1
|
Chiang CW, Wang Y, Sun P, Lin TH, Trinkaus K, Cross AH, Song SK. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage 2014; 101:310-9. [PMID: 25017446 DOI: 10.1016/j.neuroimage.2014.06.064] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 06/12/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA) and increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
102 |
2
|
Ben-Yoav H, Dykstra PH, Bentley WE, Ghodssi R. A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis. Biosens Bioelectron 2014; 64:579-85. [PMID: 25310492 DOI: 10.1016/j.bios.2014.09.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) devices for electrochemical analysis of DNA hybridization events offer a technology for real-time and label-free assessment of biomarkers at the point-of-care. Here, we present a microfluidic LOC, with 3 × 3 arrayed electrochemical sensors for the analysis of DNA hybridization events. A new dual layer microfluidic valved manipulation system is integrated providing controlled and automated capabilities for high throughput analysis. This feature improves the repeatability, accuracy, and overall sensing performance (Fig. 1). The electrochemical activity of the fabricated microfluidic device is validated and demonstrated repeatable and reversible Nernstian characteristics. System design required detailed analysis of energy storage and dissipation as our sensing modeling involves diffusion-related electrochemical impedance spectroscopy. The effect of DNA hybridization on the calculated charge transfer resistance and the diffusional resistance components is evaluated. We demonstrate a specific device with an average cross-reactivity value of 27.5%. The device yields semilogarithmic dose response and enables a theoretical detection limit of 1 nM of complementary ssDNA target. This limit is lower than our previously reported non-valved device by 74% due to on-chip valve integration providing controlled and accurate assay capabilities.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
31 |
3
|
Loi RQ, Leyden KM, Balachandra A, Uttarwar V, Hagler DJ, Paul BM, Dale AM, White NS, McDonald CR. Restriction spectrum imaging reveals decreased neurite density in patients with temporal lobe epilepsy. Epilepsia 2016; 57:1897-1906. [PMID: 27735051 DOI: 10.1111/epi.13570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI's ability to separate intraaxonal diffusion (i.e., neurite density; ND) from diffusion associated with extraaxonal factors (e.g., inflammation; crossing fibers). METHODS RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic-hindered (IH) and isotropic-free (IF) water, and crossing fibers (CFs) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. RESULTS Reductions in FA were seen primarily in frontotemporal white matter in TLE, and they were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. SIGNIFICANCE RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
19 |
4
|
Shemesh N, Álvarez GA, Frydman L. Measuring small compartment dimensions by probing diffusion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:49-62. [PMID: 24140623 DOI: 10.1016/j.jmr.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 05/22/2023]
Abstract
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed.
Collapse
|
|
12 |
18 |
5
|
Zorea J, Shukla RP, Elkabets M, Ben-Yoav H. Probing antibody surface density and analyte antigen incubation time as dominant parameters influencing the antibody-antigen recognition events of a non-faradaic and diffusion-restricted electrochemical immunosensor. Anal Bioanal Chem 2020; 412:1709-1717. [PMID: 31996962 PMCID: PMC7026205 DOI: 10.1007/s00216-020-02417-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Electrochemical sensors based on antibody-antigen recognition events are commonly used for the rapid, label-free, and sensitive detection of various analytes. However, various parameters at the bioelectronic interface, i.e., before and after the probe (such as an antibody) assembly onto the electrode, have a dominant influence on the underlying detection performance of analytes (such as an antigen). In this work, we thoroughly investigate the dependence of the bioelectronic interface characteristics on parameters that have not been investigated in depth: the antibody density on the electrode’s surface and the antigen incubation time. For this important aim, we utilized the sensitive non-faradaic electrochemical impedance spectroscopy method. We showed that as the incubation time of the antigen-containing drop solution increased, a decrease was observed in both the solution resistance and the diffusional resistance with reflecting boundary elements, as well as the capacitive magnitude of a constant phase element, which decreased at a rate of 160 ± 30 kΩ/min, 800 ± 100 mΩ/min, and 520 ± 80 pF × s(α-1)/min, respectively. Using atomic force microscopy, we also showed that high antibody density led to thicker electrode coating than low antibody density, with root-mean-square roughness values of 2.2 ± 0.2 nm versus 1.28 ± 0.04 nm, respectively. Furthermore, we showed that as the antigen accumulated onto the electrode, the solution resistance increased for high antibody density and decreased for low antibody density. Finally, the antigen detection performance test yielded a better limit of detection for low antibody density than for high antibody density (0.26 μM vs 2.2 μM). Overall, we show here the importance of these two factors and how changing one parameter can drastically affect the desired outcome.
