400545 PMCID: PMC8536344 DOI: 10.1073/pnas.2100347118] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report a rapid COVID-19 assay that gives a sample-to-signal time of under 10 min. The current gold-standard COVID-19 assay uses PCR, where strands of DNA are copied (amplified) many times to generate a read-out signal. However, as the virus genome is RNA, first conversion into DNA is required using reverse transcription (RT) before amplification. While just as sensitive, our assay is faster because 1) we have designed a method for generating DNA (the trigger strand) from RNA, bypassing the lengthy RT step, and 2) a quicker amplification process than PCR, called exponential amplification reaction (EXPAR), is used to amplify the trigger. This methodology could ultimately be applied to any RNA-based assay, including the detection of other infectious agents. A rapid isothermal method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is reported. The procedure uses an unprecedented reverse transcription–free (RTF) approach for converting genomic RNA into DNA. This involves the formation of an RNA/DNA heteroduplex whose selective cleavage generates a short DNA trigger strand, which is then rapidly amplified using the exponential amplification reaction (EXPAR). Deploying the RNA-to-DNA conversion and amplification stages of the RTF-EXPAR assay in a single step results in the detection, via a fluorescence read-out, of single figure copy numbers per microliter of SARS-CoV-2 RNA in under 10 min. In direct three-way comparison studies, the assay has been found to be faster than both RT-qPCR and reverse transcription loop-mediated isothermal amplification (RT-LAMP), while being just as sensitive. The assay protocol involves the use of standard laboratory equipment and is readily adaptable for the detection of other RNA-based pathogens.
Collapse
|
Evaluation Study |
4 |
49 |
10
|
Jiao J, Duan C, Xue L, Liu Y, Sun W, Xiang Y. DNA nanoscaffold-based SARS-CoV-2 detection for COVID-19 diagnosis. Biosens Bioelectron 2020; 167:112479. [PMID: 32763826 PMCID: PMC7387931 DOI: 10.1016/j.bios.2020.112479] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 pandemic outbreak is the most astounding scene ever experienced in the 21st century. It has been determined to be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the global pandemic, the lack of efficient rapid and accurate molecular diagnostic testing tools has hindered the public opportunely response to the emerging viral threat. Herein, a DNA nanoscaffold hybrid chain reaction (DNHCR)-based nucleic acid assay strategy is reported for rapid detection of SARS-CoV-2 RNA. In this method, the DNA nanoscaffolds have been first constructed by the self-assembly of long DNA strands and self-quenching probes (H1). Then, the SARS-CoV-2 RNA will initiate the hybridization of H1 and free H2 DNA probes along the nanoscaffold, and an illuminated DNA nanostring is instantly obtained. By taking advantages of the localization design of the H1 probes and the temperature tolerance of the isothermal amplification, the proposed DNHCR method can detect target at short responding time (within 10 min) and mild condition (15 °C–35 °C). Moreover, the reliability of DNHCR method in serum and saliva samples have also been validated. Therefore, DNHCR-based method is expected to provide a simple and faster alternative to the traditional SARS-CoV-2 qRT-PCR assay.
A simple and specific method has proposed for the assay of SARS-CoV-2 RNAs. Compared with the qRT-PCR, this new method is rapid (about 10 min) and has a wide temperature range (15°C–35°C). This method can complete the detection in only one step, thereby avoiding possible secondary pollution. This method proposed a trajectory hybrid chain reaction , which can improve the detection efficiency.
