1
|
Yamaguchi M, Murata T. Involvement of regucalcin in lipid metabolism and diabetes. Metabolism 2013; 62:1045-51. [PMID: 23453039 DOI: 10.1016/j.metabol.2013.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 01/15/2023]
Abstract
Regucalcin (RGN/SMP30) was originally discovered in 1978 as a unique calcium-binding protein that does not contain the EF-hand motif of calcium-binding domain. The regucalcin gene (rgn) is localized on the X chromosome and is identified in over 15 species consisting the regucalcin family. Regucalcin has been shown to play a multifunctional role in cell regulation; maintaining of intracellular calcium homeostasis and suppressing of signal transduction, translational protein synthesis, nuclear deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) synthesis, proliferation, and apoptosis in many cell types. Moreover, regucalcin may play a pathophysiological role in metabolic disorder. The expression of regucalcin is stimulated through the action of insulin in liver cells in vitro and in vivo and it is decreased in the liver of rats with type I diabetes induced by streptozotocin administration in vivo. Overexpression of endogenous regucalcin stimulates glucose utilization and lipid production in liver cells with glucose supplementation in vitro. Regucalcin reveals insulin resistance in liver cells. Deficiency of regucalcin induces an impairment of glucose tolerance and lipid accumulation in the liver of mice in vivo. Overexpression of endogenous regucalcin has been shown to decrease triglyceride, total cholesterol and glycogen contents in the liver of rats, inducing hyperlipidemia. Leptin and adiponectin mRNA expressions in the liver tissues are decreased in regucalcin transgenic rats. Decrease in hepatic regucalcin is associated with the development and progression of nonalcoholic fatty liver disease and fibrosis in human patients. Regucalcin may be a key molecule in lipid metabolic disorder and diabetes.
Collapse
|
Review |
12 |
38 |
2
|
Kondo Y, Masutomi H, Noda Y, Ozawa Y, Takahashi K, Handa S, Maruyama N, Shimizu T, Ishigami A. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis. FEBS Open Bio 2014; 4:522-32. [PMID: 25003023 PMCID: PMC4081155 DOI: 10.1016/j.fob.2014.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/25/2014] [Accepted: 05/21/2014] [Indexed: 12/27/2022] Open
Abstract
We generated SMP30/SOD1-double knockout (DKO) mice for oxidative stress research. SMP30/SOD1-DKO mice showed low levels of ascorbic acid and premature death. SMP30/SOD1-DKO mice exhibited high levels of oxidative stress and liver injury. SMP30/SOD1-DKO mice manifest hepatic steatosis due to decreased levels of Apolipoprotein B. Superoxide dismutase 1 (SOD1) is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30) is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA) biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO) mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1) higher plasma levels of triglyceride and aspartate aminotransferase; (2) severe accumulation of hepatic triglyceride and total cholesterol; (3) higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4) decreased mRNA and protein levels of Apolipoprotein B (ApoB) in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.
Collapse
Key Words
- AA, l-ascorbic acid
- AST, aspartate aminotransferase
- ApoB, Apolipoprotein B
- Ascorbic acid
- DHA, dehydroascorbic acid
- DHE, dihydroethidium
- DKO, double knockout
- EDTA, ethylenediaminetetraacetic acid
- FFA, free fatty acid
- Grp78, glucose-regulated protein 78 kDa
- KO, knockout
- MTP, microsomal triglyceride transfer protein
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic fatty liver disease
- PL, phospholipid
- PPARα, peroxisome proliferator-activated receptor-α
- Reactive oxygen species
- SDS, sodium dodecyl sulfate
- SMP30
- SMP30, senescence marker protein-30
- SOD, superoxide dismutase
- SOD1
- SREBP, sterol regulatory element binding protein
- T-cho, total cholesterol
- TBARS, thiobarbituric acid reactive substances
- TG, triglyceride
- VLDL, very low-density lipoprotein
- qPCR, quantitative real-time polymerase chain reaction
Collapse
|
Journal Article |
11 |
35 |
3
|
Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice. Biochem Biophys Res Commun 2017; 492:74-81. [PMID: 28807355 DOI: 10.1016/j.bbrc.2017.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H2) has been reported as a preventive and therapeutic antioxidant. Molecular H2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H2. We administered H2-rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H2-rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H2-rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H2-untreated mice. Moreover, treatment with H2-rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H2-rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our study suggests that administration of molecular H2 may be a novel preventive and therapeutic strategy for COPD.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