|
Journal Article |
5 |
18 |
6
|
Abdoli M, Chakraborty S, MacLean HJ, Freedman MS. The evaluation of MRI diffusion values of active demyelinating lesions in multiple sclerosis. Mult Scler Relat Disord 2016; 10:97-102. [PMID: 27919508 DOI: 10.1016/j.msard.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/21/2016] [Accepted: 09/24/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Gadolinium (Gd) enhancement of lesions is the main radiologic marker for detection of activity in Multiple Sclerosis (MS). This study compares Diffusion weighted imaging (DWI) characteristics and enhancement to determine whether DWI can be used as an alternative to Gd administration. METHODS A retrospective study of 72 patients who had MRI with Gd and DWI. Visual assessment and comparison of the Apparent Diffusion Coefficient (ADC) values on Gd+ lesions, all lesions showing restricted diffusion, 2 Gd- lesions and 1 area of normal-appearing white matter (NAWM) in each MRI were performed. RESULTS DWI values were measured on 275 T2 lesions, 68 Gd+ and 207 Gd- lesions, as well as 104 NAWM. 34 Gd+ lesions showed restricted diffusion. The median ADC-minimum of Gd+ lesions was significantly lower than NAWM and even lower than Gd- lesions. Most DWI restricted lesions were also Gd+(specificity≥94%), however many Gd+ lesions did not show visually detectable restriction in DWI (sensitivity≤34%). The median ADC-minimum of symptomatic lesions was lower than asymptomatic lesions. CONCLUSION While Gd+ lesions have lower ADC-minimum, visual DWI assessment cannot replace Gd administration for identifying active lesions. Gd+ lesions showing restricted diffusion are clinically important as they are more likely associated with neurological symptoms.
Collapse
|
Journal Article |
9 |
14 |
7
|
Maier RS, Schure MR. Transport properties and size exclusion effects in wide-pore superficially porous particles. Chem Eng Sci 2018; 185:243-255. [PMID: 30613108 DOI: 10.1016/j.ces.2018.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of hydrodynamic radius on the transport of solute molecules in packed beds of wide-pore superficially porous particles (SPP) are studied using pore-scale simulation. The free molecular diffusion rate varies with radius through the Stokes-Einstein relation. Lattice Boltzmann and Langevin methods are used to model fluid motion and the transport of an ensemble of solute molecules in the fluid, providing statistics on solute concentration, flux, molecule age and residence time, as a function of depth in the SPP. Intraparticle effective diffusion and bed dispersion coefficients are calculated and correlated with the hydrodynamic radius and accessible porosity. The relative importance of convection and diffusion are found to depend on the molecule (tracer) size through the diffusion rate, and convection effects are more significant for larger, slower-diffusing molecules. When larger molecules are utilized, the intraparticle concentration is reduced in proportion to the local particle porosity, leading to a natural definition of the accessible porosity used in size exclusion chromatography (SEC). Although the pore shape is complex, the SEC constant K can be calculated directly from simulation. Simulation demonstrates that the effective diffusion coefficient is elevated near the particle hull, which is largely open to interstitial flow, and decreases with depth into the particle. All molecules studied here have transport access to the entire particle depth, although the accessible volume at a given depth depends on their size. The first passage time into the particle is well predicted by the diffusion rate, but residence time is influenced by convection, shortening the average visit duration. These results are of interest in "perfusion" chromatography where convection is thought to increase separation efficiency for large biomolecules.