Collapse
|
Journal Article |
5 |
44 |
11
|
Miller BR, Wei T, Fields CJ, Sheng P, Xie M. Near-infrared fluorescent northern blot. RNA (NEW YORK, N.Y.) 2018; 24:1871-1877. [PMID: 30201850 PMCID: PMC6239192 DOI: 10.1261/rna.068213.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 05/21/2023]
Abstract
Northern blot analysis detects RNA molecules immobilized on nylon membranes through hybridization with radioactive 32P-labeled DNA or RNA oligonucleotide probes. Alternatively, nonradioactive northern blot relies on chemiluminescent reactions triggered by horseradish peroxidase (HRP) conjugated probes. The use of regulated radioactive material and the complexity of chemiluminescent reactions and detection have hampered the adoption of northern blot techniques by the wider biomedical research community. Here, we describe a sensitive and straightforward nonradioactive northern blot method, which utilizes near-infrared (IR) fluorescent dye-labeled probes (irNorthern). We found that irNorthern has a detection limit of ∼0.05 femtomoles (fmol), which is slightly less sensitive than 32P-Northern. However, we found that the IR dye-labeled probe maintains the sensitivity after multiple usages as well as long-term storage. We also present alternative irNorthern methods using a biotinylated DNA probe, a DNA probe labeled by terminal transferase, or an RNA probe labeled during in vitro transcription. Furthermore, utilization of different IR dyes allows multiplex detection of different RNA species. Therefore, irNorthern represents a more convenient and versatile tool for RNA detection compared to traditional northern blot analysis.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
39 |
12
|
Gaskell KM, Houlihan C, Nastouli E, Checkley AM. Persistent Zika Virus Detection in Semen in a Traveler Returning to the United Kingdom from Brazil, 2016. Emerg Infect Dis 2017; 23:137-139. [PMID: 27748650 PMCID: PMC5176231 DOI: 10.3201/eid2301.161300] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Zika virus is normally transmitted by mosquitos, but cases of sexual transmission have been reported. We describe a patient with symptomatic Zika virus infection in whom the virus was detected in semen for 92 days. Our findings support recommendations for 6 months of barrier contraceptive use after symptomatic Zika virus infection.
Collapse
|
Journal Article |
8 |
38 |
13
|
Jemeršić L, Lojkić I, Krešić N, Keros T, Zelenika TA, Jurinović L, Skok D, Bata I, Boras J, Habrun B, Brnić D. Investigating the Presence of SARS CoV-2 in Free-Living and Captive Animals. Pathogens 2021; 10:635. [PMID: 34064271 PMCID: PMC8224323 DOI: 10.3390/pathogens10060635] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Due to SARS CoV-2 recombination rates, number of infected people and recent reports of environmental contamination, the possibility of SARS CoV-2 transmission to animals can be expected. We tested samples of dominant free-living and captive wildlife species in Croatia for the presence of anti-SARS CoV-2 antibodies and viral RNA. In total, from June 2020 until February 2021, we tested blood, muscle extract and fecal samples of 422 free-living wild boars (Sus scrofa), red foxes (Vulpes vulpes) and jackals (Canis aureus); blood and cloacal swabs of 111 yellow-legged gulls (Larus michahellis) and fecal samples of 32 zoo animals. A commercially available ELISA (ID.Vet, France) and as a confirmatory test, a surrogate virus neutralization test (sVNT; GenScript, Netherlands) were used. Fecal samples were tested for the presence of viral RNA by a real-time RT-PCR protocol. Fifteen out of 533 (2.8%) positive ELISA results were detected; in wild boars (3.9%), red foxes (2.9%) and jackals (4.6%). However, the positive findings were not confirmed by sVNT. No viral RNA was found. In conclusion, no spillover occurred within the investigated period (second COVID-19 wave). However, further investigation is needed, especially regarding wildlife sample features for serological tests.
Collapse
|
research-article |
4 |
34 |
14
|
Xu F, Luo L, Shi H, He X, Lei Y, Tang J, He D, Qiao Z, Wang K. Label-free and sensitive micro RNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Anal Chim Acta 2018; 1010:54-61. [PMID: 29447671 DOI: 10.1016/j.aca.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 11/17/2022]
Abstract
Poly(thymine)-hosted copper nanoparticles (poly T-CuNPs) have emerged as a promising label-free fluorophore for bioanalysis, but its application in RNA-related studies is still rarely explored. Herein, by utilizing duplex-specific nuclease (DSN) as a convertor to integrate target recycling mechanism into terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly T-CuNPs platform, a specific and sensitive method for microRNA detection has been developed. In this strategy, a 3'-phosphorylated DNA probe can hybridize with target RNA and then be cut by DSN to produce 3'-hydroxylated fragments, which can be further tailed by TdT with superlong poly T for fluorescent CuNPs synthesis. As proof of concept, an analysis of let-7d was achieved with a good linear correlation between 20 and 1000 pM (R2 = 0.9965) and a detection limit of 20 pM. Moreover, both homologous and heterologous microRNAs were also effectively discriminated. This strategy might pave a brand-new way for designing label-free and sensitive microRNA assays.
