1
|
Kelly S, Sullivan J, Ronson C, Tian R, Bräu L, Munk C, Goodwin L, Han C, Woyke T, Reddy T, Huntemann M, Pati A, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. Stand Genomic Sci 2014; 9:6. [PMID: 25780499 PMCID: PMC4334631 DOI: 10.1186/1944-3277-9-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Mesorhizobium loti strain R7A was isolated in 1993 in Lammermoor, Otago, New Zealand from a Lotus corniculatus root nodule and is a reisolate of the inoculant strain ICMP3153 (NZP2238) used at the site. R7A is an aerobic, Gram-negative, non-spore-forming rod. The symbiotic genes in the strain are carried on a 502-kb integrative and conjugative element known as the symbiosis island or ICEMlSym(R7A). M. loti is the microsymbiont of the model legume Lotus japonicus and strain R7A has been used extensively in studies of the plant-microbe interaction. This report reveals that the genome of M. loti strain R7A does not harbor any plasmids and contains a single scaffold of size 6,529,530 bp which encodes 6,323 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
|
Journal Article |
11 |
18 |
2
|
Reeve W, Sullivan J, Ronson C, Tian R, Bräu L, Davenport K, Goodwin L, Chain P, Woyke T, Lobos E, Huntemann M, Pati A, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N. Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Stand Genomic Sci 2014; 9:3. [PMID: 25780496 PMCID: PMC4334104 DOI: 10.1186/1944-3277-9-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 11/22/2022] Open
Abstract
Mesorhizobium loti strain R88B was isolated in 1993 in the Rocklands range in Otago, New Zealand from a Lotus corniculatus root nodule. R88B is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain R88B contains a single scaffold of size 7,195,110 bp which encodes 6,950 protein-coding genes and 66 RNA-only encoding genes. This genome does not harbor any plasmids but contains the integrative and conjugative element ICEMlSymR7A, also known as the R7A symbiosis island, acquired by horizontal gene transfer in the field environment from M. loti strain R7A. It also contains a mobilizable genetic element ICEMladhR88B, that encodes a likely adhesin gene which has integrated downstream of ICEMlSymR7A, and three acquired loci that together allow the utilization of the siderophore ferrichrome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
|
|
11 |
9 |
3
|
Yates R, Howieson J, De Meyer SE, Tian R, Seshadri R, Pati A, Woyke T, Markowitz V, Ivanova N, Kyrpides N, Loi A, Nutt B, Garau G, Sulas L, Reeve W. High-quality permanent draft genome sequence of Rhizobium sullae strain WSM1592; a Hedysarum coronarium microsymbiont from Sassari, Italy. Stand Genomic Sci 2015; 10:44. [PMID: 26380632 PMCID: PMC4572446 DOI: 10.1186/s40793-015-0020-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
Rhizobium sullae strain WSM1592 is an aerobic, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule formed on the short-lived perennial legume Hedysarum coronarium (also known as Sulla coronaria or Sulla). WSM1592 was isolated from a nodule recovered from H. coronarium roots located in Ottava, bordering Sassari, Sardinia in 1995. WSM1592 is highly effective at fixing nitrogen with H. coronarium, and is currently the commercial Sulla inoculant strain in Australia. Here we describe the features of R. sullae strain WSM1592, together with genome sequence information and its annotation. The 7,530,820 bp high-quality permanent draft genome is arranged into 118 scaffolds of 118 contigs containing 7.453 protein-coding genes and 73 RNA-only encoding genes. This rhizobial genome is sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
|
Journal Article |
10 |
9 |
4
|
Delestre C, Laugraud A, Ridgway H, Ronson C, O'Callaghan M, Barrett B, Ballard R, Griffiths A, Young S, Blond C, Gerard E, Wakelin S. Genome sequence of the clover symbiont Rhizobium leguminosarum bv. trifolii strain CC275e. Stand Genomic Sci 2015; 10:121. [PMID: 26649149 PMCID: PMC4672485 DOI: 10.1186/s40793-015-0110-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023] Open
Abstract
Rhizobium leguminosarum bv. trifolii strain CC275e is a highly effective, N2-fixing microsymbiont of white clover (Trifolium repens L.). The bacterium has been widely used in both Australia and New Zealand as a clover seed inoculant and, as such, has delivered the equivalent of millions of dollars of nitrogen into these pastoral systems. R. leguminosarum strain CC275e is a rod-shaped, motile, Gram-negative, non-spore forming bacterium. The genome was sequenced on an Illumina MiSeq instrument using a 2 × 150 bp paired end library and assembled into 29 scaffolds. The genome size is 7,077,367 nucleotides, with a GC content of 60.9 %. The final, high-quality draft genome contains 6693 protein coding genes, close to 85 % of which were assigned to COG categories. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRXL00000000. The sequencing of this genome will enable identification of genetic traits associated with host compatibility and high N2 fixation characteristics in Rhizobium leguminosarum. The sequence will also be useful for development of strain-specific markers to assess factors associated with environmental fitness, competiveness for host nodule occupancy, and survival on legume seeds (New Zealand Ministry of Business, Innovation and Employment program, ‘Improving forage legume-rhizobia performance’ contract C10X1308 and DairyNZ Ltd.).