22 |
4
|
Misaka T, Suzuki S, Miyata M, Kobayashi A, Ishigami A, Shishido T, Saitoh SI, Kubota I, Takeishi Y. Senescence marker protein 30 inhibits angiotensin II-induced cardiac hypertrophy and diastolic dysfunction. Biochem Biophys Res Commun 2013; 439:142-7. [PMID: 23933320 DOI: 10.1016/j.bbrc.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Senescence marker protein 30 (SMP30) is assumed to behave as an anti-aging factor. Recently, we have demonstrated that deficiency of SMP30 exacerbates angiotensin II-induced cardiac hypertrophy, dysfunction and remodeling, suggesting that SMP30 may have a protective role in the heart. Thus, this study aimed to test the hypothesis that up-regulation of SMP30 inhibits cardiac adverse remodeling in response to angiotensin II. METHODS We generated transgenic mice with cardiac-specific overexpression of SMP30 gene using α-myosin heavy chain promoter. Transgenic mice and wild-type littermate mice were subjected to continuous angiotensin II infusion (800 ng/kg/min). RESULTS After 14 days, heart weight and left ventricular weight were lower in transgenic mice than in wild-type mice, although blood pressure was similarly elevated during angiotensin II infusion. Cardiac hypertrophy and diastolic dysfunction in response to angiotensin II were prevented in transgenic mice compared with wild-type mice. The degree of cardiac fibrosis by angiotensin II was lower in transgenic mice than in wild-type mice. Angiotensin II-induced generation of superoxide and subsequent cellular senescence were attenuated in transgenic mouse hearts compared with wild-type mice. CONCLUSIONS Cardiac-specific overexpression of SMP30 inhibited angiotensin II-induced cardiac adverse remodeling. SMP30 has a cardio-protective role with anti-oxidative and anti-aging effects and could be a novel therapeutic target to prevent cardiac hypertrophy and remodeling due to hypertension.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
14 |
5
|
Deficiency of Senescence Marker Protein 30 Exacerbates Cardiac Injury after Ischemia/Reperfusion. Int J Mol Sci 2016; 17:542. [PMID: 27077846 PMCID: PMC4848998 DOI: 10.3390/ijms17040542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 12/16/2022] Open
Abstract
Early myocardial reperfusion is an effective therapy but ischemia/reperfusion (I/R) causes lethal myocardial injury. The aging heart was reported to show greater cardiac damage after I/R injury than that observed in young hearts. Senescence marker protein 30 (SMP30), whose expression decreases with age, plays a role in reducing oxidative stress and apoptosis. However, the impact of SMP30 on myocardial I/R injury remains to be determined. In this study, the left anterior descending coronary artery was occluded for 30 min, followed by reperfusion in wild-type (WT) and SMP30 knockout (KO) mice. After I/R, cardiomyocyte apoptosis and the ratio of infarct area/area at risk were higher, left ventricular fractional shortening was lower, and reactive oxygen species (ROS) generation was enhanced in SMP30 KO mice. Moreover, the previously increased phosphorylation of GSK-3β and Akt was lower in SMP30 KO mice than in WT mice. In cardiomyocytes, silencing of SMP30 expression attenuated Akt and GSK-3β phosphorylation, and increased Bax to Bcl-2 ratio and cardiomyocyte apoptosis induced by hydrogen peroxide. These results suggested that SMP30 deficiency augments myocardial I/R injury through ROS generation and attenuation of Akt activation.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
9 |
6
|
Choo J, Heo G, Kim SJ, Lee Y, Ishigami A, Maruyama N, Chung HY, Im E. Senescence marker protein 30 protects intestinal epithelial cells against inflammation-induced cell death by enhancing Nrf2 activity. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3668-3678. [PMID: 30266650 DOI: 10.1016/j.bbadis.2018.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Senescence marker protein 30 (SMP30) is a calcium-binding protein whose expression decreases during senescence. SMP30 deficiency increases susceptibility to cytokine-induced apoptosis in the liver and to radiation-induced apoptosis in the small intestine. Furthermore, colonic epithelial cell death is associated with the severity of colitis. Therefore, in the present study, we investigated the function of SMP30 during intestinal inflammation. In SMP30 deficient mice, colitis was significantly exacerbated as demonstrated by increased mortality (p = 0.001), body weight loss (p = 0.0105 at day 8), rectal bleeding (p = 0.0047 at day 8) and diarrhea (p = 0.0030 at day 8), histological scores (ulcers, p = 0.0002; edema, p = 0.0125; leukocyte infiltration, p = 0.0016) and productions of pro-inflammatory cytokines (IL-1α, p = 0.0452; IL-6, p = 0.0074; G-CSF, p = 0.0036). In addition, greater proportions of apoptotic cells