Collapse
|
Journal Article |
7 |
13 |
8
|
He GJ, Yan YB. Self-association of poly(A)-specific ribonuclease (PARN) triggered by the R3H domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2077-85. [PMID: 25239613 DOI: 10.1016/j.bbapap.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Poly(A)-specific ribonuclease (PARN) is a deadenylase with three RNA-binding domains (the nuclease, R3H and RRM domains) and a C-terminal domain. PARN participates in diverse physiological processes by regulating mRNA fates through deadenylation. PARN mainly exists as a dimer in dilute solutions. In this research, we found that PARN could self-associate into tetramer and high-order oligomers both in vitro and in living cells. Mutational and spectroscopic analysis indicated that PARN oligomerization was triggered by the R3H domain, which led to the solvent-exposed Trp219 fluorophore to become buried in a solvent-inaccessible microenvironment. The RRM and C-terminal domains also played a role in modulating the dissociation rate of the tetrameric PARN. Enzymatic analysis indicated that tetramerization did not affect the catalytic behavior of the full-length PARN and truncated enzymes containing the RRM domain, which might be caused by the high propensity of the dimeric proteins to self-associate into oligomers. Tetramerization significantly enhanced the catalytic activity and processivity of the truncated form with the removal of the RRM and C-terminal domains. The results herein suggested that self-association might be one of the regulation methods for PARN to achieve a highly regulated deadenylase activity. We propose that self-association may facilitate PARN to concentrate around the target mRNAs by restricted diffusion.
Collapse
|
Journal Article |
11 |
13 |
9
|
Luo ZX, Paulsen J, Song YQ. Robust determination of surface relaxivity from nuclear magnetic resonance DT(2) measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 259:146-152. [PMID: 26340435 DOI: 10.1016/j.jmr.2015.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.
Collapse
|
|
10 |
12 |
10
|
Pai V, Sitoh YY, Purohit B. Gyriform restricted diffusion in adults: looking beyond thrombo-occlusions. Insights Imaging 2020; 11:20. [PMID: 32040645 PMCID: PMC7010902 DOI: 10.1186/s13244-019-0829-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
Gyriform restricted diffusion (GRD) refers to hyperintense signal involving the cerebral cortex on diffusion-weighted images (DWI) with corresponding hypointensity on apparent diffusion coefficient (ADC) images. These changes are commonly seen following a vascular occlusion, reflecting the limitation of water molecule movement across cell membranes (restricted diffusion) due to the failure of Na+/K+-ATPase pumps (cytotoxic oedema). However, GRD can occur in several other neurological conditions as well. A thorough understanding of these conditions and their anatomic predilection plays a critical role in identifying and differentiating them from vascular thrombo-occlusion, with impact towards appropriate clinical management. This review highlights the less commonly encountered, non-stroke causes of GRD in adults with case-based examples. A tabulated chart of the patterns of cortical and subcortical involvement associated with these aetiologies is provided for a quick, pattern-based reference for daily radiological reporting.
Collapse
|
Review |
5 |
10 |
11
|
Anaby D, Duncan ID, Smith CM, Cohen Y. White matter maturation in the brains of Long Evans shaker myelin mutant rats by ex-vivo QSI and DTI. Magn Reson Imaging 2013; 31:1097-104. [PMID: 23659769 DOI: 10.1016/j.mri.2013.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/17/2013] [Accepted: 03/17/2013] [Indexed: 11/15/2022]
Abstract
The brains of Long Evans shaker (les) rats, a model of dysmyelination, and their age- matched controls were studied by ex-vivo q-space diffusion imaging (QSI) and diffusion tensor imaging (DTI). The QSI and DTI indices were computed from the same acquisition. The les and the control brains were studied at different stages of maturation and disease progression. The mean displacement, the probability for zero displacement and kurtosis were computed from QSI data while the fractional anisotropy (FA) and the eigenvalues were computed from DTI. It was found that all QSI indices detect the les pathology, at all stages of maturation, while only some of the DTI indices could detect the les pathology. The QSI mean displacement was larger in the les group as compared with their age-matched controls while the probability for zero displacement and the kurtosis were both lower all indicating higher degree of restriction in the control brains. Since all the DTI eigenvalues were higher in the les brains as compared to controls, the less efficient DTI measure for discerning the les pathology was found to be the FA. Clearly, the most sensitive DTI parameter to the les pathology is λ3, i.e., the minimal diffusivity. Since the QSI and DTI data were obtained from the same acquisition, despite the somewhat higher SNR of the QSI data compared to the DTI data, it seems that the higher diagnostic capacity of the QSI data in this experimental model of dysmyelination, originates mainly from the higher diffusing weighting of the QSI data.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
8 |
12
|
Bhat MD, Prasad C, Tiwari S, Chandra SR, Christopher R. Diffusion restriction in ethylmalonic encephalopathy - An imaging evidence of the pathophysiology of the disease. Brain Dev 2016; 38:768-71. [PMID: 26992475 DOI: 10.1016/j.braindev.2016.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 01/09/2023]
Abstract
Ethylmalonic encephalopathy is an inborn error of metabolism characterized by encephalopathy, petechiae chronic diarrhea and acrocyanosis. Imaging findings include patchy signal changes in the basal ganglia, periaqueductal region, subcortical white matter and cerebellum. We describe the novel finding of diffusion restriction in brain lesions, in a proven case of ethylmalonic encephalopathy.
