1
|
Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O. Consensus on Wound Antisepsis: Update 2018. Skin Pharmacol Physiol 2017; 31:28-58. [PMID: 29262416 DOI: 10.1159/000481545] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/15/2017] [Indexed: 02/03/2023]
Abstract
Wound antisepsis has undergone a renaissance due to the introduction of highly effective wound-compatible antimicrobial agents and the spread of multidrug-resistant organisms (MDROs). However, a strict indication must be set for the application of these agents. An infected or critically colonized wound must be treated antiseptically. In addition, systemic antibiotic therapy is required in case the infection spreads. If applied preventively, the Wounds-at-Risk Score allows an assessment of the risk for infection and thus appropriateness of the indication. The content of this updated consensus recommendation still largely consists of discussing properties of octenidine dihydrochloride (OCT), polihexanide, and iodophores. The evaluations of hypochlorite, taurolidine, and silver ions have been updated. For critically colonized and infected chronic wounds as well as for burns, polihexanide is classified as the active agent of choice. The combination 0.1% OCT/phenoxyethanol (PE) solution is suitable for acute, contaminated, and traumatic wounds, including MRSA-colonized wounds due to its deep action. For chronic wounds, preparations with 0.05% OCT are preferable. For bite, stab/puncture, and gunshot wounds, polyvinylpyrrolidone (PVP)-iodine is the first choice, while polihexanide and hypochlorite are superior to PVP-iodine for the treatment of contaminated acute and chronic wounds. For the decolonization of wounds colonized or infected with MDROs, the combination of OCT/PE is preferred. For peritoneal rinsing or rinsing of other cavities with a lack of drainage potential as well as the risk of central nervous system exposure, hypochlorite is the superior active agent. Silver-sulfadiazine is classified as dispensable, while dyes, organic mercury compounds, and hydrogen peroxide alone are classified as obsolete. As promising prospects, acetic acid, the combination of negative pressure wound therapy with the instillation of antiseptics (NPWTi), and cold atmospheric plasma are also subjects of this assessment.
Collapse
|
Journal Article |
8 |
160 |
2
|
Annamalai J, Nallamuthu T. Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. APPLIED NANOSCIENCE 2015; 6:259-265. [PMID: 26900538 PMCID: PMC4750362 DOI: 10.1007/s13204-015-0426-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/04/2015] [Indexed: 11/05/2022]
Abstract
Silver ions (Ag+) and its compounds are highly toxic to microorganisms, exhibiting strong biocidal effects on many species of bacteria but have a low toxicity toward animal cells. In the present study, silver nanoparticles (SNPs) were biosynthesized using aqueous extract of Chlorella vulgaris as reducing agent and size of SNPs synthesized ranged between 15 and 47 nm. SNPs were characterized by UV–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Fourier infrared spectroscopy, and analyzed for its antibacterial property against human pathogens. This approach of SNPs synthesis involving green chemistry process can be considered for the large-scale production of SNPs and in the development of biomedicines.
Collapse
|
Journal Article |
10 |
79 |
3
|
Chen IC, Hsiao IL, Lin HC, Wu CH, Chuang CY, Huang YJ. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:108-118. [PMID: 27664952 DOI: 10.1016/j.etap.2016.09.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 05/25/2023]
Abstract
An in vitro blood-brain barrier (BBB) model being composed of co-culture with endothelial (bEnd.3) and astrocyte-like (ALT) cells was established to evaluate the toxicity and permeability of Ag nanoparticles (AgNPs; 8nm) and TiO2 nanoparticles (TiO2NPs; 6nm and 35nm) in normal and inflammatory central nervous system. Lipopolysaccharide (LPS) was pre-treated to simulate the inflammatory responses. Both AgNPs and Ag ions can decrease transendothelial electrical resistance (TEER) value, and cause discontinuous tight junction proteins (claudin-5 and zonula occludens-1) of BBB. However, only the Ag ions induced inflammatory cytokines to release, and had less cell-to-cell permeability than AgNPs, which indicated that the toxicity of AgNPs was distinct from Ag ions. LPS itself disrupted BBB, while co-treatment with AgNPs and LPS dramatically enhanced the disruption and permeability coefficient. On the other hand, TiO2NPs exposure increased BBB penetration by size, and disrupted tight junction proteins without size dependence, and many of TiO2NPs accumulated in the endothelial cells were observed. This study provided the new insight of toxic potency of AgNPs and TiO2NPs in BBB.