Collapse
|
Journal Article |
7 |
27 |
15
|
Sha MY, Penn S, Freeman G, Doering WE. Detection of human viral RNA via a combined fluorescence and SERS molecular beacon assay. NANOBIOTECHNOLOGY : THE JOURNAL AT THE INTERSECTION OF NANOTECHNOLOGY, MOLECULAR BIOLOGY, AND BIOMEDICAL SCIENCES 2007; 3:23-30. [PMID: 32218711 PMCID: PMC7091242 DOI: 10.1007/s12030-007-0003-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A dual-mode molecular beacon on a multiplexed substrate has been developed and applied to the measurement of unlabeled human viral RNA. The detection system is based on a combined surface-enhanced Raman scattering (SERS) and fluorescent molecular beacon assay that is assembled on Nanobarcodes™ particles. In this assay, a molecular beacon probe terminated with a fluorescent Raman label dye is conjugated to the metallic Nanobarcodes™ particles. The molecular beacon probe is a single-stranded oligonucleotide that has been designed with a hairpin structure that holds the dye at 3'-end close to the particle surface when the probe is attached through a 5'-thiol group. In this configuration, the SERS spectrum of the label was obtained and its fluorescence quenched because the dye is in very close proximity to a noble metal surface with nanoscale features (Nanobarcodes™ particles). The SERS signal decreased and the fluorescence signal increased when target viral RNA was captured by this molecular beacon probe. In addition, a hepatitis C virus reverse transcriptase-polymerase chain reaction (HCV RT-PCR) product was detected using this dual-mode beacon. The development of a multiplexed, label-free assay system with the reassurance offered by detection of two distinctly separate signals offers significant benefits for rapid molecular diagnostics.
Collapse
|
research-article |
18 |
24 |
16
|
Yin X, Sun Y, Yang R, Qu L, Li Z. RNA-responsive fluorescent carbon dots for fast and wash-free nucleolus imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118381. [PMID: 32334324 DOI: 10.1016/j.saa.2020.118381] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
RNA as a carrier of genetic information plays a critical role in various physiological processes. RNA-rich nucleolus is usually employed as an important biomarker for many malignant diseases. Herein, RNA-responsive fluorescent carbon dots (CDs) were synthesized by a simple microwave method. Due to the presence of cationic benzothiazolium groups in the CDs, a "turn-on" fluorescence signal was achieved between CDs and RNA. The CDs exhibit excellent RNA selectivity and a good linear relationship with a detection limit of 0.62 μg/mL. The small particle size, polarity sensitivity and RNA response behavior of CDs realized fast and wash-free nucleolus imaging effectively. Overall, these CDs provide a powerful potential tool for monitoring cell nucleus activity and elucidating RNA dynamics.
Collapse
|
|
5 |
23 |
17
|
Sha MY, Yamanaka M, Walton ID, Norton SM, Stoermer RL, Keating CD, Natan MJ, Penn SG. Encoded metal nanoparticle-based molecular beacons for multiplexed detection of DNA. ACTA ACUST UNITED AC 2005; 1:327-335. [PMID: 32218710 PMCID: PMC7091129 DOI: 10.1385/nbt:1:4:327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper we describe a molecular beacon format assay in which encoded nanowire particles are used to achieve multiplexing. We demonstrate this principle with the detection of five viral pathogens; Hepatitis A virus, Hepatitis C virus, West Nile Virus, Human Immune Deficiency virus and Severe Acute Respiratory Syndrome virus. Oligonucleotides are designed complementary to a target sequence of interest containing a 3′ universal fluorescence dye. A 5′ thiol causes the oligonucleotides to self-assemble onto the metal nanowire. The single-stranded oligonucleotide contains a self-complementary hairpin stem sequence of 10 bases that forces the 3′ fluorophore to come into contact with the metallic nanowire surface, thereby quenching the fluorescence. Upon addition of target DNA, there is hybridization with the complementary oligonucleotides. The resulting DNA hybrid is rigid, unfolds the hairpin structure, and causes the fluorophore to be moved away from the surface such that it is no longer quenched. By using differently encoded nanowires, each conjugated with a different oligonucleotide sequence, multiplexed DNA assays are possible using a single fluorophore, from a multiplexed RT-PCR reaction.