Collapse
|
Case Reports |
9 |
7 |
13
|
Koo BB, Calderazzo S, Bowley BGE, Kolli A, Moss MB, Rosene DL, Moore TL. Long-term effects of curcumin in the non-human primate brain. Brain Res Bull 2018; 142:88-95. [PMID: 29981358 DOI: 10.1016/j.brainresbull.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023]
Abstract
Curcumin has recently been shown to be a potential treatment for slowing or ameloriating cognitive decline during aging in our nonhuman primate model of normal aging. In these same monkeys, we studied for the first time the neurological impacts of long-term curcumin treatments using longitudinal magnetic resonance imaging (MRI). Sixteen rhesus monkeys received curcumin or a vehicle control for 14-18 months. We applied a combination of structural and diffusion MRI to determine whether the curcumin resulted in structural or functional changes in focal regions of the brain. The longitudinal imaging revealed decreased microscale diffusivity (mD) measurements mainly in the hippocampus and basal forebrain structures of curcumin treated animals. Changes in generalized fractional anisotropy (GFA) and grey matter density (GMd) measurements indicated an increased grey matter density in cortical ROIs with improved white matter integrity in limbic, cerebellar, and brain stem regions. These findings suggest that noticeable changes in the neuronal environment could be induced from long-term curcumin treatments. Results may provide a neurological basis on the recent findings demonstrating improved spatial working memory and motor function in nonhuman primates.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
6 |
14
|
Moroney BF, Stait-Gardner T, Ghadirian B, Yadav NN, Price WS. Numerical analysis of NMR diffusion measurements in the short gradient pulse limit. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:165-175. [PMID: 23887027 DOI: 10.1016/j.jmr.2013.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Pulsed gradient spin-echo (PGSE) NMR diffusion measurements provide a powerful technique for probing porous media. The derivation of analytical mathematical models for analysing such experiments is only straightforward for ideal restricting geometries and rapidly becomes intractable as the geometrical complexity increases. Consequently, in general, numerical methods must be employed. Here, a highly flexible method for calculating the results of PGSE NMR experiments in porous systems in the short gradient pulse limit based on the finite element method is presented. The efficiency and accuracy of the method is verified by comparison with the known solutions to simple pore geometries (parallel planes, a cylindrical pore, and a spherical pore) and also to Monte Carlo simulations. The approach is then applied to modelling the more complicated cases of parallel semipermeable planes and a pore hopping model. Finally, the results of a PGSE measurement on a toroidal pore, a geometry for which there is presently no current analytical solution, are presented. This study shows that this approach has great potential for modelling the results of PGSE experiments on real (3D) porous systems. Importantly, the FEM approach provides far greater accuracy in simulating PGSE diffraction data.
