1
|
Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc Natl Acad Sci U S A 2014; 111:8452-7. [PMID: 24912163 DOI: 10.1073/pnas.1406593111] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoactivatable fluorescent proteins (PAFPs) have been widely used for superresolution imaging based on the switching and localization of single molecules. Several properties of PAFPs strongly influence the quality of the superresolution images. These properties include (i) the number of photons emitted per switching cycle, which affects the localization precision of individual molecules; (ii) the ratio of the on- and off-switching rate constants, which limits the achievable localization density; (iii) the dimerization tendency, which could cause undesired aggregation of target proteins; and (iv) the signaling efficiency, which determines the fraction of target-PAFP fusion proteins that is detectable in a cell. Here, we evaluated these properties for 12 commonly used PAFPs fused to both bacterial target proteins, H-NS, HU, and Tar, and mammalian target proteins, Zyxin and Vimentin. Notably, none of the existing PAFPs provided optimal performance in all four criteria, particularly in the signaling efficiency and dimerization tendency. The PAFPs with low dimerization tendencies exhibited low signaling efficiencies, whereas mMaple showed the highest signaling efficiency but also a high dimerization tendency. To address this limitation, we engineered two new PAFPs based on mMaple, which we termed mMaple2 and mMaple3. These proteins exhibited substantially reduced or undetectable dimerization tendencies compared with mMaple but maintained the high signaling efficiency of mMaple. In the meantime, these proteins provided photon numbers and on-off switching rate ratios that are comparable to the best achieved values among PAFPs.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
251 |
2
|
Kundu S, Ji F, Sunwoo H, Jain G, Lee JT, Sadreyev RI, Dekker J, Kingston RE. Polycomb Repressive Complex 1 Generates Discrete Compacted Domains that Change during Differentiation. Mol Cell 2017; 65:432-446.e5. [PMID: 28157505 DOI: 10.1016/j.molcel.2017.01.009] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/08/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022]
Abstract
Master regulatory genes require stable silencing by the polycomb group (PcG) to prevent misexpression during differentiation and development. Some PcG proteins covalently modify histones, which contributes to heritable repression. The role for other effects on chromatin structure is less understood. We characterized the organization of PcG target genes in ESCs and neural progenitors using 5C and super-resolution microscopy. The genomic loci of repressed PcG targets formed discrete, small (20-140 Kb) domains of tight interaction that corresponded to locations bound by canonical polycomb repressive complex 1 (PRC1). These domains changed during differentiation as PRC1 binding changed. Their formation depended upon the Polyhomeotic component of canonical PRC1 and occurred independently of PRC1-catalyzed ubiquitylation. PRC1 domains differ from topologically associating domains in size and boundary characteristics. These domains have the potential to play a key role in transmitting epigenetic silencing of PcG targets by linking PRC1 to formation of a repressive higher-order structure.
