1
|
Connolly M, Bilgin-Freiert A, Ellingson B, Dusick JR, Liebeskind D, Saver J, Gonzalez NR. Peripheral vascular disease as remote ischemic preconditioning, for acute stroke. Clin Neurol Neurosurg 2013; 115:2124-9. [PMID: 23958050 DOI: 10.1016/j.clineuro.2013.07.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Remote ischemic preconditioning (RIPC) is a powerful endogenous mechanism whereby a brief period of ischemia is capable of protecting remote tissues from subsequent ischemic insult. While this phenomenon has been extensively studied in the heart and brain in animal models, little work has been done to explore the effects of RIPC in human patients with acute cerebral ischemia. This study investigates whether chronic peripheral hypoperfusion, in the form of pre-existing arterial peripheral vascular disease (PVD) that has not been surgically treated, is capable of inducing neuroprotective effects for acute ischemic stroke. METHODS Individuals with PVD who had not undergone prior surgical treatment were identified from a registry of stroke patients. A control group within the same database was identified by matching patient's demographics and risk factors. The two groups were compared in terms of outcome by NIH Stroke Scale (NIHSS), modified Rankin scale (mRS), mortality, and volume of infarcted tissue at presentation and at discharge. RESULTS The matching algorithm identified 26 pairs of PVD-control patients (9 pairs were female and 17 pairs were male). Age range was 20-93 years (mean 73). The PVD group was found to have significantly lower NIHSS scores at admission (NIHSS≤4: PVD 47.1%, control 4.35%, p<0.003), significantly more favorable outcomes at discharge (mRS≤2: PVD 30.8%, control 3.84%, p<0.012), and a significantly lower mortality rate (PVD 26.9%, control 57.7%, p=0.024). Mean acute stroke volume at admission and at discharge were significantly lower for the PVD group (admission: PVD 39.6 mL, control 148.3 mL, p<0.005 and discharge: PVD 111.7 mL, control 275 mL, p<0.001). CONCLUSION Chronic limb hypoperfusion induced by PVD can potentially produce a neuroprotective effect in acute ischemic stroke. This effect resembles the neuroprotection induced by RIPC in preclinical models.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
34 |
2
|
Sharma D, Maslov LN, Singh N, Jaggi AS. Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: Preclinical evidence and mechanisms. Eur J Pharmacol 2020; 883:173380. [PMID: 32693098 DOI: 10.1016/j.ejphar.2020.173380] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022]
Abstract
Remote ischemic preconditioning (RIPC) is an intrinsic protective phenomenon in which 3 to 4 interspersed cycles of non-fatal regional ischemia followed by reperfusion to the remote tissues protect the vital organs including brain, heart and kidney against sustained ischemia-reperfusion-induced injury. There is growing preclinical evidence supporting the usefulness of RIPC in eliciting neuroprotection against focal and global cerebral ischemia-reperfusion injury. Scientists have explored the involvement of HIF-1α, oxidative stress, apoptotic pathway, Lcn-2, platelets-derived microparticles, splenic response, adenosine A1 receptors, adenosine monophosphate activated protein kinase and neurogenic pathway in mediating RIPC-induced neuroprotection. The present review discusses the early and late phases of neuroprotection induced by RIPC against cerebral ischemic injury in animals along with the various possible mechanisms.
Collapse
|
Review |
5 |
27 |
3
|
Bhuiyan MIH, Kim YJ. Mechanisms and prospects of ischemic tolerance induced by cerebral preconditioning. Int Neurourol J 2010; 14:203-12. [PMID: 21253330 PMCID: PMC3021810 DOI: 10.5213/inj.2010.14.4.203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
In the brain, brief episodes of ischemia induce tolerance against a subsequent severe episode of ischemia. This phenomenon of endogenous neuroprotection is known as preconditioning-induced ischemic tolerance. The purpose of this review is to summarize the current state of knowledge about mechanisms and potential applications of cerebral preconditioning and ischemic tolerance. Articles related to the terms ischemic preconditioning and ischemic tolerance were systematically searched via MEDLINE/PubMed, and articles published in English related to the nervous system were selected and analyzed. The past two decades have provided interesting insights into the molecular mechanisms of this neuroprotective phenomenon. Although both rapid and delayed types of tolerance have been documented in experimental settings, the delayed type has been found to be more prominent in the case of neuronal ischemic tolerance. Many intracellular signaling pathways have been implicated regarding ischemic preconditioning. Most of these are associated with membrane receptors, kinase cascades, and transcription factors. Moreover, ischemic tolerance can be induced by exposing animals or cells to diverse types of endogenous and exogenous stimuli that are not necessarily hypoxic or ischemic in nature. These cross-tolerances raise the hope that, in the future, it will be possible to pharmacologically activate or mimic ischemic tolerance in the human brain. Another promising approach is remote preconditioning in which preconditioning of one organ or system leads to the protection of a different (remote) organ that is difficult to target, such as the brain. The preconditioning strategy and related interventions can confer neuroprotection in experimental ischemia, and, thus, have promise for practical applications in cases of vascular neurosurgery and endo-vascular therapy.