Collapse
|
|
12 |
6 |
15
|
Woods JC, Conradi MS. 3He diffusion MRI in human lungs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:90-98. [PMID: 29705031 PMCID: PMC6386180 DOI: 10.1016/j.jmr.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/05/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Hyperpolarized 3He gas allows the air spaces of the lungs to be imaged via MRI. Imaging of restricted diffusion is addressed here, which allows the microstructure of the lung to be characterized through the physical restrictions to gas diffusion presented by airway and alveolar walls in the lung. Measurements of the apparent diffusion coefficient (ADC) of 3He at time scales of milliseconds and seconds are compared; measurement of acinar airway sizes by determination of the microscopic anisotropy of diffusion is discussed. This is where Dr. JJH Ackerman's influence was greatest in aiding the formation of the Washington University 3He group, involving early a combination of physicists, radiologists, and surgeons, as the first applications of 3He ADC were to COPD and its destruction/modification of lung microstructure via emphysema. The sensitivity of the method to early COPD is demonstrated, as is its validation by direct comparison to histology. More recently the method has been used broadly in adult and pediatric obstructive lung diseases, from severe asthma to cystic fibrosis to bronchopulmonary dysplasia, a result of premature birth. These applications of the technique are discussed briefly.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
5 |
16
|
Gnezdilov OI, Antzutkin ON, Gimatdinov R, Filippov A. Temperature dependence of 1H NMR chemical shifts and diffusivity of confined ethylammonium nitrate ionic liquid. Magn Reson Imaging 2020; 74:84-89. [PMID: 32949669 DOI: 10.1016/j.mri.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
Abstract
Some ionic liquids (ILs) change their dynamic properties when placed in a confinement between polar surfaces (Filippov et al., Phys. Chem. Chem. Phys. 2018, 20, 6316). The diffusivities of ions and NMR relaxation times in these ILs also reversibly change under a strong static magnetic field. The mechanisms of these phenomena are not clear, but it has been suggested that they involve modified hydrogen-bonding networks formed in these ILs in the presence of polar surfaces. To obtain a better understanding of these effects, we performed temperature-dependent measurements of chemical shifts and diffusion coefficients for ethylammonium nitrate (EAN) IL in the bulk phase (IB) and confined in layers with a thickness of ~4 μm between quartz plates unexposed (I phase) and exposed (IMF phase) to a static magnetic field of 9.4 T. It was shown that the NMR chemical shift of NH3 protons of EAN in the I phase is strongly shifted upfield, ~0.0145 ppm/K, which is due to weakening of the hydrogen-bonding network of the confined EAN. Exposure to the magnetic field leads to restitution of the hydrogen-bonding (H-bonding network). The temperature dependences of diffusion coefficients follow the order D(I) > D(IB) > D(IMF) and can be described by a Vogel-Fulcher-Tammann approach with variation of the pre-exponential factor, which is determined by the strength of the H-bonding network. Confinement of EAN between plates (IB → I) is an endothermic process, while processes occurring in a magnetic field, I → IMF and IMF → I, are exothermic and endothermic, respectively.
Collapse
|
|
5 |
5 |
17
|
Lin G, Zheng S, Liao X. Signal attenuation of PFG restricted anomalous diffusions in plate, sphere, and cylinder. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 272:25-36. [PMID: 27616657 DOI: 10.1016/j.jmr.2016.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Pulsed field gradient (PFG) NMR is a noninvasive tool to study anomalous diffusion, which exists widely in many systems such as in polymer or biological systems, in porous material, in single file structures and in fractal geometries. In a real system, the diffusion could be a restricted or a tortuous anomalous diffusion, rather than a free diffusion as the domains for fast and slow transport could coexist. Though there are signal attenuation expressions for free anomalous diffusion in literature, the signal attenuation formalisms for restricted anomalous diffusion is very limited, except for a restricted time-fractional diffusion within a plate reported recently. To better understand the PFG restricted fractional diffusion, in this paper, the PFG signal attenuation expressions were derived for three typical structures (plate, sphere, and cylinder) based on two models: fractal derivative model and fractional derivative model. These signal attenuation expressions include two parts, the time part Tn(t) and the space part Xn(r). Unlike normal diffusion, the time part Tn(t) in time-fractional diffusion can be either a Mittag-Leffler function from the fractional derivative model or a stretched exponential function from the fractal derivative model. However, provided the restricted normal diffusion and the restricted time-fractional diffusion are in an identical structure, they will have the same space part Xn(r) as both diffusions have the same space derivative parameter β equaling 2, therefore, they should have similar diffractive patterns. The restricted general fractional diffusion within a plate is also investigated, which indicates that at a long time limit, the diffusion type is insignificant to the diffractive pattern that depends only on the structure and the gradient pulses. The expressions describing the time-dependent behaviors of apparent diffusion coefficient Df,app for restricted anomalous diffusion are also proposed in this paper. Both the short and long time-dependent behaviors of Df,app are distinct from that of normal diffusion. The general expressions for PFG restricted curvilinear diffusion of tube model were derived in a conventional way and its result agree with that obtained from the fractional derivative model with α equaling 1/2. Additionally, continuous-time random walk simulation was performed to give good support to the theoretical results. These theoretical results reported here will be valuable for researchers in analyzing PFG anomalous diffusion.