Collapse
|
Journal Article |
20 |
20 |
18
|
Zou J, Zhi S, Chen M, Su X, Kang L, Li C, Su X, Zhang S, Ge S, Li W. Heat inactivation decreases the qualitative real-time RT-PCR detection rates of clinical samples with high cycle threshold values in COVID-19. Diagn Microbiol Infect Dis 2020; 98:115109. [PMID: 32593875 PMCID: PMC7289114 DOI: 10.1016/j.diagmicrobio.2020.115109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 has caused COVID-19 pandemic globally in the beginning of 2020, and qualitative real-time RT-PCR has become the gold standard in diagnosis. As SARSCoV-2 with strong transmissibility and pathogenicity, it has become a professional consensus that clinical samples from suspected patients should be heat inactivated at 56°C for 30 min before further processing. However, previous studies on the effect of inactivation on qualitative real-time RT-PCR were conducted with diluted samples rather than clinical samples. The aim of this study was to investigate whether heat inactivation on clinical samples before detection will affect the accuracy of qualitative real-time RT-PCR detection. All 46 throat swab samples from 46 confirmed inpatients were detected by qualitative real-time RT-PCR directly, as well as after heat inactivation. Heat-Inactivation has significantly influenced the qualitative detection results on clinical samples, especially weakly positive samples. The results indicate the urgency to establish a more suitable protocol for COVID-19 clinical sample's inactivation.
Collapse
|
research-article |
5 |
19 |
19
|
Gutiérrez-Gálvez L, García-Mendiola T, Gutiérrez-Sánchez C, Guerrero-Esteban T, García-Diego C, Buendía I, García-Bermejo ML, Pariente F, Lorenzo E. Carbon nanodot-based electrogenerated chemiluminescence biosensor for miRNA-21 detection. Mikrochim Acta 2021; 188:398. [PMID: 34716815 PMCID: PMC8557186 DOI: 10.1007/s00604-021-05038-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022]
Abstract
A simple carbon nanodot–based electrogenerated chemiluminescence biosensor is described for sensitive and selective detection of microRNA-21 (miRNA-21), a biomarker of several pathologies including cardiovascular diseases (CVDs). The photoluminescent carbon nanodots (CNDs) were obtained using a new synthesis method, simply by treating tiger nut milk in a microwave reactor. The synthesis is environmentally friendly, simple, and efficient. The optical properties and morphological characteristics of the CNDs were exhaustively investigated, confirming that they have oxygen and nitrogen functional groups on their surfaces and exhibit excitation-dependent fluorescence emission, as well as photostability. They act as co-reactant agents in the anodic electrochemiluminescence (ECL) of [Ru(bpy)3]2+, producing different signals for the probe (single-stranded DNA) and the hybridized target (double-stranded DNA). These results paved the way for the development of a sensitive ECL biosensor for the detection of miRNA-21. This was developed by immobilization of a thiolated oligonucleotide, fully complementary to the miRNA-21 sequence, on the disposable gold electrode. The target miRNA-21 was hybridized with the probe on the electrode surface, and the hybridization was detected by the enhancement of the [Ru(bpy)3]2+/DNA ECL signal using CNDs. The biosensor shows a linear response to miRNA-21 concentration up to 100.0 pM with a detection limit of 0.721 fM. The method does not require complex labeling steps, and has a rapid response. It was successfully used to detect miRNA-21 directly in serum samples from heart failure patients without previous RNA extraction neither amplification process.