and lower levels of anti-apoptotic marker proteins (total PARP-1 and Bcl-2) were observed in the inflamed intestines of SMP30 deficient mice than in wild type controls. In vitro experiments on colonic epithelial cells showed that stable SMP30 expression inhibited but that SMP30 siRNA expression increased TNF-α-induced apoptosis. SMP30 inhibition decreased Nrf2 mRNA expression levels (p < 0.0001), but SMP30 overexpression increased Nrf2 mRNA expression levels (p = 0.0495). The underlying mechanism by which SMP30 protected cells appeared to be by inhibiting Nrf2 ubiquitination and Keap1 expression, and thus enhancing Nrf2 activity. Moreover, SMP30 deficiency increased the incidence of colitis-associated colon cancer as determined by increased mortality (p = 0.0572) and average polyp number (p = 0.0277). Collectively, these findings suggest that SMP30 protects intestinal epithelial cells from apoptosis and this can contribute to amelioration of colitis and colitis-associated colon cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
7 |
7
|
Determination of tissue-specific interaction between vitamin C and vitamin E in vivo using senescence marker protein-30 knockout mice as a vitamin C synthesis deficiency model. Br J Nutr 2022; 128:993-1003. [PMID: 34725010 PMCID: PMC9381305 DOI: 10.1017/s0007114521004384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vitamin E (α-tocopherol; VE) is known to be regenerated from VE radicals by vitamin C (L-ascorbic acid; VC) in vitro. However, their in vivo interaction in various tissues is still unclear. Therefore, we alternatively examined the in vivo interaction of VC and VE by measurement of their concentrations in various tissues of senescence marker protein-30 (SMP30) knockout (KO) mice as a VC synthesis deficiency model. Male SMP30-KO mice were divided into four groups (VC+/VE+, VC+/VE-, VC-/VE+ and VC-/VE-), fed diets with or without 500 mg/kg VE and given water with or without 1·5 g/l VC ad libitum. Then, VC and VE concentrations in the plasma and various tissues were determined. Further, gene expression levels of transporters associated with VC and VE, such as α-tocopherol transfer protein (α-TTP) and sodium-dependent vitamin C transporters (SVCTs), were examined. These results showed that the VE levels in the VC-depleted (VC-/VE+) group were significantly lower than those in the VC+/VE+ group in the liver and heart; the VC levels in the VE-depleted (VC+/VE-) group were significantly lower than those in the VC+/VE+ group in the kidneys. The α-TTP gene expression in the liver and kidneys was decreased by VC and/or VE depletion. Moreover, SVCT1 gene expression in the liver was decreased by both VC and VE depletion. In conclusion, these results indicate that VC spares VE mainly in the liver and heart and that VE spares VC in the kidneys of SMP30-KO mice. Thus, interaction between VC and VE is likely to be tissue specific.
Collapse
|
research-article |
3 |
6 |
8
|
Liu W, Zhao H, Su Y, Wang K, Li J, Xue S, Sun X, Qiu Z. Senescence marker protein 30 confers neuroprotection in oxygen-glucose deprivation/reoxygenation-injured neurons through modulation of Keap1/Nrf2 signaling: Role of SMP30 in OGD/R-induced neuronal injury. Hum Exp Toxicol 2020; 40:472-482. [PMID: 32909858 DOI: 10.1177/0960327120954243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Senescence marker protein 30 (SMP30) is a senescence marker molecule and identified as a calcium regulatory protein. Currently, SMP30 has emerged as a cytoprotective protein in a wide range of cell types. However, the role of SMP30 in regulating neuronal survival during cerebral ischemia/reperfusion injury remains unclear. In the present study, we aimed to investigate the biological function and regulatory mechanism of SMP30 on neuronal survival using a cellular model induced by oxygen-glucose deprivation/reoxygenation (OGD/R). The results showed that SMP30 expression was significantly decreased by OGD/R exposure in neurons. Functional experiments demonstrated that SMP30 overexpression significantly rescued the decreased cell viability and attenuated the apoptosis and reactive oxygen species generation in OGD/R-exposed neurons. By contrast, SMP30 knockdown exhibited the opposite effect. Mechanism research revealed that SMP30 overexpression contributed to the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) signaling associated with downregulation of Kelch-like ECH-associated protein (Keap1). Keap1 overexpression or Nrf2 silencing significantly reversed SMP30-mediated neuroprotection against OGD/R-induced injury. Overall, these findings demonstrate that SMP30 overexpression protects neurons from OGD/R-induced apoptosis and oxidative stress by enhancing Nrf2/ARE antioxidant signaling via inhibition of Keap1. These data highlight the importance of the SMP30/Keap1/Nrf2/ARE signaling axis in regulating neuronal survival during cerebral ischemia/reperfusion injury.
