1
|
Rouhani N, Norman KA, Niv Y, Bornstein AM. Reward prediction errors create event boundaries in memory. Cognition 2020; 203:104269. [PMID: 32563083 DOI: 10.1016/j.cognition.2020.104269] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
We remember when things change. Particularly salient are experiences where there is a change in rewards, eliciting reward prediction errors (RPEs). How do RPEs influence our memory of those experiences? One idea is that this signal directly enhances the encoding of memory. Another, not mutually exclusive, idea is that the RPE signals a deeper change in the environment, leading to the mnemonic separation of subsequent experiences from what came before, thereby creating a new latent context and a more separate memory trace. We tested this in four experiments where participants learned to predict rewards associated with a series of trial-unique images. High-magnitude RPEs indicated a change in the underlying distribution of rewards. To test whether these large RPEs created a new latent context, we first assessed recognition priming for sequential pairs that included a high-RPE event or not (Exp. 1: n = 27 & Exp. 2: n = 83). We found evidence of recognition priming for the high-RPE event, indicating that the high-RPE event is bound to its predecessor in memory. Given that high-RPE events are themselves preferentially remembered (Rouhani, Norman, & Niv, 2018), we next tested whether there was an event boundary across a high-RPE event (i.e., excluding the high-RPE event itself; Exp. 3: n = 85). Here, sequential pairs across a high RPE no longer showed recognition priming whereas pairs within the same latent reward state did, providing initial evidence for an RPE-modulated event boundary. We then investigated whether RPE event boundaries disrupt temporal memory by asking participants to order and estimate the distance between two events that had either included a high-RPE event between them or not (Exp. 4). We found (n = 49) and replicated (n = 77) worse sequence memory for events across a high RPE. In line with our recognition priming results, we did not find sequence memory to be impaired between the high-RPE event and its predecessor, but instead found worse sequence memory for pairs across a high-RPE event. Moreover, greater distance between events at encoding led to better sequence memory for events across a low-RPE event, but not a high-RPE event, suggesting separate mechanisms for the temporal ordering of events within versus across a latent reward context. Altogether, these findings demonstrate that high-RPE events are both more strongly encoded, show intact links with their predecessor, and act as event boundaries that interrupt the sequential integration of events. We captured these effects in a variant of the Context Maintenance and Retrieval model (CMR; Polyn, Norman, & Kahana, 2009), modified to incorporate RPEs into the encoding process.
Collapse
|
Review |
5 |
36 |
2
|
Henderson LM, Warmington M. A sequence learning impairment in dyslexia? It depends on the task. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 60:198-210. [PMID: 27856107 DOI: 10.1016/j.ridd.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 05/12/2023]
Abstract
Language acquisition is argued to be dependent upon an individuals' sensitivity to serial-order regularities in the environment (sequential learning), and impairments in reading and spelling in dyslexia have recently been attributed to a deficit in sequential learning. The present study examined the learning and consolidation of sequential knowledge in 30 adults with dyslexia and 29 typical adults matched on age and nonverbal ability using two tasks previously reported to be sensitive to a sequence learning deficit. Both groups showed evidence of sequential learning and consolidation on a serial response time (SRT) task (i.e., faster and more accurate responses to sequenced spatial locations than randomly ordered spatial locations during training that persisted one week later). Whilst typical adults showed evidence of sequential learning on a Hebb repetition task (i.e., more accurate serial recall of repetitive sequences of nonwords versus randomly ordered sequences), adults with dyslexia showed initial advantages for repetitive versus randomly ordered sequences in the first half of training trials, but this effect disappeared in the second half of trials. This Hebb repetition effect was positively correlated with spelling in the dyslexic group; however, there was no correlation between sequential learning on the two tasks, placing doubt over whether sequential learning in different modalities represents a single capacity. These data suggest that sequential learning difficulties in adults with dyslexia are not ubiquitous, and when present may be a consequence of task demands rather than sequence learning per se.