Collapse
|
Journal Article |
8 |
235 |
3
|
Zhong G, He J, Zhou R, Lorenzo D, Babcock HP, Bennett V, Zhuang X. Developmental mechanism of the periodic membrane skeleton in axons. eLife 2014; 3. [PMID: 25535840 PMCID: PMC4337613 DOI: 10.7554/elife.04581] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022] Open
Abstract
Actin, spectrin, and associated molecules form a periodic sub-membrane lattice structure in axons. How this membrane skeleton is developed and why it preferentially forms in axons are unknown. Here, we studied the developmental mechanism of this lattice structure. We found that this structure emerged early during axon development and propagated from proximal regions to distal ends of axons. Components of the axon initial segment were recruited to the lattice late during development. Formation of the lattice was regulated by the local concentration of βII spectrin, which is higher in axons than in dendrites. Increasing the dendritic concentration of βII spectrin by overexpression or by knocking out ankyrin B induced the formation of the periodic structure in dendrites, demonstrating that the spectrin concentration is a key determinant in the preferential development of this structure in axons and that ankyrin B is critical for the polarized distribution of βII spectrin in neurites. DOI:http://dx.doi.org/10.7554/eLife.04581.001 The brain contains hundred types of neurons, but they are all variations on the same basic structure. Each neuron consists of a cell body that is covered in short protrusions called dendrites and a long thin structure called the axon. The dendrites receive incoming signals from neighboring neurons and they transmit these signals via the cell body to the axon, which in turn relays them to the dendrites of the next neuron (or neurons). Like all cells, neurons maintain their structure with the help of an internal cytoskeleton made up of many different proteins. However, it was discovered recently that axons have an additional lattice-like structure underneath their outer membrane. This structure, which consists of rings of actin filaments separated by molecules of a protein called spectrin, is preferentially formed in axons and is found much less frequently in dendrites. Now Zhong, He et al., who are members of the research group that discovered the axonal skeleton, have used ‘super-resolution imaging’ to figure out how this skeleton forms and why it predominantly forms in axons. In brief, a basic version of the sub-membrane periodic skeleton is laid down early in development, starting next to the cell body before gradually spreading down the axon. The skeleton then continues to mature throughout development with the incorporation of several additional types of proteins. The periodic skeleton only forms in regions which contain enough βII spectrin. Under normal conditions, dendrites contain too little βII spectrin to support the growth of such a periodic skeleton. However, artificially increasing the amount of βII spectrin present by overexpressing the corresponding gene, or by knocking out ankyrin B (a molecule that is important for establishing the preferential distribution of βII spectrin in axons), is sufficient to trigger periodic skeleton formation in dendrites. Given that axons and dendrites have distinct roles in neuronal signaling, this uneven distribution of spectrin is likely to be one way in which these regions maintain the specific structures that support their individual functions. DOI:http://dx.doi.org/10.7554/eLife.04581.002
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
175 |
4
|
Wojnilowicz M, Glab A, Bertucci A, Caruso F, Cavalieri F. Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA. ACS NANO 2019; 13:187-202. [PMID: 30566836 DOI: 10.1021/acsnano.8b05151] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The intracellular delivery of nucleic acids and proteins remains a key challenge in the development of biological therapeutics. In gene therapy, the inefficient delivery of small interfering RNA (siRNA) to the cytosol by lipoplexes or polyplexes is often ascribed to the entrapment and degradation of siRNA payload in the endosomal compartments. A possible mechanism by which polyplexes rupture the endosomal membrane and release their nucleic acid cargo is commonly defined as the "proton sponge effect". This is an osmosis-driven process triggered by the proton buffering capacity of polyplexes. Herein, we investigate the molecular basis of the "proton sponge effect" through direct visualization of the siRNA trafficking process, including analysis of individual polyplexes and endosomes, using stochastic optical reconstruction microscopy. We probe the sequential siRNA trafficking steps through single molecule super-resolution analysis of subcellular structures, polyplexes, and silencing RNA molecules. Specifically, individual intact polyplexes released in the cytosol upon rupture of the endosomes, the damaged endosomal vesicles, and the disassembly of the polyplexes in the cytosol are examined. We find that the architecture of the polyplex and the rigidity of the cationic polymer chains are crucial parameters that control the mechanism of endosomal escape driven by the proton sponge effect. We provide evidence that in highly branched and rigid cationic polymers, such as glycogen or polyethylenimine, immobilized on silica nanoparticles, the proton sponge effect is effective in inducing osmotic swelling and rupture of endosomes.