Collapse
|
|
5 |
2 |
9
|
Li M, Guo K, Taketani S, Adachi Y, Ikehara S. Stem Cell Replacement Improves Expression of SMP30 in db/db Mice. Int J Mol Sci 2015; 16:29971-9. [PMID: 26694363 PMCID: PMC4691160 DOI: 10.3390/ijms161226217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 11/16/2022] Open
Abstract
We have previously reported that replacing bone marrow stem cells may improve hyperglycemia and oxidative stress in db/db mice, a type 2 diabetic mouse model. Senescence marker protein 30 (SMP30) is an antioxidant protein that decreases with aging. However, it has not been clear whether SMP30 decreases in the livers of obese mice, and whether stem cell replacement would improve SMP30 expression in the liver. Bone marrow stem cells of db/db mice were replaced with the bone marrow stem cells of C57BL/6 mice. Plasma cytokine and insulin levels were measured, and glycogen content, expression of SMP30, and fibrosis in the liver were assessed. Our results showed that stem cell replacement increased the expression of SMP30 in the liver, resulting from decreased plasma inflammation cytokines and hyperinsulinemia in db/db mice. This is the first report that stem cell replacement increased the expression of SMP30 in the liver, and may help prevent fibrosis in the liver of db/db mice.
Collapse
|
|
10 |
1 |
10
|
Senescence Marker Protein 30 ( SMP30): A Novel Pan-Species Diagnostic Marker for the Histopathological Diagnosis of Breast Cancer in Humans and Animals. Int J Mol Sci 2021; 22:ijms22052340. [PMID: 33652881 PMCID: PMC7956281 DOI: 10.3390/ijms22052340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Senescence marker protein 30 (SMP30) is a cell survival factor playing an important role in vitamin C synthesis and antiapoptosis. Moreover, its cytoprotective role suggests a possibility to be related to cancer cell survival. Mammary carcinoma is a common cancer in both humans and animals. Because of its histopathological diversity, especially in the early stage, histopathological diagnosis may be complicated; therefore, a diagnostic marker is helpful for confirmation. The present study analyzed the expression pattern of SMP30 in mammary carcinoma in humans, dogs, and cats. Immunohistochemistry, immunofluorescence, and western blot analysis were used to investigate SMP30 expression patterns. The expression was specifically observed in neoplastic glandular epithelial cells. The expression increased with the malignancy of glandular epithelial cells with a highly proliferative status. However, SMP30 expression was low in normal mammary gland tissues or well-differentiated adenoma tissues. The patterns were consistently reproduced in canine primary mammary carcinoma cells and MCF-7 and MDA-MB-231 human carcinoma cell lines. This study provides useful information to understand SMP30 expression in various stages of mammary carcinoma and to suggest its utility as a pan-species diagnostic marker, thereby helping to establish strategies for diagnosing mammary carcinoma in several species.
Collapse
|
Journal Article |
4 |
1 |
11
|
Zhang L, Zhu T, He F, Li X. Senescence marker protein 30 ( SMP30) protects against high glucose-induced apoptosis, oxidative stress and inflammatory response in retinal ganglion cells by enhancing Nrf2 activation via regulation of Akt/GSK-3β pathway. Int Immunopharmacol 2021; 101:108238. [PMID: 34688152 DOI: 10.1016/j.intimp.2021.108238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
Senescence marker protein 30 (SMP30) is an aging-related protein that participates in the regulation of tissue damage under various pathological conditions. However, the role of SMP30 in mediating high glucose (HG)-induced injury of retinal ganglion cells (RGCs) has not been fully determined. We found that SMP30 expression declined during HG stimulation in RGCs. Cellular functional studies showed that the up-regulation of SMP30 dramatically prohibited HG-evoked apoptosis, oxidative stress and inflammatory response in RGCs. Mechanism research reported that SMP30 overexpression led to the enhancement of nuclear factor erythroid 2-related factor (Nrf2) activation in HG-stimulated RGCs. Moreover, SMP30 overexpression enhanced the phosphorylation of Akt and glucogen synthase kinase-3β (GSK-3β), and the suppression of Akt markedly abolished SMP30-mediated Nrf2 activation in HG-stimulated RGCs. Additionally, the suppression of Nrf2 substantially reversed SMP30-overexpression-induced anti-HG injury effects in RGCs. Overall, these findings suggest that SMP30 protects against HG injury of RGCs by potentiating Nrf2 through regulation of the Akt/GSK-3β pathway. Our work underscores that SMP30/Akt/GSK-3β/Nrf2 may exert a vital role in mediating the injury of RGCs during diabetic retinopathy.