Collapse
|
|
9 |
61 |
4
|
Zheng S, Zhou Q, Chen C, Yang F, Cai Z, Li D, Geng Q, Feng Y, Wang H. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1182-1190. [PMID: 30743913 DOI: 10.1016/j.scitotenv.2019.01.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The effect of extracellular polymeric substances (EPS), vital organic matters and nutrient elements in the natural environment, on the behavior and toxicology of silver nanoparticles (AgNPs) and ions remains ambiguous. In this study, the role of EPS on the toxicity of AgNPs and dissolved silver ions (from AgNO3) to a green algae Chlorella vulgaris was investigated. After the removal of EPS, algae accumulated more silver, about 7.41- and 1.25-fold of those in the algae with EPS for AgNPs and AgNO3 treatments, respectively. The large amount of accumulated silver was bound to the algal cell surface for AgNPs treatment and was internalized in the algae for AgNO3 treatment, irrespective of the presence of EPS in algae. After exposure to AgNPs, the ruffles in the surfaces of algal cells were filled by AgNPs, and almost invisible. FTIR showed that for both AgNPs and AgNO3, the aldehyde groups on the cell surface were oxidized to carboxyl groups by silver ions, irrespective of the presence of EPS in algal cells, indicating that silver ions were released from the oxidization of AgNPs and reacted with algal cells. The content of chlorophyll showed that AgNPs depressed algal growth more remarkably than did AgNO3, independent of the presence of EPS in algae, suggesting that AgNPs had greater toxic effects on algae than did silver ions. The findings suggest that the barrier effect of EPS gave nanoparticles an extraordinary edge over ions, but EPS had no discerning effect on the interaction of algal cells with the silver ions released from AgNPs and AgNO3, and also on the effect of AgNPs and AgNO3 on algal growth.
Collapse
|
|
6 |
57 |
5
|
Skalska J, Dąbrowska-Bouta B, Strużyńska L. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food Chem Toxicol 2016; 97:307-315. [PMID: 27658324 DOI: 10.1016/j.fct.2016.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/17/2022]
Abstract
While it is known that silver nanoparticles (AgNPs) can enter the brain, our knowledge of AgNP-induced neurotoxicity remains incomplete. We investigated the ability of 10 nm citrate-stabilized AgNPs to generate oxidative stress in brain and liver of adult male Wistar rats after repeated oral exposure for 14 days, using a low dose of 0.2 mg/kg b.w. as compared with the same dose of ionic silver (silver citrate). In AgNP-exposed animals, the level of reactive oxygen species (ROS), lipid peroxidation (MDA) and glutathione peroxidase (GPx) activity were found to be significantly higher in brain relative to the control group receiving saline. Administration of ionic silver (silver citrate) increased ROS and MDA levels in both tissues. Activities of GPx in brain so as superoxide dismutase (SOD) and catalase (CAT) in liver of exposed animals were also elevated. Besides, AgNPs and silver ions were both found to cause statistically significant decrease in the reduced-to-oxidized glutathione ratio (GSH/GSSG) in brain. The results show that exposure to a very low dose of particulate silver generates mild oxidative stress in the brain but not in the liver of rats, indicating a role of oxidative stress in AgNP-induced neurotoxicity.
Collapse
|
Journal Article |
9 |
45 |
6
|
Johari SA, Sarkheil M, Behzadi Tayemeh M, Veisi S. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO 3) in halophilic microalgae, Dunaliella salina. CHEMOSPHERE 2018; 209:156-162. [PMID: 29929121 DOI: 10.1016/j.chemosphere.2018.06.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
This study aim to evaluate the potential toxic effects of citrate coated silver nanoparticles (AgNPs) and ionic silver (AgNO3) on marine microalgae Dunaliella salina under three different salinities (35, 70, and 140 g/L). The toxicity was investigated according to modified OECD guideline (No. 201) by 72 h exposure of microalgae to various concentrations of each of the chemicals in Walne's saline media. According to the results, the growth inhibitory effects of AgNPs and AgNO3 increased significantly coincidence with increasing time and concentration compared to control (P < 0.05). The values of median inhibitory concentrations (IC50) of AgNPs and AgNO3 based on average specific growth rate and yield for D. salina increased significantly with elevation of water salinity from 35 to 140 g/L (P < 0.05). Toxicity of AgNO3 based on IC50 to D. salina was significantly higher than AgNPs at all salinities (P < 0.05). In conclusion, both AgNPs and AgNO3 inhibited the growth of D. salina at different saltwater medium.
Collapse
|
|
7 |
37 |
7
|
Choi Y, Kim HA, Kim KW, Lee BT. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J Environ Sci (China) 2018; 66:50-60. [PMID: 29628108 DOI: 10.1016/j.jes.2017.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 05/11/2023]
Abstract
UNLABELLED With the increase in silver (Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles (AgNPs) and silver ions (Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of AgNPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both AgNPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than AgNPs under the same concentrations. To understand the toxicity of AgNPs at a cellular level, reactive oxygen species (ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of AgNPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of AgNPs to Ag ions; fixed the AgNPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the AgNPs concentration. Exposure to AgNPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity (for a fixed AgNPs concentration of 5mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. AgNPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from AgNPs under the single and coexistence conditions. Further works are needed to consider this potential for AgNPs and Ag ions toxicity across a range of environmental conditions. ENVIRONMENTAL SIGNIFICANCE STATEMENT As silver nanoparticles (AgNPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the AgNPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of AgNPs and silver ions (Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of AgNPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions.
Collapse
|
|
7 |
35 |
8
|
Wang Z, Quik JTK, Song L, Van Den Brandhof EJ, Wouterse M, Peijnenburg WJGM. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1239-1245. [PMID: 25683234 DOI: 10.1002/etc.2936] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles.