Collapse
|
Case Reports |
10 |
8 |
5
|
Reeve W, van Berkum P, Ardley J, Tian R, Gollagher M, Marinova D, Elia P, Reddy TBK, Pillay M, Varghese N, Seshadri R, Ivanova N, Woyke T, Baeshen MN, Baeshen NA, Kyrpides N. High-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76 T, isolated from Glycine max (L.) Merr. Stand Genomic Sci 2017; 12:26. [PMID: 28270909 PMCID: PMC5336687 DOI: 10.1186/s40793-017-0238-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/21/2017] [Indexed: 11/10/2022] Open
Abstract
Bradyrhizobium elkanii USDA 76T (INSCD = ARAG00000000), the type strain for Bradyrhizobium elkanii, is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Glycine max (L. Merr) grown in the USA. Because of its significance as a microsymbiont of this economically important legume, B. elkanii USDA 76T was selected as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria sequencing project. Here the symbiotic abilities of B. elkanii USDA 76T are described, together with its genome sequence information and annotation. The 9,484,767 bp high-quality draft genome is arranged in 2 scaffolds of 25 contigs, containing 9060 protein-coding genes and 91 RNA-only encoding genes. The B. elkanii USDA 76T genome contains a low GC content region with symbiotic nod and fix genes, indicating the presence of a symbiotic island integration. A comparison of five B. elkanii genomes that formed a clique revealed that 356 of the 9060 protein coding genes of USDA 76T were unique, including 22 genes of an intact resident prophage. A conserved set of 7556 genes were also identified for this species, including genes encoding a general secretion pathway as well as type II, III, IV and VI secretion system proteins. The type III secretion system has previously been characterized as a host determinant for Rj and/or rj soybean cultivars. Here we show that the USDA 76T genome contains genes encoding all the type III secretion system components, including a translocon complex protein NopX required for the introduction of effector proteins into host cells. While many bradyrhizobial strains are unable to nodulate the soybean cultivar Clark (rj1), USDA 76T was able to elicit nodules on Clark (rj1), although in reduced numbers, when plants were grown in Leonard jars containing sand or vermiculite. In these conditions, we postulate that the presence of NopX allows USDA 76T to introduce various effector molecules into this host to enable nodulation.
Collapse
|
Case Reports |
8 |
7 |
6
|
Gehlot HS, Ardley J, Tak N, Tian R, Poonar N, Meghwal RR, Rathi S, Tiwari R, Adnawani W, Seshadri R, Reddy TBK, Pati A, Woyke T, Pillay M, Markowitz V, Baeshen MN, Al-Hejin AM, Ivanova N, Kyrpides N, Reeve W. High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India. Stand Genomic Sci 2016; 11:43. [PMID: 27340511 PMCID: PMC4918122 DOI: 10.1186/s40793-016-0157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/18/2016] [Indexed: 11/17/2022] Open
Abstract
Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence information and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.
Collapse
|
Case Reports |
9 |
6 |
7
|
De Meyer SE, Tian R, Seshadri R, Reddy T, Markowitz V, Ivanova N, Pati A, Woyke T, Kyrpides N, Yates R, Howieson J, Reeve W. High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176. Stand Genomic Sci 2015; 10:79. [PMID: 26478785 PMCID: PMC4609093 DOI: 10.1186/s40793-015-0072-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/08/2015] [Indexed: 12/20/2022] Open
Abstract
Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247 bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs, contains 8369 protein-coding genes and 128 RNA-only encoding genes, and is part of the GEBA-RNB project proposal (Project ID 882).