Collapse
|
|
4 |
1 |
12
|
Inoue H, Shimizu Y, Yoshikawa H, Arakawa K, Tanaka M, Morimoto H, Sato A, Takino Y, Ishigami A, Takahashi N, Uehara M. Resveratrol Upregulates Senescence Marker Protein 30 by Activating AMPK/Sirt1-Foxo1 Signals and Attenuating H 2O 2-Induced Damage in FAO Rat Liver Cells. J Nutr Sci Vitaminol (Tokyo) 2023; 69:388-393. [PMID: 37940580 DOI: 10.3177/jnsv.69.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Resveratrol (RSV) is a polyphenol with numerous biological functions, including anti-inflammatory, antioxidant, and anti-aging activities. The novel senescence marker protein-30 (SMP30) indicates aging, and it suppresses hepatic oxidative stress. However, the effects of RSV on SMP30 expression regulation remain unclear. We observed that RSV positively regulates SMP30 expression in rat hepatoma-derived FAO cells. However, this was abolished by Compound C and EX-527 that specifically inhibit AMP-activated protein kinase (AMPK) and Silent Information Regulator T1 (Sirt1), respectively. We predicted binding sites for AMPK, forkhead box protein O1 (Foxo1), and Sirt1 downstream molecules as possible SMP30 promoters using the JASPAR and UniProtKB databases. We identified a Foxo1 binding site in the promoter region of SMP30. Inhibiting Foxo1 with AS1842527 also decreased the RSV-induced upregulation of SMP30 expression. Moreover, RSV suppressed the substantial downregulation of SMP30 expression caused by oxidative stress and hydrogen peroxide (H2O2) and released accumulated lactate dehydrogenase. These results demonstrate that, as a novel food factor, RSV-induced upregulation of SMP30 by activating AMPK/Sirt1-Foxo1 signaling and may attenuates H2O2-induced oxidative damage. The findings of this study offer new perspectives of the anti-ageing properties of RSV.
Collapse
|
|
2 |
|
13
|
Arakawa K, Inoue H, Ishigami A, Sato A, Takino Y, Tanaka M, Morimoto H, Takahashi N, Uehara M. Release of SMP30 in Extracellular Vesicles under Conditions of Ascorbic Acid Deficiency Is Involved with Acute Phase Response in ODS Rat. J Nutr Sci Vitaminol (Tokyo) 2023; 69:420-427. [PMID: 38171814 DOI: 10.3177/jnsv.69.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Senescence marker protein-30 (SMP30) is a senescence marker molecule that exhibits lactonase activity in the ascorbic acid (AsA) biosynthesis pathway, except in primate mammals, including humans. Although numerous studies have shown that hepatic AsA deficiency causes acute-phase responses, details of the relationship between SMP30 expression and acute-phase responses in AsA-deficient conditions remain to be elucidated. Here, we investigated the effects of AsA deficiency on the relationship between SMP30 and acute liver injury in osteogenic disorder Shionogi (ODS) rats, which have a hereditary defect in AsA biosynthesis. Male-ODS rats (4 wk old) were pair-fed an AsA-free diet with distilled or 0.1% AsA-dissolved water for 14 d. Under AsA-deficient conditions, hepatic SMP30 protein level was decreased and liver injury markers, the serum aspartate aminotransferase/alanine transaminase ratio and cytokine-induced neutrophil chemoattractant-1 (CINC-1) concentration, were elevated. In contrast, SMP30 protein level in extracellular vesicles (EVs) was significantly increased in addition to the positive acute proteins haptoglobin and asialoglycoprotein receptor 1 (ASGPR1), hepatic-derived specific markers expression under AsA-deficient conditions. AsA deficiency also activated signal transducer and activator of transcription 3 (STAT3) which is linked to EVs release in the liver. These results suggest that the release of SMP30 in EVs by AsA deficiency is involved with acute-phase responses.