Collapse
|
|
6 |
168 |
5
|
Truckenbrodt S, Maidorn M, Crzan D, Wildhagen H, Kabatas S, Rizzoli SO. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep 2018; 19:embr.201845836. [PMID: 29987134 PMCID: PMC6123658 DOI: 10.15252/embr.201845836] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
Expansion microscopy is a recently introduced imaging technique that achieves super‐resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20–30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000‐fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25–30 nm on conventional epifluorescence microscopes. X10 provides multi‐color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high‐quality super‐resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
145 |
6
|
MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chem Biol 2019; 26:600-614.e7. [PMID: 30745238 DOI: 10.1016/j.chembiol.2019.01.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
The proper staining of the plasma membrane (PM) is critical in bioimaging as it delimits the cell. Herein, we developed MemBright, a family of six cyanine-based fluorescent turn-on PM probes that emit from orange to near infrared when reaching the PM, and enable homogeneous and selective PM staining with excellent contrast in mono- and two-photon microscopy. These probes are compatible with long-term live-cell imaging and immunostaining. Moreover, MemBright label neurons in a brighter manner than surrounding cells, allowing identification of neurons in acute brain tissue sections and neuromuscular junctions without any use of transfection or transgenic animals. In addition, MemBright probes were used in super-resolution imaging to unravel the neck of dendritic spines. 3D multicolor dSTORM in combination with immunostaining revealed en-passant synapse displaying endogenous glutamate receptors clustered at the axonal-dendritic contact site. MemBright probes thus constitute a universal toolkit for cell biology and neuroscience biomembrane imaging with a variety of microscopy techniques. VIDEO ABSTRACT.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
138 |
7
|
Xu J, Ma H, Jin J, Uttam S, Fu R, Huang Y, Liu Y. Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells. Cell Rep 2018; 24:873-882. [PMID: 30044984 PMCID: PMC6154382 DOI: 10.1016/j.celrep.2018.06.085] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
Histone modifications influence higher-order chromatin structures at individual epigenomic states and chromatin environments to regulate gene expression. However, genome-wide higher-order chromatin structures shaped by different histone modifications remain poorly characterized. With stochastic optical reconstruction microscopy (STORM), we characterized the higher-order chromatin structures at their epigenomic states, categorized into three major types in interphase: histone acetylation marks form spatially segregated nanoclusters, active histone methylation marks form spatially dispersed larger nanodomains, and repressive histone methylation marks form condensed large aggregates. These distinct structural characteristics are also observed in mitotic chromosomes. Furthermore, active histone marks coincide with less compact chromatin and exhibit a higher degree of co-localization with other active marks and RNA polymerase II (RNAP II), while repressive marks coincide with densely packed chromatin and spatially distant from repressive marks and active RNAP II. Taken together, super-resolution imaging reveals three distinct chromatin structures at various epigenomic states, which may be spatially coordinated to impact transcription.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
128 |
8
|
Baddeley D, Bewersdorf J. Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. Annu Rev Biochem 2018; 87:965-989. [PMID: 29272143 DOI: 10.1146/annurev-biochem-060815-014801] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Super-resolution optical imaging based on the switching and localization of individual fluorescent molecules [photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), etc.] has evolved remarkably over the last decade. Originally driven by pushing technological limits, it has become a tool of biological discovery. The initial demand for impressive pictures showing well-studied biological structures has been replaced by a need for quantitative, reliable data providing dependable evidence for specific unresolved biological hypotheses. In this review, we highlight applications that showcase this development, identify the features that led to their success, and discuss remaining challenges and difficulties. In this context, we consider the complex topic of defining resolution for this imaging modality and address some of the more common analytical methods used with this data.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
127 |
9
|
Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A 2016; 113:6029-34. [PMID: 27162329 DOI: 10.1073/pnas.1605707113] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
116 |
10
|
Fornasiero EF, Opazo F. Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. Bioessays 2015; 37:436-51. [PMID: 25581819 DOI: 10.1002/bies.201400170] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The recent 2014 Nobel Prize in chemistry honored an era of discoveries and technical advancements in the field of super-resolution microscopy. However, the applications of diffraction-unlimited imaging in biology have a long road ahead and persistently engage scientists with new challenges. Some of the bottlenecks that restrain the dissemination of super-resolution techniques are tangible, and include the limited performance of affinity probes and the yet not capillary diffusion of imaging setups. Likewise, super-resolution microscopy has introduced new paradigms in the design of projects that require imaging with nanometer-resolution and in the interpretation of biological images. Besides structural or morphological characterization, super-resolution imaging is quickly expanding towards interaction mapping, multiple target detection and live imaging. Here we review the recent progress of biologists employing super-resolution imaging, some pitfalls, implications and new trends, with the purpose of animating the field and spurring future developments.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