Collapse
|
review-article |
15 |
26 |
4
|
Billah M, Ridiandries A, Rayner BS, Allahwala UK, Dona A, Khachigian LM, Bhindi R. Egr-1 functions as a master switch regulator of remote ischemic preconditioning-induced cardioprotection. Basic Res Cardiol 2019; 115:3. [PMID: 31823016 DOI: 10.1007/s00395-019-0763-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Despite improved treatment options myocardial infarction (MI) is still a leading cause of mortality and morbidity worldwide. Remote ischemic preconditioning (RIPC) is a mechanistic process that reduces myocardial infarction size and protects against ischemia reperfusion (I/R) injury. The zinc finger transcription factor early growth response-1 (Egr-1) is integral to the biological response to I/R, as its upregulation mediates the increased expression of inflammatory and prothrombotic processes. We aimed to determine the association and/or role of Egr-1 expression with the molecular mechanisms controlling the cardioprotective effects of RIPC. This study used H9C2 cells in vitro and a rat model of cardiac ischemia reperfusion (I/R) injury. We silenced Egr-1 with DNAzyme (ED5) in vitro and in vivo, before three cycles of RIPC consisting of alternating 5 min hypoxia and normoxia in cells or hind-limb ligation and release in the rat, followed by hypoxic challenge in vitro and I/R injury in vivo. Post-procedure, ED5 administration led to a significant increase in infarct size compared to controls (65.90 ± 2.38% vs. 41.00 ± 2.83%, p < 0.0001) following administration prior to RIPC in vivo, concurrent with decreased plasma IL-6 levels (118.30 ± 4.30 pg/ml vs. 130.50 ± 1.29 pg/ml, p < 0.05), downregulation of the cardioprotective JAK-STAT pathway, and elevated myocardial endothelial dysfunction. In vitro, ED5 administration abrogated IL-6 mRNA expression in H9C2 cells subjected to RIPC (0.95 ± 0.20 vs. 6.08 ± 1.40-fold relative to the control group, p < 0.05), resulting in increase in apoptosis (4.76 ± 0.70% vs. 2.23 ± 0.34%, p < 0.05) and loss of mitochondrial membrane potential (0.57 ± 0.11% vs. 1.0 ± 0.14%-fold relative to control, p < 0.05) in recipient cells receiving preconditioned media from the DNAzyme treated donor cells. This study suggests that Egr-1 functions as a master regulator of remote preconditioning inducing a protective effect against myocardial I/R injury through IL-6-dependent JAK-STAT signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
20 |
5
|
Spinal neuronal NOS activation mediates intrathecal fentanyl preconditioning induced remote cardioprotection in rats. Int Immunopharmacol 2014; 19:127-31. [PMID: 24462544 DOI: 10.1016/j.intimp.2014.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/22/2022]
Abstract
Fentanyl has been widely used in anesthesia and analgesia, especially for cardiovascular surgeries. The aim of the study was to evaluate whether remote intrathecal fentanyl preconditioning (RFPC) provides cardioprotection and the role of spinal nitric oxide synthase (NOS) system in this effect. Fentanyl (0.3μg/kg) was administered intrathecally during RFPC by 3 cycles of 5-minute infusions interspersed with 5-minute infusion free periods. A non-specific nitric oxide synthase (NOS) inhibitor NG-nitro l-arginine methyl ester (l-NAME, 30nmol) and a selective nNOS inhibitor 7-nitroindazole (7-NI, 100nmol) were administered intrathecally 10min before RFPC, and were used to evaluate the involvement of the NOS system of the spinal cord. RFPC group markedly reduced the infarct size compared with control. However, the cardioprotection of RFPC could be abolished by pretreatment with l-NAME and 7-NI. RFPC merely increased the expression of nNOS and did not affect iNOS and eNOS expression. l-NAME reversed nNOS expression up-regulation induced by RFPC treatment. The present study demonstrated that RFPC effectively induced cardioprotection through activating the nNOS in the spinal cord.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
15 |
6
|
Björnsson B, Winbladh A, Bojmar L, Sundqvist T, Gullstrand P, Sandström P. Conventional, but not remote ischemic preconditioning, reduces iNOS transcription in liver ischemia/reperfusion. World J Gastroenterol 2014; 20:9506-9512. [PMID: 25071345 PMCID: PMC4110582 DOI: 10.3748/wjg.v20.i28.9506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/12/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of preconditioning on inducible nitric oxide synthase (iNOS) and interleukin 1 (IL-1) receptor transcription in rat liver ischemia/reperfusion injury (IRI).
