Luo G, Xiao L, Wang D, Wang N, Luo C, Yang X, Hao L. Resveratrol protects against ethanol-induced impairment of insulin secretion in INS-1 cells through
SIRT1-UCP2 axis.
Toxicol In Vitro 2020;
65:104808. [PMID:
32087266 DOI:
10.1016/j.tiv.2020.104808]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
SIRT1 has been proposed to enhance insulin secretion in β-cell through repressing the expression of uncoupling protein2 (UCP2), but whether ethanol-induced β-cell dysfunction is mediated by the disrupted SIRT1-UCP2 axis remains unknown. This study was conducted to explore the underlying mechanisms by which ethanol resulted in β-cell dysfunction and the potential protective effects of resveratrol in this process. INS-1 cells (rat pancreatic β-cell line) were cultured with ethanol in the presence or absence of resveratrol (2.5, 12.5 μmol/L). The results showed that ethanol exposure reduced glucose-stimulated insulin secretion, ATP production and SIRT1 expression but increased UCP2 expression, while supplementation with resveratrol restored the function of INS-1 cell by upregulating SIRT1 and inhibiting UCP2. Moreover, the critical role of SIRT1-UCP2 axis was further supported by the results that SIRT1 activator SRT1720 reversed ethanol-induced impairment of glucose-stimulated insulin secretion by decreasing UCP2, while SIRT1 inhibitor Ex527 abolished the beneficial effects of resveratrol. Meanwhile, NAD+ booster nicotinamide mononucleotide also counteracted the deleterious effects of ethanol by increasing SIRT1, suggesting the regulation of SIRT1-UCP2 axis may be associated with cellular NAD+/NADH ratio. In conclusion, our observations imply that ethanol induces impaired insulin secretion from INS-1 cell through disrupting SIRT1-UCP2 axis, while resveratrol may reverse this process by augmenting SIRT1 and inhibiting UCP2.
Collapse