Collapse
|
|
9 |
5 |
18
|
Paulsen JL, Song YQ. Two-dimensional diffusion time correlation experiment using a single direction gradient. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 244:6-11. [PMID: 24819424 DOI: 10.1016/j.jmr.2014.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
The time dependence of the diffusion coefficient is a well known property of porous media and commonly obtained by pulsed field gradient (PFG) NMR. In practical materials, its analysis can be complicated by the presence of a broad pore size distribution and multiple fluid phases with different diffusion coefficients. We propose a two-dimensional Diffusion Time Correlation experiment (DTC), which utilizes the double-PFG with a single-direction gradient to yield a two-dimensional correlation function of the diffusion coefficient for two different diffusion times. This correlation map separates out restricted diffusion from the bulk diffusion process and we demonstrate this on a plant and bulk water sample. In its development, we show that the d-PFG should then be thought of as correlating two apparent diffusion coefficients measured by two overlapping gradient waveforms.
Collapse
|
|
11 |
4 |
19
|
Mallon D, Dixon L, Campion T, Dawe G, Bhatia K, Kachramanoglou C, Kirmi O. Beyond the brain: Extra-axial pathology on diffusion weighted imaging in neuroimaging. J Neurol Sci 2020; 415:116900. [PMID: 32464349 DOI: 10.1016/j.jns.2020.116900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/10/2023]
Abstract
Diffusion-weighted imaging (DWI) has a central role in the assessment of the brain parenchyma, particularly in the context of acute stroke. However, the applications of DWI extend far beyond the brain parenchyma and include the assessment of the extra-axial structures of the head and neck that are included in routine brain imaging. In this pictorial review, the added-value of DWI over other conventional sequences is illustrated through discussion of a broad range of disorders affecting the vasculature, skull, orbits, nasal cavity and salivary glands. This article highlights the requirement for all structures, both intra- and extra-axial, to be carefully reviewed on DWI.
Collapse
|
Review |
5 |
4 |
20
|
Das A, Bhalla AS, Sharma R, Kumar A, Sharma M, Gamanagatti S, Thakar A, Sharma S. Benign neck masses showing restricted diffusion: Is there a histological basis for discordant behavior? World J Radiol 2016; 8:174-182. [PMID: 26981226 PMCID: PMC4770179 DOI: 10.4329/wjr.v8.i2.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/27/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Diffusion weighted imaging (DWI) evolved as a complementary tool to morphologic imaging by offering additional functional information about lesions. Although the technique utilizes movement of water molecules to characterize biological tissues in terms of their cellularity, there are other factors related to the histological constitution of lesions which can have a significant bearing on DWI. Benign lesions with atypical histology including presence of lymphoid stroma, inherently increased cellularity or abundant extracellular collagen can impede movement of water molecules similar to malignant tissues and thereby, show restricted diffusion. Knowledge of these atypical entities while interpreting DWI in clinical practice can avoid potential misdiagnosis. This review aims to present an imaging spectrum of such benign neck masses which, owing to their distinct histology, can show discordant behavior on DWI.
Collapse
|
Minireviews |
9 |
4 |
21
|
Zhang Y, Xiao L, Liao G, Blümich B. Direct correlation of internal gradients and pore size distributions with low field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:37-42. [PMID: 27111138 DOI: 10.1016/j.jmr.2016.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging.
Collapse
|
|
9 |
3 |
22
|
Splith T, Stallmach F. Restricted self-diffusion of adsorbed water in MIL-100(Al). Magn Reson Imaging 2018; 56:52-56. [PMID: 30301638 DOI: 10.1016/j.mri.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/02/2018] [Accepted: 09/02/2018] [Indexed: 11/30/2022]
Abstract
An extended two-site exchange model is presented, which is used to evaluate pulsed field gradient (PFG) nuclear magnetic resonance (NMR) measurements of water in the nanoporous metal-organic framework MIL-100(Al). Here the water molecules exchange between the inter- and the intracrystalline space during the observation time, but are also restricted in their movement by the crystal surface. The evaluation of temperature and loading dependent PFG NMR data yields information about the intracrystalline diffusion process, the radius of the restricting geometry and the time constants of the exchange process. The intracrystalline mean residence time is found to decrease with increasing temperature, which allows an estimate of the heat of adsorption under the equilibrium conditions of the NMR measurements.