Collapse
|
|
4 |
18 |
20
|
Abstract
Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
17 |
21
|
Liu L, Wang Z, Wang Y, Luan J, Morrissey JJ, Naik RR, Singamaneni S. Plasmonically Enhanced CRISPR/Cas13a-Based Bioassay for Amplification-Free Detection of Cancer-Associated RNA. Adv Healthc Mater 2021; 10:e2100956. [PMID: 34369102 PMCID: PMC8542602 DOI: 10.1002/adhm.202100956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Novel methods that enable sensitive, accurate and rapid detection of RNA would not only benefit fundamental biological studies but also serve as diagnostic tools for various pathological conditions, including bacterial and viral infections and cancer. Although highly sensitive, existing methods for RNA detection involve long turn-around time and extensive capital equipment. Here, an ultrasensitive and amplification-free RNA quantification method is demonstrated by integrating CRISPR-Cas13a system with an ultrabright fluorescent nanolabel, plasmonic fluor. This plasmonically enhanced CRISPR-powered assay exhibits nearly 1000-fold lower limit-of-detection compared to conventional assay relying on enzymatic reporters. Using a xenograft tumor mouse model, it is demonstrated that this novel bioassay can be used for ultrasensitive and quantitative monitoring of cancer biomarker (lncRNA H19). The novel biodetection approach described here provides a rapid, ultrasensitive, and amplification-free strategy that can be broadly employed for detection of various RNA biomarkers, even in resource-limited settings.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
17 |
22
|
Schön P. Atomic force microscopy of RNA: State of the art and recent advancements. Semin Cell Dev Biol 2017; 73:209-219. [PMID: 28843977 DOI: 10.1016/j.semcdb.2017.08.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022]
Abstract
The atomic force microscope (AFM) has become a powerful tool for the visualization, probing and manipulation of RNA at the single molecule level. AFM measurements can be carried out in buffer solution in a physiological medium, which is crucial to study the structure and function of biomolecules, also allowing studying them at work. Imaging the specimen in its native state is a great advantage compared to other high resolution methods such as electron microscopy and X-ray diffraction. There is no need to stain, freeze or crystallize biological samples. Moreover, compared to NMR spectroscopy for instance, for AFM studies the size of the biomolecules is not limiting. Consequently the AFM allows one also to investigate larger RNA molecules. In particular, structural studies of nucleic acids and assemblies thereof, have been carried out by AFM routinely including ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. These are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In particular by AFM unique information can be obtained on these RNA based assemblies. Moreover, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. Important applications include the detection and quantification of RNA in biological samples. A selection of recent highlights and breakthroughs will be provided related to structural and functional studies by AFM. The main intention of this short review to provide the reader with a flavor of what AFM is able to contribute to RNA research and engineering.
Collapse
|
Review |
8 |
16 |
23
|
De Leeuw I, Garigliany M, Bertels G, Willems T, Desmecht D, De Clercq K. Bluetongue virus RNA detection by real-time rt-PCR in post-vaccination samples from cattle. Transbound Emerg Dis 2013; 62:157-62. [PMID: 23611408 DOI: 10.1111/tbed.12100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/29/2022]
Abstract
Bluetongue virus serotype 8 (BTV-8) was responsible for a large outbreak among European ruminant populations in 2006-2009. In spring 2008, a massive vaccination campaign was undertaken, leading to the progressive disappearance of the virus. During surveillance programmes in Western Europe in 2010-2011, a low but significant number of animals were found weakly positive using BTV-specific real-time RT-PCR, raising questions about a possible low level of virus circulation. An interference of the BTV-8 inactivated vaccine on the result of the real-time RT-PCR was also hypothesized. Several studies specifically addressed the potential association between a recent vaccination and BTV-8 RNA detection in the blood of sheep. Results were contradictory and cattles were not investigated. To enlighten this point, a large study was performed to determine the risks of detection of bluetongue vaccine-associated RNA in the blood and spleen of cattle using real-time RT-PCR. Overall, the results presented clearly demonstrate that vaccine viral RNA can reach the blood circulation in sufficient amounts to be detected by real-time RT-PCR in cattle. This BTV-8 vaccine RNA carriage appears as short lasting.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