Collapse
|
|
8 |
20 |
3
|
Wang YC, Egner T. Switching task sets creates event boundaries in memory. Cognition 2021; 221:104992. [PMID: 34929522 DOI: 10.1016/j.cognition.2021.104992] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 02/01/2023]
Abstract
People segregate continuously unfolding experiences into discrete events in memory. This process, known as event segmentation, results in better memory for the temporal order of experiences within an event and expands subjective temporal distance for items encoded across event boundaries. Previous research has suggested that the creation of event boundaries is driven by (typically unpredicted) changes in external stimulation, though many prior studies have confounded a change in bottom-up input with a concurrent change in task goal. This raises the question of whether event segmentation can be triggered by the endogenous cognitive control processes involved in switching task sets, independent of changes in bottom-up stimulation. We investigated this question by embedding task set changes during encoding of a series of trial-unique images, and comparing subsequent temporal order and distance memory for item pairs encoded across a change in task set with item pairs encoded within the same task set. Across five experiments, we demonstrate that both cued and voluntary task set changes are sufficient to create event boundaries, while ruling out potential confounding effects of shifts in stimulus set, response set, task cues, and task difficulty. Thus, internal control processes are a key determinant of segmenting episodic memories, and task set updating can trigger event segmentation independent of any externally induced, perceptual or task-based prediction error.
Collapse
|
|
4 |
20 |
4
|
Lee JW, Jung MW. Separation or binding? Role of the dentate gyrus in hippocampal mnemonic processing. Neurosci Biobehav Rev 2017; 75:183-194. [PMID: 28174077 DOI: 10.1016/j.neubiorev.2017.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/26/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
Abstract
As a major component of the hippocampal trisynaptic circuit, the dentate gyrus (DG) relays inputs from the entorhinal cortex to the CA3 subregion. Although the anatomy of the DG is well characterized, its contribution to hippocampal mnemonic processing is still unclear. A currently popular theory proposes that the primary function of the DG is to orthogonalize incoming input patterns into non-overlapping patterns (pattern separation). We critically review the available data and conclude that the theoretical support and empirical evidence for this theory are not strong. We then review an alternative theory that posits a role for the DG in binding together different types of incoming sensory information. We conclude that 'binding' better captures the contribution of the DG to memory encoding than 'pattern separation'.
Collapse
|
Review |
8 |
19 |
5
|
Ng CW, Elias GA, Asem JSA, Allen TA, Fortin NJ. Nonspatial sequence coding varies along the CA1 transverse axis. Behav Brain Res 2017; 354:39-47. [PMID: 29107714 DOI: 10.1016/j.bbr.2017.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
The hippocampus plays a critical role in the memory for sequences of events, a defining feature of episodic memory. To shed light on the fundamental mechanisms supporting this capacity, we recently recorded neural activity in CA1 as rats performed a nonspatial odor sequence memory task. Our main finding was that, while the animals' location and behavior remained constant, a proportion of CA1 neurons fired differentially to odors depending on whether they were presented in or out of sequence (sequence cells). Here, we further examined if such sequence coding varied along the distal-to-proximal axis of the dorsal CA1 region (distal: toward subiculum; proximal: toward CA3). Differences in information processing along this axis have been suggested by recent anatomical and electrophysiological evidence that odor information may be more strongly represented in the distal segment, whereas spatial information may be more strongly represented in the proximal segment. Recorded neurons were grouped into four arbitrary sections of dorsal CA1, ranging from distal to proximal. We found that, although sequence cell coding was observed across the distal-to-proximal extent of CA1 from which we recorded, it was significantly higher in intermediate CA1, a region with more balanced anatomical input from lateral and medial entorhinal regions. More specifically, in that particular segment of CA1, we observed a significant increase in the magnitude of sequence coding of all cells, as well as in the sequential information content of sequence cells. Importantly, a different pattern was observed when examining the distribution of spatial coding from the same electrodes. Consistent with previous reports, our results suggest that spatial information was more strongly represented in the proximal section of CA1 (higher proportion of cells with place fields). These findings indicate that nonspatial sequence memory coding is not uniformly distributed along the transverse axis of CA1, and that this distribution does not simply follow the expected gradient based on the stimulus modality or the degree of spatial selectivity. Instead, the observed distribution suggests this form of sequence coding may be associated with convergent input from lateral and medial entorhinal regions, which is present throughout the proximodistal axis but greater in intermediate CA1.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