95 |
11
|
Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proc Natl Acad Sci U S A 2017; 114:E6678-E6685. [PMID: 28739933 DOI: 10.1073/pnas.1705043114] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. In the MPS, short actin filaments, capped by actin-capping proteins, form ring-like structures that wrap around the circumference of neurites, and these rings are periodically spaced along the neurite by spectrin tetramers, forming a quasi-1D lattice structure. This 1D MPS structure was initially observed in axons and exists extensively in axons, spanning nearly the entire axonal shaft of mature neurons. Such 1D MPS was also observed in dendrites, but the extent to which it exists and how it develops in dendrites remain unclear. It is also unclear whether other structural forms of the membrane skeleton are present in neurons. Here, we investigated the spatial organizations of spectrin, actin, and adducin, an actin-capping protein, in the dendrites and soma of cultured hippocampal neurons at different developmental stages, and compared results with those obtained in axons, using superresolution imaging. We observed that the 1D MPS exists in a substantial fraction of dendritic regions in relatively mature neurons, but this structure develops slower and forms with a lower propensity in dendrites than in axons. In addition, we observed that spectrin, actin, and adducin also form a 2D polygonal lattice structure, resembling the expanded erythrocyte membrane skeleton structure, in the somatodendritic compartment. This 2D lattice structure also develops substantially more slowly in the soma and dendrites than the development of the 1D MPS in axons. These results suggest membrane skeleton structures are differentially regulated across different subcompartments of neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
95 |
12
|
Wu Y, Ali MRK, Dong B, Han T, Chen K, Chen J, Tang Y, Fang N, Wang F, El-Sayed MA. Gold Nanorod Photothermal Therapy Alters Cell Junctions and Actin Network in Inhibiting Cancer Cell Collective Migration. ACS NANO 2018; 12:9279-9290. [PMID: 30118603 PMCID: PMC6156989 DOI: 10.1021/acsnano.8b04128] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Most cancer-related deaths come from metastasis. It was recently discovered that nanoparticles could inhibit cancer cell migration. Whereas most researchers focus on single-cell migration, the effect of nanoparticle treatment on collective cell migration has not been explored. Collective migration occurs commonly in many types of cancer metastasis, where a group of cancer cells move together, which requires the contractility of the cytoskeleton filaments and the connection of neighboring cells by the cell junction proteins. Here, we demonstrate that gold nanorods (AuNRs) and the introduction of near-infrared light could inhibit the cancer cell collective migration by altering the actin filaments and cell junctions with significantly triggered phosphorylation changes of essential proteins, using mass spectrometry-based phosphoproteomics. Further observation using super-resolution stochastic optical reconstruction microscopy (STORM) showed the actin cytoskeleton filament bundles were disturbed, which is difficult to differentiate under a normal fluorescence microscope. The decreased expression level of N-cadherin junctions and morphological changes of tight junction protein zonula occludens 2 were also observed. All of these results indicate possible functions of the AuNR treatments in regulating and remodeling the actin filaments and cell junction proteins, which contribute to decreasing cancer cell collective migration.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
92 |
13
|
Molecular organization of mammalian meiotic chromosome axis revealed by expansion STORM microscopy. Proc Natl Acad Sci U S A 2019; 116:18423-18428. [PMID: 31444302 DOI: 10.1073/pnas.1902440116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure's lateral elements (LEs). While the components of the mammalian chromosome axis/LE-including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2-are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
78 |
14
|
van der Zwaag D, Vanparijs N, Wijnands S, De Rycke R, De Geest BG, Albertazzi L. Super Resolution Imaging of Nanoparticles Cellular Uptake and Trafficking. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6391-9. [PMID: 26905516 DOI: 10.1021/acsami.6b00811] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the interaction between synthetic nanostructures and living cells is of crucial importance for the development of nanotechnology-based intracellular delivery systems. Fluorescence microscopy is one of the most widespread tools owing to its ability to image multiple colors in native conditions. However, due to the limited resolution, it is unsuitable to address individual diffraction-limited objects. Here we introduce a combination of super-resolution microscopy and single-molecule data analysis to unveil the behavior of nanoparticles during their entry into mammalian cells. Two-color Stochastic Optical Reconstruction Microscopy (STORM) addresses the size and positioning of nanoparticles inside cells and probes their interaction with the cellular machineries at nanoscale resolution. Moreover, we develop image analysis tools to extract quantitative information about internalized particles from STORM images. To demonstrate the potential of our methodology, we extract previously inaccessible information by the direct visualization of the nanoparticle uptake mechanism and the intracellular tracking of nanoparticulate model antigens by dendritic cells. Finally, a direct comparison between STORM, confocal microscopy, and electron microscopy is presented, showing that STORM can provide novel and complementary information on nanoparticle cellular uptake.