METHODS: Seventy-two male rats were randomized into 3 groups: the one-hour segmental ischemia (IRI, n = 24) group, the ischemic preconditioning (IPC, n = 24) group or the remote ischemic preconditioning (R-IPC, n = 24) group. The IPC and R-IPC were performed as 10 min of ischemia and 10 min of reperfusion. The iNOS and the IL-1 receptor mRNA in the liver tissue was analyzed with real time PCR. The total Nitrite and Nitrate (NOx) in continuously sampled microdialysate (MD) from the liver was analyzed. In addition, the NOx levels in the serum were analyzed.
RESULTS: After 4 h of reperfusion, the iNOS mRNA was significantly higher in the R-IPC (ΔCt: 3.44 ± 0.57) group than in the IPC (ΔCt: 5.86 ± 0.82) group (P = 0.025). The IL-1 receptor transcription activity was reduced in the IPC group (ΔCt: 1.88 ± 0.53 to 4.81 ± 0.21), but not in the R-IPC group, during reperfusion (P = 0.027). In the MD, a significant drop in the NOx levels was noted in the R-IPC group (12.3 ± 2.2 to 4.7 ± 1.2 μmol/L) at the end of ischemia compared with the levels in early ischemia (P = 0.008). A similar trend was observed in the IPC group (11.8 ± 2.1 to 6.4 ± 1.5 μmol/L), although this difference was not statistically significant. The levels of NOx rose quickly during reperfusion in both groups.
CONCLUSION: IPC, but not R-IPC, reduces iNOS and IL-1 receptor transcription during early reperfusion, indicating a lower inflammatory reaction. NOx is consumed in the ischemic liver lobe.
Collapse
|
Research Report |
11 |
13 |
7
|
Cheung CX, Healy DA, Walsh SR. Remote preconditioning and cardiac surgery: regrouping after Remote Ischemic Preconditioning for Heart Surgery (RIPHeart) and Effect of Remote Ischemic Preconditioning on Clinical Outcomes in Patients Undergoing Coronary Artery Bypass Surgery (ERICCA). J Thorac Dis 2016; 8:E197-9. [PMID: 27076969 DOI: 10.21037/jtd.2016.01.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Remote ischaemic preconditioning (RIPC) is an attractive cardioprotective strategy. Although results from animal studies and phase II study on humans are convincing, it cannot have a role in clinical practice until benefits in clinical outcomes are proven in phase III study. Two phase III studies were recently published [Remote Ischemic Preconditioning for Heart Surgery (RIPHeart) and Effect of Remote Ischemic Preconditioning on Clinical Outcomes in Patients Undergoing Coronary Artery Bypass Surgery (ERICCA)] and this article discusses their design, results and implications.
Collapse
|
Journal Article |
9 |
13 |
8
|
Investigating the involvement of TRPV 1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:117-126. [PMID: 27752734 DOI: 10.1007/s00210-016-1311-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/09/2016] [Indexed: 01/03/2023]
Abstract
Remote ischemic preconditioning (RIPC) treatment strategy is a breakthrough in the field of cardiovascular pharmacology as it has the potential to attenuate myocardial ischemia-reperfusion injury. However, the underlying intracellular pathways have not been widely explored. The present study intends to explore the possible role of TRPV1 channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 cycles in succession) was delivered by tying the blood pressure cuff at the inguinal level of the rat. The Langendorff system was used to perfuse the isolated heart and afterward was subjected to 30 min of global ischemia and 120 min of reperfusion. Sustained ischemia and, thereafter, reperfusion led to cardiac injury that was assessed in terms of infarct size, lactate dehydrogenase (LDH) release, creatine kinase (CK) release, left ventricular end diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. The pharmacological modulators employed included capsaicin as TRPV1 agonist and capsazepine as TRPV1 antagonist. Remote hind limb preconditioning stimulus and capsaicin preconditioning (5 and 10 mg/kg) led to significant reduction in infarct size, LVEDP, LDH release, CK release, and significant improvement in LVDP, +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. However, remote hind limb preconditioning-induced cardioprotective effects were considerably abolished in the presence of capsazepine (2.5 and 5 mg/kg). This indicates that remote hind limb preconditioning stimulus possibly activates TRPV1 channels to produce cardioprotective effects.