14 |
6
|
Allen LM, Lesyshyn RA, O'Dell SJ, Allen TA, Fortin NJ. The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory. Behav Brain Res 2020; 379:112215. [PMID: 31682866 PMCID: PMC6917868 DOI: 10.1016/j.bbr.2019.112215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
Considerable research in rodents and humans indicates the hippocampus and prefrontal cortex are essential for remembering temporal relationships among stimuli, and accumulating evidence suggests the perirhinal cortex may also be involved. However, experimental parameters differ substantially across studies, which limits our ability to fully understand the fundamental contributions of these structures. In fact, previous studies vary in the type of temporal memory they emphasize (e.g., order, sequence, or separation in time), the stimuli and responses they use (e.g., trial-unique or repeated sequences, and incidental or rewarded behavior), and the degree to which they control for potential confounding factors (e.g., primary and recency effects, or order memory deficits secondary to item memory impairments). To help integrate these findings, we developed a new paradigm testing incidental memory for trial-unique series of events, and concurrently assessed order and item memory in animals with damage to the hippocampus, prefrontal cortex, or perirhinal cortex. We found that this new approach led to robust order and item memory, and that hippocampal, prefrontal and perirhinal damage selectively impaired order memory. These findings suggest the hippocampus, prefrontal cortex and perirhinal cortex are part of a broad network of structures essential for incidentally learning the order of events in episodic memory.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
13 |
7
|
Abstract
Experts' cognitive abilities adapt in response to the challenges they face in order to produce elite-level performance. Expert athletes, in particular, must integrate their motor capabilities with their cognitive and perceptual processes. Indoor rock climbers are particularly unique athletes in that much of the challenge they face is to accurately perceive and consolidate multiple movements into manageable action plans. In the current study, we investigated how climbers' level of expertise influenced their perception of action capabilities, visual memory of holds, and memory of planned and performed motor sequences. In Experiment 1, climbers judged their perceived capability to perform single climbing moves and then attempted each movement. Skilled climbers were less confident, but perceived their action capabilities more accurately than less skilled climbers. In Experiment 2, climbers recalled holds on a route, as well as predicted and recalled move sequences before and after climbing, respectively. Expertise was positively associated with visual memory performance as well as planned and recalled motor sequence accuracy. Together, these findings contribute to our knowledge of motor expertise and suggest that motor expert's ability to accurately estimate their action capabilities may underlie complex cognitive processes in their domain of expertise.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
11 |
8
|
Wiesman AI, Christopher-Hayes NJ, Wilson TW. Stairway to memory: Left-hemispheric alpha dynamics index the progressive loading of items into a short-term store. Neuroimage 2021; 235:118024. [PMID: 33836267 PMCID: PMC8354033 DOI: 10.1016/j.neuroimage.2021.118024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/29/2023] Open
Abstract
The encoding, maintenance, and subsequent retrieval of memories over short time intervals is an essential cognitive function. Load effects on the neural dynamics supporting the maintenance of short-term memories have been well studied, but experimental design limitations have hindered the study of similar effects during the encoding of information into online memory stores. Theoretically, the active encoding of complex visual stimuli into memory must also recruit neural resources in a manner that scales with memory load. Understanding the neural systems supporting this encoding load effect is of particular importance, as some patient populations exhibit difficulties specifically with the encoding, and not the maintenance, of short-term memories. Using magnetoencephalography, a visual sequence memory paradigm, and a novel encoding slope analysis, we provide evidence for a left-lateralized network of regions, oscillating in the alpha frequency range, that exhibit a progressive loading effect of complex visual stimulus information during memory encoding. This progressive encoding load effect significantly tracked the eventual retrieval of item-order memories at the single trial level, and neural activity in these regions was functionally dissociated from that of earlier visual networks. These findings suggest that the active encoding of stimulus information into short-term stores recruits a left-lateralized network of frontal, parietal, and temporal regions, and might be susceptible to modulation (e.g., using non-invasive stimulation) in the alpha band.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