Collapse
|
|
9 |
78 |
15
|
Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation. J Neurosci 2017; 37:1747-1756. [PMID: 28073939 DOI: 10.1523/jneurosci.0514-16.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 11/21/2022] Open
Abstract
Gephyrin is a key scaffold protein mediating the anchoring of GABAA receptors at inhibitory synapses. Here, we exploited superresolution techniques combined with proximity-based clustering analysis and model simulations to investigate the single-molecule gephyrin reorganization during plasticity of inhibitory synapses in mouse hippocampal cultured neurons. This approach revealed that, during the expression of inhibitory LTP, the increase of gephyrin density at postsynaptic sites is associated with the promoted formation of gephyrin nanodomains. We demonstrate that the gephyrin rearrangement in nanodomains stabilizes the amplitude of postsynaptic currents, indicating that, in addition to the number of synaptic GABAA receptors, the nanoscale distribution of GABAA receptors in the postsynaptic area is a crucial determinant for the expression of inhibitory synaptic plasticity. In addition, the methodology implemented here clears the way to the application of the graph-based theory to single-molecule data for the description and quantification of the spatial organization of the synapse at the single-molecule level.SIGNIFICANCE STATEMENT The mechanisms of inhibitory synaptic plasticity are poorly understood, mainly because the size of the synapse is below the diffraction limit, thus reducing the effectiveness of conventional optical and imaging techniques. Here, we exploited superresolution approaches combined with clustering analysis to study at unprecedented resolution the distribution of the inhibitory scaffold protein gephyrin in response to protocols inducing LTP of inhibitory synaptic responses (iLTP). We found that, during the expression of iLTP, the increase of synaptic gephyrin is associated with the fragmentation of gephyrin in subsynaptic nanodomains. We demonstrate that such synaptic gephyrin nanodomains stabilize the amplitude of inhibitory postsynaptic responses, thus identifying the nanoscale gephyrin rearrangement as a key determinant for inhibitory synaptic plasticity.