Collapse
|
Journal Article |
9 |
11 |
9
|
He JT, Li H, Yang L, Cheng KL. Involvement of Endothelin-1, H 2S and Nrf2 in Beneficial Effects of Remote Ischemic Preconditioning in Global Cerebral Ischemia-Induced Vascular Dementia in Mice. Cell Mol Neurobiol 2019; 39:671-686. [PMID: 31025223 PMCID: PMC11462842 DOI: 10.1007/s10571-019-00670-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
The present study explored the role of endothelin-1, H2S, and Nrf2 in remote preconditioning (RIPC)-induced beneficial effects in ischemia-reperfusion (I/R)-induced vascular dementia. Mice were subjected to 20 min of global ischemia by occluding both carotid arteries to develop vascular dementia, which was assessed using Morris water maze test on 7th day. RIPC was given by subjecting hind limb to four cycles of ischemia (5 min) and reperfusion (5 min) and it significantly restored I/R-induced locomotor impairment, neurological severity score, cerebral infarction, apoptosis markers along with deficits in learning and memory. Biochemically, there was increase in the plasma levels of endothelin-1 along with increase in the brain levels of H2S and its biosynthetic enzymes viz., cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CLS). There was also an increase in the expression of Nrf2 and glutathione reductase in the brain in response to RIPC. Pretreatment with bosentan (dual blocker of ETA and ETB receptors), amino-oxyacetic acid (CBS synthase inhibitor), and DL-propargylglycine (CLS inhibitor) significantly attenuated RIPC-mediated beneficial effects and biochemical alterations. The effects of bosentan on behavioral and biochemical parameters were more significant than individual treatments with CBS or CLS inhibitors. Moreover, CBS and CLS inhibitors did not alter the endothelin-1 levels possibly suggesting that endothelin-1 may act as upstream mediator of H2S. It is concluded that RIPC may stimulate the release endothelin-1, which may activate CBS and CLS to increase the levels of H2S and latter may increase the expression of Nrf2 to decrease oxidative stress and prevent vascular dementia.
Collapse
|
research-article |
6 |
10 |
10
|
Lu Y, Hu J, Zhang Y, Dong CS, Wong GTC. Remote intrathecal morphine preconditioning confers cardioprotection via spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G pathway. J Surg Res 2014; 193:43-51. [PMID: 25214258 DOI: 10.1016/j.jss.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/22/2014] [Accepted: 08/08/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Remote intrathecal morphine preconditioning (RMPC) induces cardioprotection, but the underlying mechanisms of this effect is unknown. The aim of this study was to investigate the role of spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G (NO/cGMP/PKG) signal pathway in the cardioprotection of RMPC in rats. MATERIALS AND METHODS Anesthetized, open chest, male Sprague-Dawley rats were assigned to one of eight treatment groups 3 d after intrathecal catheter placement. Before ischemia and reperfusion, RMPC received intrathecal morphine (3 μg/kg) by three cycles of 5-min infusions interspersed with 5-min infusion free periods. Intrathecally administrated a nonspecific nitric oxide synthase (NOS) inhibitor Nω-Nitro-L-arginine methyl ester (30 nmol), a specific guanylate cyclase inhibitor oxadiazolo [4,3-a] quinoxalin-1-one (11 nmol) and PKG inhibitor KT-5823 (20 pmol) 10 min before RMPC was used to evaluate the role of NO/cGMP/PKG of spinal cord. Ischemia and reperfusion injury were then induced by 30 min of left coronary artery occlusion, followed by 120 min of reperfusion. Infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining. The content of cyclic guanosine monophosphate in the thoracic spinal cord was determined by radioimmunity protocol; the contents of nitric oxide and activity of NOS in the thoracic spinal cord were determined by nitrate reductase reduction and colorimetric methods; the expression of neuronal NOS (nNOS) and PKG in the thoracic spinal cord were determined by immunohistochemical and Western blotting method; the expression of nNOS messenger RNA was determined by reverse transcription-polymerase chain reaction method. RESULTS RMPC group markedly reduced the infarct size compared with the control group. However, the cardioprotection of RMPC could be abolished by pretreatment with Nω-Nitro-L-arginine methyl ester, Oxadiazolo [4,3-a] quinoxalin-1-one, and KT-5823. RMPC enhanced nitric oxide , NOS, and cyclic guanosine monophosphate levels in the spinal cord. Meanwhile, RMPC increased PKG and nNOS protein or messenger RNA expression in the spinal cord. CONCLUSIONS Spinal cord NO/cGMP/PKG signaling pathway mediates RMPC-induced cardioprotective effect.