Collapse
|
Journal Article |
10 |
5 |
8
|
Tian R, Parker M, Seshadri R, Reddy TBK, Markowitz V, Ivanova N, Pati A, Woyke T, Baeshen MN, Baeshen NA, Kyrpides N, Reeve W. High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama. Stand Genomic Sci 2015; 10:27. [PMID: 26203338 PMCID: PMC4511254 DOI: 10.1186/s40793-015-0006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/16/2015] [Indexed: 11/28/2022] Open
Abstract
Bradyrhizobiumsp. Tv2a.2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Tachigali versicolor collected in Barro Colorado Island of Panama. Here we describe the features of Bradyrhizobiumsp. Tv2a.2, together with high-quality permanent draft genome sequence information and annotation. The 8,496,279 bp high-quality draft genome is arranged in 87 scaffolds of 87 contigs, contains 8,109 protein-coding genes and 72 RNA-only encoding genes. This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
|
research-article |
10 |
4 |
9
|
Kelly S, Sullivan J, Ronson C, Tian R, Bräu L, Davenport K, Daligault H, Erkkila T, Goodwin L, Gu W, Munk C, Teshima H, Xu Y, Chain P, Woyke T, Liolios K, Pati A, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain NZP2037. Stand Genomic Sci 2014; 9:7. [PMID: 25780500 PMCID: PMC4334872 DOI: 10.1186/1944-3277-9-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 12/04/2022] Open
Abstract
Mesorhizobium loti strain NZP2037 was isolated in 1961 in Palmerston North, New Zealand from a Lotus divaricatus root nodule. Compared to most other M. loti strains, it has a broad host range and is one of very few M. loti strains able to form effective nodules on the agriculturally important legume Lotus pedunculatus. NZP2037 is an aerobic, Gram negative, non-spore-forming rod. This report reveals that the genome of M. loti strain NZP2037 does not harbor any plasmids and contains a single scaffold of size 7,462,792 bp which encodes 7,318 protein-coding genes and 70 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
|
|
11 |
4 |
10
|
Mhamdi R, Ardley J, Tian R, Seshadri R, Reddy T, Pati A, Woyke T, Markowitz V, Ivanova N, Kyrpides N, Reeve W. High-quality permanent draft genome sequence of Ensifer meliloti strain 4H41, an effective salt- and drought-tolerant microsymbiont of Phaseolus vulgaris. Stand Genomic Sci 2015; 10:34. [PMID: 26380038 PMCID: PMC4571125 DOI: 10.1186/s40793-015-0005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
Ensifer meliloti 4H41 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of common bean (Phaseolus vulgaris). Strain 4H41 was isolated in 2002 from root nodules of P. vulgaris grown in South Tunisia from the oasis of Rjim-Maatoug. Strain 4H41 is salt- and drought-tolerant and highly effective at fixing nitrogen with P. vulgaris. Here we describe the features of E. meliloti 4H41, together with genome sequence information and its annotation. The 6,795,637 bp high-quality permanent draft genome is arranged into 47 scaffolds of 47 contigs containing 6,350 protein-coding genes and 72 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.
Collapse
|
research-article |
10 |
4 |
11
|
Mazur A, De Meyer SE, Tian R, Wielbo J, Zebracki K, Seshadri R, Reddy TBK, Markowitz V, Ivanova NN, Pati A, Woyke T, Kyrpides NC, Reeve W. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland. Stand Genomic Sci 2015; 10:36. [PMID: 26221417 PMCID: PMC4517663 DOI: 10.1186/s40793-015-0029-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/05/2015] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.
Collapse
|
Case Reports |
10 |
3 |
12
|
De Meyer SE, Fabiano E, Tian R, Van Berkum P, Seshadri R, Reddy T, Markowitz V, Ivanova NN, Pati A, Woyke T, Howieson J, Kyrpides NC, Reeve W. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Cupriavidus sp. strain UYPR2.512. Stand Genomic Sci 2015. [PMID: 26203327 PMCID: PMC4511410 DOI: 10.1186/1944-3277-10-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cupriavidus sp. strain UYPR2.512 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida grown in soils from a native forest of Uruguay. Here we describe the features of Cupriavidus sp. strain UYPR2.512, together with sequence and annotation. The 7,858,949 bp high-quality permanent draft genome is arranged in 365 scaffolds of 369 contigs, contains 7,411 protein-coding genes and 76 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.
