Meng X, Yao J, Gu J. Advanced bioanalytical techniques for pharmacokinetic studies of nanocarrier drug delivery systems.
J Pharm Anal 2025;
15:101070. [PMID:
39885973 PMCID:
PMC11780097 DOI:
10.1016/j.jpha.2024.101070]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 02/01/2025] Open
Abstract
Significant investment in nanocarrier drug delivery systems (Nano-DDSs) has yielded only a limited number of successfully marketed nanomedicines, highlighting a low rate of clinical translation. A primary contributing factor is the lack of foundational understanding of in vivo processes. Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks. However, the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies. Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug, the encapsulated drug, and the nanomaterial, which present a higher level of complexity compared to traditional small-molecule drugs. Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines. This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years. We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.
Collapse