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
10 |
11
|
Aulakh AS, Randhawa PK, Singh N, Jaggi AS. Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: Evidences and possible mechanisms. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:145-152. [PMID: 28280407 PMCID: PMC5343047 DOI: 10.4196/kjpp.2017.21.2.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 11/15/2022]
Abstract
Remote ischemic preconditioning (RIPC) is an intrinsic phenomenon whereby 3~4 consecutive ischemia-reperfusion cycles to a remote tissue (noncardiac) increases the tolerance of the myocardium to sustained ischemiareperfusion induced injury. Remote ischemic preconditioning induces the local release of chemical mediators which activate the sensory nerve endings to convey signals to the brain. The latter consequently stimulates the efferent nerve endings innervating the myocardium to induce cardioprotection. Indeed, RIPC-induced cardioprotective effects are reliant on the presence of intact neuronal pathways, which has been confirmed using nerve resection of nerves including femoral nerve, vagus nerve, and sciatic nerve. The involvement of neurogenic signaling has been further substantiated using various pharmacological modulators including hexamethonium and trimetaphan. The present review focuses on the potential involvement of neurogenic pathways in mediating remote ischemic preconditioning-induced cardioprotection.
Collapse
|
Review |
8 |
10 |
12
|
Randhawa PK, Jaggi AS. Investigating the involvement of glycogen synthase kinase-3β and gap junction signaling in TRPV 1 and remote hind preconditioning-induced cardioprotection. Eur J Pharmacol 2017; 814:9-17. [PMID: 28755986 DOI: 10.1016/j.ejphar.2017.07.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 01/10/2023]
Abstract
Remote ischemic preconditioning (RIPC) is the phenomenon that harnesses the body's endogenous protective mechanisms against prolonged ischemia-reperfusion-induced injury. The present study aimed to explore the involvement of glycogen synthase kinase-3β and gap junction signaling in TRPV1 and remote hind preconditioning-induced cardioprotection. In the present study, four consecutive cycles (5min of ischemia-reperfusion) of remote hind limb preconditioning stimulus were delivered using a blood pressure cuff fastened at the inguinal level of the rat. The isolated rat hearts were mounted on the Langendorff's apparatus and were exposed to 30min of global ischemia-120min of reperfusion. Sustained ischemia-reperfusion led to cardiac injury that was assessed in terms of infarct size, LDH release, CK release, LVDP, +dp/dtmax, -dp/dtmin, heart rate and coronary flow rate. The pharmacological agents employed in the present study included capsaicin (10mg/kg) as TRPV1 channel activator, AR-A014418 (1 and 3mg/kg) as glycogen synthase kinase-3β inhibitor and carbenoxolone disodium (50 and 100mg/kg) as gap junction blocker. Remote hind limb, capsaicin and AR-A014418 preconditioning led to significant reduction in the infarct size, LDH release, CK release and improved LVDP, +dp/dtmax, -dp/dtmin, heart rate and coronary flow rate. However, remote hind limb, capsaicin and AR-A014418 preconditioning-induced cardioprotective effects were remarkably reduced in the presence of carbenoxolone (100mg/kg). This indicates that remote preconditioning stimulus probably activates TRPV1 channels that may inhibit glycogen synthase kinase-3β activity which subsequently enhances gap junction coupling to produce cardioprotective effects.