Collapse
|
Journal Article |
8 |
69 |
16
|
NMDA Receptor Autoantibodies in Autoimmune Encephalitis Cause a Subunit-Specific Nanoscale Redistribution of NMDA Receptors. Cell Rep 2019; 23:3759-3768. [PMID: 29949761 DOI: 10.1016/j.celrep.2018.05.096] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/16/2018] [Accepted: 05/30/2018] [Indexed: 02/04/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder mediated by autoantibodies against the GluN1 subunit of the NMDAR. Patients' antibodies cause cross-linking and internalization of NMDAR, but the synaptic events leading to depletion of NMDAR are poorly understood. Using super-resolution microscopy, we studied the effects of the autoantibodies on the nanoscale distribution of NMDAR in cultured neurons. Our findings show that, under control conditions, NMDARs form nanosized objects and patients' antibodies increase the clustering of synaptic and extrasynaptic receptors inside the nano-objects. This clustering is subunit specific and predominantly affects GluN2B-NMDARs. Following internalization, the remaining surface NMDARs return to control clustering levels but are preferentially retained at the synapse. Monte Carlo simulations using a model in which antibodies induce NMDAR cross-linking and disruption of interactions with other proteins recapitulated these results. Finally, activation of EphB2 receptor partially antagonized the antibody-mediated disorganization of the nanoscale surface distribution of NMDARs.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
66 |
17
|
EGF and NRG induce phosphorylation of HER3/ERBB3 by EGFR using distinct oligomeric mechanisms. Proc Natl Acad Sci U S A 2017; 114:E2836-E2845. [PMID: 28320942 DOI: 10.1073/pnas.1617994114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heteromeric interactions between the catalytically impaired human epidermal growth factor receptor (HER3/ERBB3) and its catalytically active homologs EGFR and HER2 are essential for their signaling. Different ligands can activate these receptor pairs but lead to divergent signaling outcomes through mechanisms that remain largely unknown. We used stochastic optical reconstruction microscopy (STORM) with pair-correlation analysis to show that EGF and neuregulin (NRG) can induce different extents of HER3 clustering that are dependent on the nature of the coexpressed HER receptor. We found that the presence of these clusters correlated with distinct patterns and mechanisms of receptor phosphorylation. NRG induction of HER3 phosphorylation depended on the formation of the asymmetric kinase dimer with EGFR in the absence of detectable higher-order oligomers. Upon EGF stimulation, HER3 paralleled previously observed EGFR behavior and formed large clusters within which HER3 was phosphorylated via a noncanonical mechanism. HER3 phosphorylation by HER2 in the presence of NRG proceeded through still another mechanism and involved the formation of clusters within which receptor phosphorylation depended on asymmetric kinase dimerization. Our results demonstrate that the higher-order organization of HER receptors is an essential feature of their ligand-induced behavior and plays an essential role in lateral cross-activation of the receptors. We also show that HER receptor ligands exert unique effects on signaling by modulating this behavior.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
66 |
18
|
Beliveau BJ, Boettiger AN, Nir G, Bintu B, Yin P, Zhuang X, Wu CT. In Situ Super-Resolution Imaging of Genomic DNA with Oligo STORM and OligoDNA-PAINT. Methods Mol Biol 2018; 1663:231-252. [PMID: 28924672 DOI: 10.1007/978-1-4939-7265-4_19] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OligoSTORM and OligoDNA-PAINT meld the Oligopaint technology for fluorescent in situ hybridization (FISH) with, respectively, Stochastic Optical Reconstruction Microscopy (STORM) and DNA-based Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) to enable in situ single-molecule super-resolution imaging of nucleic acids. Both strategies enable ≤20 nm resolution and are appropriate for imaging nanoscale features of the genomes of a wide range of species, including human, mouse, and fruit fly (Drosophila).
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
64 |
19
|
Schoen M, Reichel JM, Demestre M, Putz S, Deshpande D, Proepper C, Liebau S, Schmeisser MJ, Ludolph AC, Michaelis J, Boeckers TM. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci 2016; 9:496. [PMID: 26834559 PMCID: PMC4709451 DOI: 10.3389/fncel.2015.00496] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Fused in Sarcoma (FUS) is a multifunctional RNA-/DNA-binding protein, which is involved in the pathogenesis of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A common hallmark of these disorders is the abnormal accumulation of mutated FUS protein in the cytoplasm. Under normal conditions FUS is confined to the nuclear compartment, in neurons, however, additional somatodendritic localization can be observed. In this study, we carefully analyzed the subcellular localization of endogenous FUS at synaptic sites of hippocampal neurons which are among the most affected cell types in FTD with FUS pathology. We could confirm a strong nuclear localization of FUS as well as its prominent and widespread neuronal expression throughout the adult and developing rat brain, particularly in the hippocampus, the cerebellum and the outer layers of the cortex. Intriguingly, FUS was also consistently observed at synaptic sites as detected by neuronal subcellular fractionation as well as by immunolabeling. To define a pre- and/or postsynaptic localization of FUS, we employed super-resolution fluorescence localization microscopy. FUS was found to be localized within the axon terminal in close proximity to the presynaptic vesicle protein Synaptophysin1 and adjacent to the active zone protein Bassoon, but well separated from the postsynaptic protein PSD-95. Having shown the presynaptic localization of FUS in the nervous system, a novel extranuclear role of FUS at neuronal contact sites has to be considered. Since there is growing evidence that local presynaptic translation might also be an important mechanism for plasticity, FUS - like the fragile X mental retardation protein FMRP - might act as one of the presynaptic RNA-binding proteins regulating this machinery. Our observation of presynaptic FUS should foster further investigations to determine its role in neurodegenerative diseases such as ALS and FTD.