Collapse
|
|
2 |
|
14
|
Lan T, Liang Y, Gan Q, Liang H. SMP30 Alleviates Oxidative Stress and Regulates Ca 2+-ATPase Activity in UVR-B-Induced Cataracts in Rats. Curr Eye Res 2025; 50:373-380. [PMID: 39690481 DOI: 10.1080/02713683.2024.2441253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/30/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Oxidative stress, ultraviolet radiation, and calcium imbalance are key components in the onset and advancement of cataract, which continue to be the leading cause of blindness globally. An important newly discovered aging maker, Senescence marker protein 30 (SMP30) regulates calcium and participates in mitigating oxidative stress damage. Here, we examined the beneficial role of SMP30 in protecting against ultraviolet radiation type B (UVR-B)-induced cataract in rats. METHODS Wistar rats (2 months) were arbitrarily assigned into 4 groups of 10 rats. These groups included the Control group, UVR-B group, adeno-associated virus 2 vectors negative control (AAV2-NC) group, and adeno-associated virus 2-mediated overexpression of SMP30 (AAV2-SMP30) group. The control group received Phosphate-buffered saline (PBS) via injection, while the AAV2-NC group and AAV-SMP30 group were separately injected with AAV2-NC and AAV2-SMP30 vectors. In addition to the control group, the remaining three experimental groups were subjected to ultraviolet light exposure 4 weeks post-injection. The lens opacity was examined by stereoscopic microscope, and the lenses were separated to measure oxidative damage parameters particularly superoxide dismutase (SOD), glutathione peroxidase (GPX), and Ca2+-ATPase activity. The localization and expression of SMP30 and Ca2+-ATPase in the lenses were determined using immunohistochemistry and RT-qPCR. RESULTS After UVR-B irradiation, the AAV2-SMP30 group exhibited a substantial decrease in lens opacity compared to the UVR-B group. The results revealed a notable downregulation of SMP30 expression and the activities of SOD, GPX, and Ca2+-ATPase of rat lens following exposure to UVR-B radiation. However, SMP30 overexpression partially reversed these effects. In vivo experiments demonstrated SMP30 overexpression attenuated the UVR-B-induced decline in SOD, GPX, and Ca2+-ATPase activities. CONCLUSION This study demonstrates that SMP30 has the potential to reduce lens opacity caused by UVR-B by increasing antioxidant stress and regulating Ca2+-ATPase activity. SMP30 might be a cutting-edge target for the treatment of cataracts.
Collapse
|
|
1 |
|
15
|
Chen R, Qian L, Zhang Q, Qin J, Chen X, Xu X. SMP30 alleviates cerebral ischemia/reperfusion-induced neuronal injury by inhibiting HDAC4/PSD-95 to preserve mitochondrial function. J Neuropathol Exp Neurol 2025; 84:59-73. [PMID: 39254519 DOI: 10.1093/jnen/nlae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Ischemic stroke is a major cause of global death and permanent disability. Major consequences of ischemic stroke include neuronal mitochondrial dysfunction. We investigated the effects of senescence marker protein 30 (SMP30) on mitochondria-mediated apoptosis and histone deacetylase 4 (HDAC4)/postsynaptic density-95 (PSD-95) signaling in stroke models in vivo and in vitro. Rats with middle cerebral artery occlusion/reperfusion (MCAO/R) were used to simulate cerebral ischemia/reperfusion (I/R) injury. SMP30 was downregulated in the brain tissues of rats after I/R induction. SMP30 overexpression decreased MCAO/R-induced infarct volumes and improved neurologic function and histopathological changes. Increasing SMP30 expression suppressed neuronal apoptosis and reduced mitochondrial dysfunction. SMP30 overexpression in SH-SY5Y and PC12 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R) decreased HDAC4 and PSD-95 expression; PSD-95 could bind to HDAC4. Furthermore, HDAC4 upregulation abolished the effects of SMP30 overexpression on OGD/R-induced apoptosis and mitochondrial dysfunction in SH-SY5Y cells. Together, these findings indicate that SMP30 alleviates cerebral I/R-induced neuronal injury by inhibiting HDAC4/PSD-95 to preserve mitochondrial function. These interactions might provide new treatment methods for patients with ischemic stroke.
Collapse
|
|
1 |
|