Collapse
|
Journal Article |
8 |
8 |
13
|
Randhawa PK, Jaggi AS. Exploring the putative role of TRPV 1 -dependent CGRP release in remote hind preconditioning-induced cardioprotection. Cardiovasc Ther 2018; 35. [PMID: 28599085 DOI: 10.1111/1755-5922.12276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Accepted: 06/03/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) is a phenomenon whereby transient nonlethal ischemia and reperfusion episodes confer protection against prolonged ischemia reperfusion-induced injury. However, the underlying intracellular signaling has not been extensively explored. OBJECTIVE This study aimed to inspect the putative involvement of TRPV1 -dependent CGRP release in mediating remote hind limb preconditioning-induced cardioprotection. METHODS In this study, remote hind limb preconditioning stimulus was delivered (four consecutive episodes of 5 minutes of ischemia reperfusion) using a blood pressure cuff tied at the inguinal level of the rat. The isolated rat hearts were perfused on the Langendorff's system and were subjected to 30-minutes global ischemia and 120-minutes reperfusion. Prolonged ischemia and subsequent reperfusion led to myocardial injury that was evaluated in terms of infarct size, LDH release, CK release, LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. The pharmacological agents used in this study included capsaicin as TRPV1 channel activator, sumatriptan and CGRP8-37 as CGRP blockers. RESULTS Remote hind limb and capsaicin preconditioning (10 mg/kg-1 ) significantly reduced the infarct size, LDH release, CK release and significantly improved LVDP, +dp/dtmax , -dp/dtmin , and coronary flow rate. However, remote hind limb and capsaicin preconditioning-induced cardioprotective effects were remarkably reduced in the presence of sumatriptan (8 mg/kg-1 ) and CGRP8-37 (1 mg/kg-1 ). CONCLUSION This indicates that remote hind limb preconditioning stimulus probably activates TRPV1 channels which subsequently induces CGRP release to produce cardioprotective effects.
Collapse
|
Journal Article |
7 |
8 |
14
|
Tapuria N, Junnarkar S, Abu-amara M, Fuller B, Seifalian AM, Davidson BR. Haemoxygenase modulates cytokine induced neutrophil chemoattractant in hepatic ischemia reperfusion injury. World J Gastroenterol 2016; 22:7518-7535. [PMID: 27672274 PMCID: PMC5011667 DOI: 10.3748/wjg.v22.i33.7518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hepatic microcirculatory changes due to Haemoxygenase (HO), effect of HO inhibition on remote ischemic preconditioning (RIPC) and modulation of CINC.
METHODS Eight groups of animals were studied - Sham, ischemia reperfusion injury (IRI) the animals were subjected to 45 min of hepatic ischemia followed by three hours of reperfusion, RIPC (remote ischemic preconditioning) + IRI group, remote ischemic preconditioning in sham (RIPC + Sham), PDTC + IR (Pyridodithiocarbamate, HO donor), ZnPP + RIPC + IRI (Zinc protoporphyrin prior to preconditioning), IR-24 (45 min of ischemia followed by 24 h of reperfusion), RIPC + IR-24 (preconditioning prior to IR). After 3 and 24 h of reperfusion the animals were killed by exsanguination and samples were taken.
RESULTS Velocity of flow (160.83 ± 12.24 μm/s), sinusoidal flow (8.42 ± 1.19) and sinusoidal perfusion index (42.12 ± 7.28) in hepatic IR were lower (P < 0.05) in comparison to RIPC and PDTC (HO inducer). RIPC increased velocity of flow (328.04 ± 19.13 μm/s), sinusoidal flow (17.75 ± 2.59) and the sinusoidal perfusion index (67.28 ± 1.82) (P < 0.05). PDTC (HO induction) reproduced the effects of RIPC in hepatic IR. PDTC restored RBC velocity (300.88 ± 22.109 μm/s), sinusoidal flow (17.66 ± 3.71) and sinusoidal perfusion (82.33 ± 3.5) to near sham levels. ZnPP (HO inhibition) reduced velocity of flow of RBC in the RIPC group (170.74 ± 13.43 μm/s and sinusoidal flow in the RIPC group (9.46 ± 1.34). ZnPP in RIPC (60.29 ± 1.82) showed a fall in perfusion only at 180 min of reperfusion. Neutrophil adhesion in IR injury is seen in both postsinusoidal venules (769.05 ± 87.48) and sinusoids (97.4 ± 7.49). Neutrophil adhesion in RIPC + IR injury is reduced in both postsinusoidal venules (219.66 ± 93.79) and sinusoids (25.69 ± 9.08) (P < 0.05). PDTC reduced neutrophil adhesion in both postsinusoidal venules (89.58 ± 58.32) and sinusoids (17.98 ± 11.01) (P < 0.05) reproducing the effects of RIPC. ZnPP (HO inhibition) increased venular (589.04 ± 144.36) and sinusoidal neutrophil adhesion in preconditioned animals (121.39 ± 30.65) (P < 0.05). IR after 24 h of reperfusion increased venular and sinusoidal neutrophil adhesion in comparison to the early phase and was significantly reduced by RIPC. Hepatocellular