Collapse
|
|
10 |
3 |
13
|
Ardley J, Tian R, Howieson J, Yates R, Bräu L, Han J, Lobos E, Huntemann M, Chen A, Mavromatis K, Markowitz V, Ivanova N, Pati A, Goodwin L, Woyke T, Kyrpides N, Reeve W. Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598. Stand Genomic Sci 2014; 9:5. [PMID: 25780498 PMCID: PMC4334988 DOI: 10.1186/1944-3277-9-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 GenomicEncyclopedia for Bacteria and Archaea-RootNoduleBacteria (GEBA-RNB) project.
Collapse
|
Journal Article |
11 |
3 |
14
|
Klonowska A, López-López A, Moulin L, Ardley J, Gollagher M, Marinova D, Tian R, Huntemann M, Reddy T, Varghese N, Woyke T, Markowitz V, Ivanova N, Seshadri R, Baeshen MN, Baeshen NA, Kyrpides N, Reeve W. High-quality draft genome sequence of Rhizobium mesoamericanum strain STM6155, a Mimosa pudica microsymbiont from New Caledonia. Stand Genomic Sci 2017; 12:7. [PMID: 28116041 PMCID: PMC5240323 DOI: 10.1186/s40793-016-0212-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/26/2016] [Indexed: 11/12/2022] Open
Abstract
Rhizobium mesoamericanum STM6155 (INSCD = ATYY01000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as an effective nitrogen fixing microsymbiont of the legume Mimosa pudica L.. STM6155 was isolated in 2009 from a nodule of the trap host M. pudica grown in nickel-rich soil collected near Mont Dore, New Caledonia. R. mesoamericanum STM6155 was selected as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) genome sequencing project. Here we describe the symbiotic properties of R. mesoamericanum STM6155, together with its genome sequence information and annotation. The 6,927,906 bp high-quality draft genome is arranged into 147 scaffolds of 152 contigs containing 6855 protein-coding genes and 71 RNA-only encoding genes. Strain STM6155 forms an ANI clique (ID 2435) with the sequenced R. mesoamericanum strain STM3625, and the nodulation genes are highly conserved in these strains and the type strain of Rhizobium grahamii CCGE501T. Within the STM6155 genome, we have identified a chr chromate efflux gene cluster of six genes arranged into two putative operons and we postulate that this cluster is important for the survival of STM6155 in ultramafic soils containing high concentrations of chromate.
Collapse
|
Case Reports |
8 |
2 |
15
|
Reeve W, Sullivan J, Ronson C, Tian R, Munk C, Han C, Reddy T, Seshadri R, Woyke T, Pati A, Markowitz V, Ivanova N, Kyrpides N. High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym. Stand Genomic Sci 2015; 10:54. [PMID: 26380641 PMCID: PMC4572658 DOI: 10.1186/s40793-015-0049-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICEMlSym(R7A), also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. The high-quality draft genome is arranged in 70 scaffolds of 71 contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.
Collapse
|
Case Reports |
10 |
2 |
16
|
Eshraghi L, De Meyer SE, Tian R, Seshadri R, Ivanova N, Pati A, Markowitz V, Woyke T, Kyrpides NC, Tiwari R, Yates R, Howieson J, Reeve W. High-quality permanent draft genome sequence of Bradyrhizobium sp. strain WSM1743 - an effective microsymbiont of an Indigofera sp. growing in Australia. Stand Genomic Sci 2015; 10:87. [PMID: 26512312 PMCID: PMC4623297 DOI: 10.1186/s40793-015-0073-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
Bradyrhizobium sp. strain WSM1743 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of an Indigofera sp. WSM1743 was isolated from a nodule recovered from the roots of an Indigofera sp. growing 20 km north of Carnarvon in Australia. It is slow growing, tolerates up to 1 % NaCl and is capable of growth at 37 °C. Here we describe the features of Bradyrhizobium sp. strain WSM1743, together with genome sequence information and its annotation. The 8,341,956 bp high-quality permanent draft genome is arranged into 163 scaffolds and 167 contigs, contains 7908 protein-coding genes and 75 RNA-only encoding genes and was sequenced as part of the Root Nodule Bacteria chapter of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
|
10 |
1 |
17
|
De Meyer SE, Fabiano E, Tian R, Van Berkum P, Seshadri R, Reddy T, Markowitz V, Ivanova N, Pati A, Woyke T, Howieson J, Kyrpides N, Reeve W. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413. Stand Genomic Sci 2015. [PMID: 26203342 PMCID: PMC4511699 DOI: 10.1186/s40793-015-0018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes.