Collapse
|
|
7 |
3 |
23
|
Gopal N, Anari PY, Chaurasia A, Antony M, Wakim P, Linehan WM, Ball M, Turkbey E, Malayeri A. The kidney imaging surveillance scoring system (KISSS): using qualitative MRI features to predict growth rate of renal tumors in patients with von-Hippel Lindau (VHL) syndrome. Abdom Radiol (NY) 2024; 49:542-550. [PMID: 38010527 DOI: 10.1007/s00261-023-04087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE To determine the reliability of an MRI-based qualitative kidney imaging surveillance scoring system (KISSS) and assess which imaging features predict growth rate (GR) of renal tumors in patients with VHL. MATERIALS AND METHODS We identified 55 patients with VHL with 128 renal tumors who underwent intervention from 2015 to 2020 at the National Cancer Institute. All patients had 2 preoperative MRIs at least 3 months apart. Two fellowship-trained radiologists scored each tumor on location and MR-sequence-specific imaging parameters from the earlier MRI. Weighted kappa was used to determine the degree of agreement between radiologists for each parameter. GR was calculated as the difference in maximum tumor dimension over time (cm/year). Differences in mean growth rate (MGR) within categories of each imaging variable were assessed by ANOVA. RESULTS Apart from tumor margin and renal sinus, reliability was at least moderate (K > 0.40) for imaging parameters. Median initial tumor size was 2.1 cm, with average follow-up of 1.2 years. Tumor MGR was 0.42 cm/year. T2 hypointense, mixed/predominantly solid, and high restricted diffusion tumors grew faster. When comparing different combinations of these variables, the model with the lowest mean error among both radiologists utilized only solid/cystic and restricted diffusion features. CONCLUSIONS We demonstrate a novel MR-based scoring system (KISSS) that has good precision with minimal training and can be applied to other qualitative radiology studies. A subset of imaging variables (T2 intensity; restricted diffusion; and solid/cystic) were independently associated with growth rate in VHL renal tumors, with the combination of the latter two most optimal. Additional validation, including in sporadic RCC population, is warranted.
Collapse
|
|
1 |
2 |
24
|
Karunanithy G, Wheeler RJ, Tear LR, Farrer NJ, Faulkner S, Baldwin AJ. INDIANA: An in-cell diffusion method to characterize the size, abundance and permeability of cells. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:1-13. [PMID: 30904779 PMCID: PMC7611012 DOI: 10.1016/j.jmr.2018.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 05/13/2023]
Abstract
NMR and MRI diffusion experiments contain information describing the shape, size, abundance, and membrane permeability of cells although extracting this information can be challenging. Here we present the INDIANA (IN-cell DIffusion ANAlysis) method to simultaneously and non-invasively measure cell abundance, effective radius, permeability and intrinsic relaxation rates and diffusion coefficients within the inter- and intra-cellular populations. The method couples an experimental dataset comprising stimulated-echo diffusion measurements, varying both the gradient strength and the diffusion delay, together with software to fit a model based on the Kärger equations to robustly extract the relevant parameters. A detailed error analysis is presented by comparing the results from fitting simulated data from Monte Carlo simulations, establishing its effectiveness. We note that for parameters typical of mammalian cells the approach is particularly effective, and the shape of the underlying cells does not unduly affect the results. Finally, we demonstrate the performance of the experiment on systems of suspended yeast and mammalian cells. The extracted parameters describing cell abundance, size, permeability and relaxation are independently validated.
Collapse
|
research-article |
6 |
2 |
25
|
Burant A, Antonacci M, McCallister D, Zhang L, Branca RT. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:53-62. [PMID: 29702362 PMCID: PMC5975651 DOI: 10.1016/j.jmr.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/26/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
1 |