4 |
7 |
9
|
Julien S, Anne-Lise P, Mathieu B, Laurent A, Pascal B, Laure RR. Validation of memory assessment in the Starmaze task: Data from 14 month-old APPPS1 mice and controls. Data Brief 2021; 37:107266. [PMID: 34381853 PMCID: PMC8335621 DOI: 10.1016/j.dib.2021.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 11/03/2022] Open
Abstract
This article describes navigation data of 14 month-old APPPS1 and C57Bl6 in the Starmaze task. These data were acquired as positive controls of memory deficit in a model of the familial form of Alzheimers's disease (see Schmitt et al., Flexibility as a marker of early cognitive decline in humanized Apolipoprotein E ε4 (ApoE4) mice, Neurobiol Aging, 2021). They were acquired in a reduced version of the Starmaze environment and accompanied by a number of acquisitions in different control groups at 6 and 14 months to assess the robustness of the procedure and its associated memory scores. These data illustrate the extraction of a variety of navigation scores (including search strategy, spatial learning and memory) and provide a reference of navigation data in the Starmaze task for healthy 6-month-old controls, normal aging and a model of pathological memory deficit.
Collapse
|
Journal Article |
4 |
0 |
10
|
Lu Y, Wu S. Learning sequence attractors in recurrent networks with hidden neurons. Neural Netw 2024; 178:106466. [PMID: 38968778 DOI: 10.1016/j.neunet.2024.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The brain is targeted for processing temporal sequence information. It remains largely unclear how the brain learns to store and retrieve sequence memories. Here, we study how recurrent networks of binary neurons learn sequence attractors to store predefined pattern sequences and retrieve them robustly. We show that to store arbitrary pattern sequences, it is necessary for the network to include hidden neurons even though their role in displaying sequence memories is indirect. We develop a local learning algorithm to learn sequence attractors in the networks with hidden neurons. The algorithm is proven to converge and lead to sequence attractors. We demonstrate that the network model can store and retrieve sequences robustly on synthetic and real-world datasets. We hope that this study provides new insights in understanding sequence memory and temporal information processing in the brain.
Collapse
|
|
1 |
|
11
|
Shridhar S, Singh VP, Bhatt R, Kundu S, Balaji J. A new paradigm for investigating temporal order memory shows higher order associations are present in recent but not in remote retrieval. Exp Brain Res 2022; 240:611-629. [PMID: 34988597 DOI: 10.1007/s00221-021-06282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Memory of a sequence of distinct events requires encoding the temporal order as well as the intervals that separates these events. In this study, using order-place association task where the animal learns to associate the location of the food pellet to the order of entry into the event arena, we probe the nature of temporal order memory in mice. In our task, individual trials become distinct events, as the animal is trained to form a unique association between entry order and a correct location. The inter-trial intervals (> 30 min) are chosen deliberately to minimize the inputs from working memory. We develop this paradigm initially using four order-place associates and later extend it to five paired associates. Our results show that animals not only acquire these explicit (entry order to place) associations but also higher order associations that can only be inferred implicitly (temporal relation between the events) from the temporal order of these events. As an indicator of such higher order learning during the probe trial, the mice exhibit predominantly prospective errors that decline proportionally with temporal distance. On the other hand, prior to acquiring the sequence, the retrospective errors are dominant. In addition, we also tested the nature of such acquisitions when temporal order CS is presented along with flavored pellet as a compound stimulus comprising of order and flavor both simultaneously being paired with location. Results from these experiments indicate that the animal learns both order-place and flavor-place associations. Comparing with pure order-place training, we find that the additional flavor stimulus in a compound training paradigm did not interfere with the ability of the animals to acquire the order-place associations. When tested remotely, pure order-place associations could be retrieved only after a reminder training. Further higher order associations representing the temporal relationship between the events is markedly absent in the remote time.