Collapse
|
Journal Article |
9 |
57 |
20
|
Schubert V. Super-resolution Microscopy - Applications in Plant Cell Research. FRONTIERS IN PLANT SCIENCE 2017; 8:531. [PMID: 28450874 PMCID: PMC5390026 DOI: 10.3389/fpls.2017.00531] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 05/10/2023]
Abstract
Most of the present knowledge about cell organization and function is based on molecular and genetic methods as well as cytological investigations. While electron microscopy allows identifying cell substructures until a resolution of ∼1 nm, the resolution of fluorescence microscopy is restricted to ∼200 nm due to the diffraction limit of light. However, the advantage of this technique is the possibility to identify and co-localize specifically labeled structures and molecules. The recently developed super-resolution microscopy techniques, such as Structured Illumination Microscopy, Photoactivated Localization Microscopy, Stochastic Optical Reconstruction Microscopy, and Stimulated Emission Depletion microscopy allow analyzing structures and molecules beyond the diffraction limit of light. Recently, there is an increasing application of these techniques in cell biology. This review evaluates and summarizes especially the data achieved until now in analyzing the organization and function of plant cells, chromosomes and interphase nuclei using super-resolution techniques.
Collapse
|
Review |
8 |
55 |
21
|
Jimenez A, Friedl K, Leterrier C. About samples, giving examples: Optimized Single Molecule Localization Microscopy. Methods 2019; 174:100-114. [PMID: 31078795 DOI: 10.1016/j.ymeth.2019.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Super-resolution microscopy has profoundly transformed how we study the architecture of cells, revealing unknown structures and refining our view of cellular assemblies. Among the various techniques, the resolution of Single Molecule Localization Microscopy (SMLM) can reach the size of macromolecular complexes and offer key insights on their nanoscale arrangement in situ. SMLM is thus a demanding technique and taking advantage of its full potential requires specifically optimized procedures. Here we describe how we perform the successive steps of an SMLM workflow, focusing on single-color Stochastic Optical Reconstruction Microscopy (STORM) as well as multicolor DNA Points Accumulation for imaging in Nanoscale Topography (DNA-PAINT) of fixed samples. We provide detailed procedures for careful sample fixation and immunostaining of typical cellular structures: cytoskeleton, clathrin-coated pits, and organelles. We then offer guidelines for optimal imaging and processing of SMLM data in order to optimize reconstruction quality and avoid the generation of artifacts. We hope that the tips and tricks we discovered over the years and detail here will be useful for researchers looking to make the best possible SMLM images, a pre-requisite for meaningful biological discovery.
Collapse
|
Review |
6 |
53 |
22
|
Abstract
In this review, we introduce the principles of spatial resolution improvement in super-resolution microscopies that were recently developed. These super-resolution techniques utilize the interaction of light and fluorescent probes in order to break the diffraction barrier that limits spatial resolution. The imaging property of each super-resolution technique is also compared with the corresponding conventional one. Typical applications of the super-resolution techniques in biological research are also introduced.