cell death in IRI (80.83 ± 13.03), RIPC + IR (17.35 ± 2.47), and PTDC + IR (11.66 ± 1.17) reduced hepatocellular death. ZnPP + RIPC + IR (41.33 ± 3.07) significantly increased hepatocellular death (P < 0.05 PTDC/RIPC vs ZnPP and IR). The CINC cytokine levels in sham (101.32 ± 6.42). RIPC + sham (412.18 ± 65.24) as compared to sham (P < 0.05). CINC levels in hepatic IR were (644.08 ± 181.24). PDTC and RIPC CINC levels were significantly lower than hepatic IR (P < 0.05). HO inhibition in preconditioned animals with Zinc protoporphyrin increased serum CINC levels (521.81 ± 74.9) (P < 0.05). The serum CINC levels were high in the late phase of hepatic IR (15306 ± 1222.04). RIPC reduced CINC levels in the late phase of IR (467.46 ± 26.06), P < 0.05.
CONCLUSION RIPC protects hepatic microcirculation by induction of HO and modulation of CINC in hepatic IR.
Collapse
|
Basic Study |
9 |
7 |
15
|
Yu J, Chen K, Wu L, Liu X, Lu Y. Anesthetic propofol blunts remote preconditioning of trauma-induced cardioprotection via the TRPV1 receptor. Biomed Pharmacother 2019; 118:109308. [PMID: 31401396 DOI: 10.1016/j.biopha.2019.109308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023] Open
Abstract
Remote preconditioning of trauma (RPCT) by surgical incision is an effective cardioprotective strategy via the transient receptor potential vanilloid 1 (TRPV1) channel as a form of remote ischemic preconditioning (RIPC). However, cardioprotection by RIPC has been shown to be completely blocked by propofol. We thus hypothesized that propofol may interfere with RPCT induced cardioprotection, and that RPCT induces cardioprotection via the cardiac TRPV1 channel. Male Sprague-Dawley rats were subjected to 30 min of myocardial ischemia followed by 2 h of reperfusion. RPCT was achieved by a transverse abdominal incision. Additionally, propofol or the TRPV1 receptor inhibitor capsazepine (CPZ) was given before RPCT. Infarct size was assessed by triphenyltetrazolium staining. Heart TRPV1 expression was detected by Western blot and immunofluorescence. RPCT significantly reduced infarct size compared to control treatment (45.6 ± 4% versus 65.4 ± 2%, P < 0.01). This protective effect of RPCT was completely abolished by propofol and CPZ. TRPV1 channels are present in the heart. Therefore, cardioprotection by RPCT is also abolished by propofol, and cardiac TRPV1 mediates this cardioprotection.
Collapse
|
Journal Article |
6 |
4 |
16
|
Khalifa AA, Ali MA, Elsokkary NH, Elblehi SS, El-Mas MM. Mitochondrial modulation of amplified preconditioning influences of remote ischemia plus erythropoietin against skeletal muscle ischemia/reperfusion injury in rats. Life Sci 2023; 329:121979. [PMID: 37516431 DOI: 10.1016/j.lfs.2023.121979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
AIMS Skeletal muscle ischemia and reperfusion (S-I/R) injury is relieved by interventions like remote ischemic preconditioning (RIPC). Here, we tested the hypothesis that simultaneous exposure to a minimal dose of erythropoietin (EPO) boosts the protection conferred by RIPC against S-I/R injury and concomitant mitochondrial oxidative and apoptotic defects. MAIN METHODS S-I/R injury was induced in rats by 3-h right hindlimb ischemia followed by 3-h of reperfusion, whereas RIPC involved 3 brief consecutive I/R cycles of the contralateral hindlimb. KEY FINDINGS S-I/R injury caused (i) rises in serum lactate dehydrogenase and creatine kinase and falls in serum pyruvate, (ii) structural deformities like sarcoplasm vacuolations, segmental necrosis, and inflammatory cells infiltration, and (iii) decreased amplitude and increased duration of electromyography action potentials. These defects were partially ameliorated by RIPC and dose-dependently by EPO (500 or 5000 IU/kg). Further, greater repairs of S-I/R-evoked damages were seen after prior exposure to the combined RIPC/EPO-500 intervention. The latter also caused more effective (i) preservation of mitochondrial number (confocal microscopy assessed Mitotracker red staining) and function (citrate synthase activity), (ii) suppression of mitochondrial DNA damage and indices of oxidative stress and apoptosis (succinate dehydrogenase, myeloperoxidase, cardiolipin, and cytochrome c), (iii) preventing calcium and nitric oxide metabolites (NOx) accumulation and glycogen consumption, and (iv) upregulating EPO receptors (EPO-R) gene expression. SIGNIFICANCE dual RIPC/EPO conditioning exceptionally mends structural, functional, and neuronal deficits caused by I/R injury and interrelated mitochondrial oxidative and apoptotic damage. Clinically, the utilization of relatively low EPO doses could minimize the hormone-related adverse effects.