Collapse
|
|
3 |
|
12
|
Ehrhardt NM, Flöel A, Li SC, Lucchese G, Antonenko D. Brain oscillatory processes related to sequence memory in healthy older adults. Neurobiol Aging 2024; 139:64-72. [PMID: 38626525 DOI: 10.1016/j.neurobiolaging.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Sequence memory is subject to age-related decline, but the underlying processes are not yet fully understood. We analyzed electroencephalography (EEG) in 21 healthy older (60-80 years) and 26 young participants (20-30 years) and compared time-frequency spectra and theta-gamma phase-amplitude-coupling (PAC) during encoding of the order of visually presented items. In older adults, desynchronization in theta (4-8 Hz) and synchronization in gamma (30-45 Hz) power did not distinguish between subsequently correctly and incorrectly remembered trials, while there was a subsequent memory effect for young adults. Theta-gamma PAC was modulated by item position within a sequence for older but not young adults. Specifically, position within a sequence was coded by higher gamma amplitude for successive theta phases for later correctly remembered trials. Thus, deficient differentiation in theta desynchronization and gamma oscillations during sequence encoding in older adults may reflect neurophysiological correlates of age-related memory decline. Furthermore, our results indicate that sequences are coded by theta-gamma PAC in older adults, but that this mechanism might lose precision in aging.
Collapse
|
|
1 |
|
13
|
Geometrical representation of serial order in working memory. Learn Behav 2022; 50:443-444. [PMID: 35970972 DOI: 10.3758/s13420-022-00541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Encoding a sequence relies on one's memory for ordinal succession of events and is critical for episodic memory, spatial navigation, language, and other cognitive functions. Investigating the neural mechanisms underlying sequence working memory in the macaque prefrontal cortex, Xie et al. (Science, 375, 632-639, 2022) uncovered a novel integrated representation of temporal and spatial information in different subspaces of a high-dimensional neural state space, offering broad implications across comparative cognition and neuroscience.
Collapse
|
|
3 |
|
14
|
Thavabalasingam S, Aashat S, Palombo DJ, Verfaellie M, Lee ACH. Investigating the impact of healthy aging on memory for temporal duration and order. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:75-96. [PMID: 36082443 DOI: 10.1080/13825585.2022.2120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Temporal information, including information about temporal order and duration, is a fundamental component of event sequence memory. While previous research has demonstrated that aging can have a detrimental effect on memory for temporal order, there has been limited insight into the effect of aging on memory for durations, particularly within the context of sequences. In the current study, neurologically healthy young and older participants were administered two temporal match-mismatch tasks: one in which they were instructed on each trial to compare the temporal order or duration information of stimulus sequences presented first in a study phase and then, after a short delay, in a test phase (event sequence task); and a second in which participants were required to compare single durations or sequences of durations across study and test phases of each trial (pinwheel task). Consistent with the literature, the older participants were significantly poorer compared to their younger counterparts at making temporal order match-mismatch judgments in the event sequence task. In addition to this, data from both tasks suggested that the older adults were also less accurate at match-mismatch judgments based on duration information, with tentative evidence from the pinwheel task to suggest that this age-related effect was most prominent when the duration information was presented within a sequence. We suggest that age-related changes to medial temporal and frontal lobe function may contribute to changes in memory for temporal information in older adults, given the importance of these regions to event sequence memory.
Collapse
|
|
1 |
|