Collapse
|
Review |
11 |
51 |
23
|
Lehmann M, Lichtner G, Klenz H, Schmoranzer J. Novel organic dyes for multicolor localization-based super-resolution microscopy. JOURNAL OF BIOPHOTONICS 2016; 9:161-70. [PMID: 25973835 DOI: 10.1002/jbio.201500119] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 05/07/2023]
Abstract
Precise multicolor single molecule localization-based microscopy (SMLM) requires bright probes with compatible photo-chemical and spectral properties to resolve distinct molecular species at the nanoscale. The accuracy of multicolor SMLM is further challenged by color channel crosstalk and chromatic alignment errors. These constrains limit the applicability of known reversibly switchable organic dyes for optimized multicolor SMLM. Here, we tested 28 commercially available dyes for their suitability to super-resolve a known cellular nanostructure. We identified eight novel dyes in different spectral regimes that enable high quality dSTORM imaging. Among those, the spectrally close dyes CF647 and CF680 comprise an optimal dye pair for spectral demixing-based, registration free multicolor dSTORM with low crosstalk. Combining this dye pair with the separately excited CF568 we performed 3-color dSTORM to image the relative nanoscale distribution of components of the endocytic machinery and the cytoskeleton.
Collapse
|
|
9 |
46 |
24
|
Lorenzo DN, Badea A, Zhou R, Mohler PJ, Zhuang X, Bennett V. βII-spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport. Proc Natl Acad Sci U S A 2019; 116:15686-15695. [PMID: 31209033 PMCID: PMC6681763 DOI: 10.1073/pnas.1820649116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
βII-spectrin is the generally expressed member of the β-spectrin family of elongated polypeptides that form micrometer-scale networks associated with plasma membranes. We addressed in vivo functions of βII-spectrin in neurons by knockout of βII-spectrin in mouse neural progenitors. βII-spectrin deficiency caused severe defects in long-range axonal connectivity and axonal degeneration. βII-spectrin-null neurons exhibited reduced axon growth, loss of actin-spectrin-based periodic membrane skeleton, and impaired bidirectional axonal transport of synaptic cargo. We found that βII-spectrin associates with KIF3A, KIF5B, KIF1A, and dynactin, implicating spectrin in the coupling of motors and synaptic cargo. βII-spectrin required phosphoinositide lipid binding to promote axonal transport and restore axon growth. Knockout of ankyrin-B (AnkB), a βII-spectrin partner, primarily impaired retrograde organelle transport, while double knockout of βII-spectrin and AnkB nearly eliminated transport. Thus, βII-spectrin promotes both axon growth and axon stability through establishing the actin-spectrin-based membrane-associated periodic skeleton as well as enabling axonal transport of synaptic cargo.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
45 |
25
|
Two polymorphic cholesterol monohydrate crystal structures form in macrophage culture models of atherosclerosis. Proc Natl Acad Sci U S A 2018; 115:7662-7669. [PMID: 29967179 DOI: 10.1073/pnas.1803119115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of atherosclerotic plaques in the blood vessel walls is the result of LDL particle uptake, and consequently of cholesterol accumulation in macrophage cells. Excess cholesterol accumulation eventually results in cholesterol crystal deposition, the hallmark of mature atheromas. We followed the formation of cholesterol crystals in J774A.1 macrophage cells with time, during accumulation of LDL particles, using a previously developed correlative cryosoft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM) technique. We show, in the initial accumulation stages, formation of small quadrilateral crystal plates associated with the cell plasma membrane, which may subsequently assemble into large aggregates. These plates match crystals of the commonly observed cholesterol monohydrate triclinic structure. Large rod-like cholesterol crystals form at a later stage in intracellular locations. Using cryotransmission electron microscopy (cryo-TEM) and cryoelectron diffraction (cryo-ED), we show that the structure of the large elongated rods corresponds to that of monoclinic cholesterol monohydrate, a recently determined polymorph of the triclinic crystal structure. These monoclinic crystals form with an unusual hollow cylinder or helical architecture, which is preserved in the mature rod-like crystals. The rod-like morphology is akin to that observed in crystals isolated from atheromas. We suggest that the crystals in the atherosclerotic plaques preserve in their morphology the memory of the structure in which they were formed. The identification of the polymorph structure, besides explaining the different crystal morphologies, may serve to elucidate mechanisms of cholesterol segregation and precipitation in atherosclerotic plaques.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
44 |