15 |
24
|
Verification and Validation of SARS-CoV-2 Assay Performance on the Abbott m2000 and Alinity m Systems. J Clin Microbiol 2021; 59:JCM.03119-20. [PMID: 33568468 PMCID: PMC8091852 DOI: 10.1128/jcm.03119-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
We verified the analytical performance of the Abbott RealTime SARS-CoV-2 assay on the m2000 system and compared its clinical performance to the CDC 2019-nCoV real-time PCR diagnostic panel and the Thermo Fisher TaqPath RT-PCR COVID-19 kit. We also performed a bridging study comparing the RealTime SARS-CoV-2 assay with the new Abbott Alinity m SARS-CoV-2 assay. A number of standards, reference materials, and commercially available controls were used for the analytical verification to confirm the limit of detection, linearity, and reproducibility. We used nasopharyngeal (NP) swab specimens collected in saline for the clinical verification and bridging studies. Overall, we found 91.2% positive percent agreement (PPA; 95% confidence interval [CI] = 76.2 to 98.14%) and a 100% negative percent agreement (NPA; 95% CI = 97.97 to 100%) between the results of the RealTime SARS-CoV-2 and CDC tests with 217 NP specimens (P = 0.13). We found a PPA of 100% (95% CI = 90.26 to 100%) and an NPA of 95.15% (95% CI = 83.47 to 99.4%) between the results of the RealTime and TaqPath tests with 77 NP specimens (P = 0.24). Finally, we tested 203 NP swab specimens for SARS-CoV-2 on the m2000 on the Alinity m systems. The PPA and NPA were 92.2% (95% CI = 85.3 to 96.59%) and 92% (95% CI = 84.8 to 96.5%), respectively (P = 0.4). Although cycle number (Cn) values obtained for the concordant positive samples were highly correlated (R 2 = 0.95), the Cn values were on average 14.14 higher on the Alinity m system due to the unread cycles with the RealTime SARS-CoV-2 assay.
Collapse
|
Validation Study |
4 |
14 |
25
|
Diaz LM, Johnson BE, Jenkins DM. Real-time optical analysis of a colorimetric LAMP assay for SARS-CoV-2 in saliva with a handheld instrument improves accuracy compared with endpoint assessment. J Biomol Tech 2021; 32:158-171. [PMID: 35027873 PMCID: PMC8730521 DOI: 10.7171/jbt.21-3203-011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Controlling the course of the Coronavirus Disease 2019 (COVID-19) pandemic will require widespread deployment of consistent and accurate diagnostic testing of the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ideally, tests should detect a minimum viral load, be minimally invasive, and provide a rapid and simple readout. Current Food and Drug Administration (FDA)-approved RT-qPCR-based standard diagnostic approaches require invasive nasopharyngeal swabs and involve laboratory-based analyses that can delay results. Recently, a loop-mediated isothermal nucleic acid amplification (LAMP) test that utilizes colorimetric readout received FDA approval. This approach utilizes a pH indicator dye to detect drop in pH from nucleotide hydrolysis during nucleic acid amplification. This method has only been approved for use with RNA extracted from clinical specimens collected via nasopharyngeal swabs. In this study, we developed a quantitative LAMP-based strategy to detect SARS-CoV-2 RNA in saliva. Our detection system distinguished positive from negative sample types using a handheld instrument that monitors optical changes throughout the LAMP reaction. We used this system in a streamlined LAMP testing protocol that could be completed in less than 2 h to directly detect inactivated SARS-CoV-2 in minimally processed saliva that bypassed RNA extraction, with a limit of detection (LOD) of 50 genomes/reaction. The quantitative method correctly detected virus in 100% of contrived clinical samples spiked with inactivated SARS-CoV-2 at either 1× (50 genomes/reaction) or 2× (100 genomes/reaction) of the LOD. Importantly, the quantitative method was based on dynamic optical changes during the reaction and was able to correctly classify samples that were misclassified by endpoint observation of color.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
14 |