Collapse
|
|
10 |
1 |
18
|
De Meyer SE, Parker M, Van Berkum P, Tian R, Seshadri R, Reddy TBK, Markowitz V, Ivanova N, Pati A, Woyke T, Kyrpides N, Howieson J, Reeve W. High-quality permanent draft genome sequence of the Mimosa asperata - nodulating Cupriavidus sp. strain AMP6. Stand Genomic Sci 2015; 10:80. [PMID: 26478786 PMCID: PMC4609095 DOI: 10.1186/s40793-015-0074-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/08/2015] [Indexed: 12/20/2022] Open
Abstract
Cupriavidus sp. strain AMP6 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Mimosa asperata collected in Santa Ana National Wildlife Refuge, Texas, in 2005. Mimosa asperata is the only legume described so far to exclusively associates with Cupriavidus symbionts. Moreover, strain AMP6 represents an early-diverging lineage within the symbiotic Cupriavidus group and has the capacity to develop an effective nitrogen-fixing symbiosis with three other species of Mimosa. Therefore, the genome of Cupriavidus sp. strain AMP6 enables comparative analyses of symbiotic trait evolution in this genus and here we describe the general features, together with sequence and annotation. The 7,579,563 bp high-quality permanent draft genome is arranged in 260 scaffolds of 262 contigs, contains 7,033 protein-coding genes and 97 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.
Collapse
|
|
10 |
1 |
19
|
Tian R, Parker M, Seshadri R, Reddy T, Markowitz V, Ivanova N, Pati A, Woyke T, Baeshen M, Baeshen N, Kyrpides N, Reeve W. High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica. Stand Genomic Sci 2015; 10:33. [PMID: 26380037 PMCID: PMC4571121 DOI: 10.1186/s40793-015-0007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022] Open
Abstract
Bradyrhizobium sp. Ai1a-2 is is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen fixing root nodule of Andira inermis collected from Tres Piedras in Costa Rica. In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 9,029,266 bp genome has a GC content of 62.56% with 247 contigs arranged into 246 scaffolds. The assembled genome contains 8,482 protein-coding genes and 102 RNA-only encoding genes. This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.
Collapse
|
|
10 |
1 |
20
|
Tian R, Parker M, Seshadri R, Reddy TBK, Markowitz V, Ivanova N, Pati A, Woyke T, Baeshen MN, Baeshen NA, Kyrpides N, Reeve W. High-quality permanent draft genome sequence of Bradyrhizobium sp. Th.b2, a microsymbiont of Amphicarpaea bracteata collected in Johnson City, New York. Stand Genomic Sci 2015; 10:24. [PMID: 26203336 PMCID: PMC4511635 DOI: 10.1186/s40793-015-0008-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/16/2015] [Indexed: 11/10/2022] Open
Abstract
Bradyrhizobium sp. Th.b2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Amphicarpaea bracteata collected in Johnson City, New York. Here we describe the features of Bradyrhizobium sp. Th.b2, together with high-quality permanent draft genome sequence information and annotation. The 10,118,060 high-quality draft genome is arranged in 266 scaffolds of 274 contigs, contains 9,809 protein-coding genes and 108 RNA-only encoding genes. This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
|
research-article |
10 |
1 |
21
|
Garau G, Terpolilli J, Hill Y, Tian R, Howieson J, Bräu L, Goodwin L, Han J, Reddy T, Huntemann M, Pati A, Woyke T, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of Ensifer medicae Di28; an effective N2-fixing microsymbiont of Medicago murex and M. polymorpha. Stand Genomic Sci 2014; 9:4. [PMID: 25780497 PMCID: PMC4334989 DOI: 10.1186/1944-3277-9-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Ensifer medicae Di28 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago spp. Di28 was isolated in 1998 from a nodule recovered from the roots of M. polymorpha growing in the south east of Sardinia (Italy). Di28 is an effective microsymbiont of the annual forage legumes M. polymorpha and M. murex and is capable of establishing a partially effective symbiotic association with the perennial M. sativa. Here we describe the features of E. medicae Di28, together with genome sequence information and its annotation. The 6,553,624 bp standard draft genome is arranged into 104 scaffolds of 104 contigs containing 6,394 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