Collapse
|
|
2 |
1 |
17
|
Bin EP, Zaobornyj T, Garces M, D'Annunzio V, Buchholz B, Marchini T, Evelson P, Gelpi RJ, Donato M. Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition. Mol Cell Biochem 2024; 479:2351-2363. [PMID: 37728809 DOI: 10.1007/s11010-023-04849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin-integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and β-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity. A second objective was to describe some of the intracellular signals of the rIPC, that modify mitochondrial function at the early reperfusion. Isolated rat hearts were subjected to 30 min of global ischemia and 120 min of reperfusion (I/R). rIPC was performed by 3 cycles of ischemia/reperfusion in the lower limb (rIPC). rIPC significantly decreased the infarct size, induced Akt/GSK-3 β phosphorylation and inhibition of the MPTP opening. rIPC improved mitochondrial function, increasing membrane potential, ATP production and respiratory control. I/R increased ONOO- production, which activates MMP-2. This enzyme degrades β-dystroglycan and dystrophin and collaborates to sarcolemmal disruption. rIPC attenuates the breakdown of β-dystroglycan and dystrophin through the inhibition of MMP-2 activity. Furthermore, we confirm that rIPC activates different intracellular pathway that involves the an Akt/Gsk3β and MPTP pore with preservation of mitochondrial function.
Collapse
|
|
1 |
|
18
|
Zhao L, Chen Z, Cheng J, Chen B, Liu Y. Remote preconditioning combined with nebulized budesonide alleviate lipopolysaccharide induced acute lung injury via regulating HO-1 and NF-κB in rats. Pulm Pharmacol Ther 2023; 80:102215. [PMID: 37060938 DOI: 10.1016/j.pupt.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Acute lung injury (ALI) may result in severe systemic inflammation and is life-threatening. Remote inflammatory preconditioning (RIPC) has been confirmed to have an endogenous protective effect against ALI. Budesonide (BS) is a potent corticosteroid typically administered through nebulization that reduces inflammation in the lungs. We speculate that the combined use of RIPC and nebulized BS has a stronger protective effect on ALI. METHODS 48 Sprague-Dawley male rats were used for the experiments. Animals were divided evenly and randomly into three groups, control (NS injection), LPS (LPS injection), and RIPC (LPS injection with RIPC). Each group was then divided into two subgroups with inhalation of nebulized normal saline (NS) or BS. Prior to injection of LPS, RIPC was performed by tying and untying the right hind limb for three cycles of five minutes each. Following LPS injection, animals in each subgroup were placed in a same cage for nebulized inhalation. Animals were sacrificed 6 hours after LPS injection. Histological evaluation of ALI and lung wet-to-dry weight ratio were measured. Serum lactate acid, inflammatory cytokines, oxidative stress indicators were detected. The expression of HO-1, NF-κB p65 and p-p65 was measured by western blotting. RESULTS RIPC combined with nebulized BS significantly attenuated the LPS-induced ALI in rats. Reduction of MDA, increasing of SOD activity were found significantly improved by the joint strategy. TNF- and IL-1β rise brought on by LPS was reduced, but IL-10 production dramatically enhanced when compared to the LPS group. The expression of HO-1 was significantly increased by RIPC combined with nebulized BS while the expression of NF-κB p65 and p-p65 was decreased when compared with the LPS group. CONCLUSION RIPC combined with nebulized budesonide is protective for ALI induced by LPS in rats.
Collapse
|
|
2 |
|