|
|
11 |
|
22
|
Osman WAM, van Berkum P, León-Barrios M, Velázquez E, Elia P, Tian R, Ardley J, Gollagher M, Seshadri R, Reddy TBK, Ivanova N, Woyke T, Pati A, Markowitz V, Baeshen MN, Baeshen NN, Kyrpides N, Reeve W. High-quality draft genome sequence of Ensifer meliloti Mlalz-1, a microsymbiont of Medicago laciniata (L.) miller collected in Lanzarote, Canary Islands, Spain. Stand Genomic Sci 2017; 12:58. [PMID: 28975015 PMCID: PMC5613336 DOI: 10.1186/s40793-017-0270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/14/2017] [Indexed: 11/26/2022] Open
Abstract
10.1601/nm.1335 Mlalz-1 (INSDC = ATZD00000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing nodule of Medicago laciniata (L.) Miller from a soil sample collected near the town of Guatiza on the island of Lanzarote, the Canary Islands, Spain. This strain nodulates and forms an effective symbiosis with the highly specific host M. laciniata. This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) sequencing project. Here the features of 10.1601/nm.1335 Mlalz-1 are described, together with high-quality permanent draft genome sequence information and annotation. The 6,664,116 bp high-quality draft genome is arranged in 99 scaffolds of 100 contigs, containing 6314 protein-coding genes and 74 RNA-only encoding genes. Strain Mlalz-1 is closely related to 10.1601/nm.1335 10.1601/strainfinder?urlappend=%3Fid%3DIAM+12611 T, 10.1601/nm.1334 A 321T and 10.1601/nm.17831 10.1601/strainfinder?urlappend=%3Fid%3DORS+1407 T, based on 16S rRNA gene sequences. gANI values of ≥98.1% support the classification of strain Mlalz-1 as 10.1601/nm.1335. Nodulation of M. laciniata requires a specific nodC allele, and the nodC gene of strain Mlalz-1 shares ≥98% sequence identity with nodC of M. laciniata-nodulating 10.1601/nm.1328 strains, but ≤93% with nodC of 10.1601/nm.1328 strains that nodulate other Medicago species. Strain Mlalz-1 is unique among sequenced 10.1601/nm.1335 strains in possessing genes encoding components of a T2SS and in having two versions of the adaptive acid tolerance response lpiA-acvB operon. In 10.1601/nm.1334 strain 10.1601/strainfinder?urlappend=%3Fid%3DWSM+419, lpiA is essential for enhancing survival in lethal acid conditions. The second copy of the lpiA-acvB operon of strain Mlalz-1 has highest sequence identity (> 96%) with that of 10.1601/nm.1334 strains, which suggests genetic recombination between strain Mlalz-1 and 10.1601/nm.1334 and the horizontal gene transfer of lpiA-acvB.
Collapse
|
Case Reports |
8 |
|
23
|
Ardley J, Tian R, O'Hara G, Seshadri R, Reddy TBK, Pati A, Woyke T, Markowitz V, Ivanova N, Kyrpides N, Howieson J, Reeve W. High-quality permanent draft genome sequence of Ensifer medicae strain WSM244, a microsymbiont isolated from Medicago polymorpha growing in alkaline soil. Stand Genomic Sci 2015; 10:126. [PMID: 26664655 PMCID: PMC4674904 DOI: 10.1186/s40793-015-0119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/03/2015] [Indexed: 11/12/2022] Open
Abstract
Ensifer medicae WSM244 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago species. WSM244 was isolated in 1979 from a nodule recovered from the roots of the annual Medicago polymorpha L. growing in alkaline soil (pH 8.0) in Tel Afer, Iraq. WSM244 is the only acid-sensitive E. medicae strain that has been sequenced to date. It is effective at fixing nitrogen with M. polymorpha L., as well as with more alkaline-adapted Medicago spp. such as M. littoralis Loisel., M. scutellata (L.) Mill., M. tornata (L.) Mill. and M. truncatula Gaertn. This strain is also effective with the perennial M. sativa L. Here we describe the features of E. medicae WSM244, together with genome sequence information and its annotation. The 6,650,282 bp high-quality permanent draft genome is arranged into 91 scaffolds of 91 contigs containing 6,427 protein-coding genes and 68 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.
Collapse
|
Case Reports |
10 |
|