Collapse
|
|
10 |
35 |
9
|
Abdolahpur Monikh F, Vijver MG, Guo Z, Zhang P, Darbha GK, Peijnenburg WJGM. Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter. WATER RESEARCH 2020; 186:116410. [PMID: 32932097 DOI: 10.1016/j.watres.2020.116410] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 05/09/2023]
Abstract
There is a debate on whether the Trojan horse principle is occurring for nanoscale plastic debris (NPD < 1 µm). It is realized that NPD have a high capacity to sorb environmental contaminants such as metals from the surrounding environment compared to their microplastic counterparts, which influences the sorbed contaminants' uptake. Herein, we studied the influence of dissolved organic matter (DOM) on the time-resolved sorption of ionic silver (Ag+) onto polymeric nanomaterials, as models of NPD, as a function of particle size (300 and 600 nm) and chemical composition [polystyrene (PS) and polyethylene (PE)]. Subsequently, the toxicity of NPD and their co-occurring (adsorbed and absorbed) Ag+ on Daphnia magna was determined. Silver nitrate was mixed with 1.2 × 105 NPD particles/mL for 6 days. The extent of Ag+ sorption onto NPD after 6 days was as follows: 600 nm PS-NPD > 300 nm PS-NPD > 300 nm PE-NPD. The presence of DOM in the system increased the sorption of Ag+ onto 300 nm PS-NPD and PE-NPD, whereas DOM decreased the sorption onto 600 nm PS-NPD. Exposure to 1 mg/L NPD or 1 µg/L Ag+ was not toxic to daphnids. However, the mixture of these concentrations of PS-NPD and Ag+ induced toxicity for both sizes (300 and 600 nm). The addition of DOM (1, 10 and 50 mg/L) to the system inhibited the combined toxicity of Ag+ and NPD regardless of the size and chemical composition. Taken together, in natural conditions where the concentration of DOM is high e.g. in freshwater ecosystems, the sorption of metals onto NPD depends on the size and chemical composition of the NPD. Nevertheless, under realistic field conditions where the concentration of DOM is high, the uptake of contaminants in D. magna that is influenced by the Trojan horse principles could be negligible.
Collapse
|
|
5 |
31 |
10
|
Cambier S, Røgeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen TG, Guignard C, Kruszewski M, Hoffmann L, Audinot JN, Ropstad E, Gutleb AC. Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:972-982. [PMID: 28838034 DOI: 10.1016/j.scitotenv.2017.08.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
The use of silver nanomaterials in everyday products, such as cosmetics, textiles, certain types of packaging, etc. is increasing, leading to their release into the environment, including aquatic ecosystems. This last point initiated this investigation on the toxicological effects of Ag nanoparticles (Ag NPs) in the aquatic model organism Danio rerio. For this purpose, zebrafish larvae were exposed to 20nm bare Ag NPs at different concentrations and AgNO3, used as a positive control for Ag+ ions toxicity, at the beginning of their foraging behaviour to determine adverse effects on fitness parameters. We used secondary ion mass spectrometry (SIMS) to determine the localization of Ag and transcriptomics (microarray) to determine the toxicity at the level of gene expression in fish larvae. Exposure to Ag NPs did not result in adverse effects on survival and growth of the fish. However, SIMS analysis showed that Ag NPs mainly concentrate around liver blood vessels and in the interstitial tissue between the intestine and the liver. Gene expression profiles revealed that AgNO3 and Ag NPs impacted common pathways, suggesting similar targets, such as the phototransduction system. However, the Ag NPs showed a broader set of genes impacted following the exposure, including the circadian clock regulation and the photoreception, suggesting specific particle-related effects in addition to those induced by ions.
Collapse
|
|
7 |
30 |
11
|
Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, Schwander S, Zhang JJ, Shaffer MSP, Chung KF, Ryan MP, Porter AE, Tetley TD. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells. Colloids Surf B Biointerfaces 2016; 145:167-175. [PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/04/2016] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
Collapse
|
Journal Article |
9 |
29 |
12
|
Bonilla-Gameros L, Chevallier P, Sarkissian A, Mantovani D. Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. An integrated review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102142. [PMID: 31843661 DOI: 10.1016/j.nano.2019.102142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/16/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Healthcare-associated infections (HCAIs) are a major cause of morbidity and mortality worldwide. One of the main routes of transmission is by contact with contaminated surfaces, where nosocomial pathogens form sessile communities called biofilms. When forming biofilms, these pathogens are extremely resistant to antibiotics and standard cleaning procedures. In this regard, in order to eliminate the extent of biofilm formation on these surfaces, intensive efforts have been deployed, particularly in recent years, to develop new antibacterial surfaces containing silver or silver compounds, which can be used to prevent the formation of biofilm. In this review, recent developments in the design and manufacturing of silver-based antibacterial surfaces are described in detail. Up-to-date toxicity and governmental regulations are then extensively presented. Finally, based on current research in this promising field, the main challenges and perspectives for their effective implementation are discussed.
Collapse
|
Review |
6 |
29 |
13
|
Zou X, Shi J, Zhang H. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:168-75. [PMID: 24907921 DOI: 10.1016/j.aquatox.2014.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 05/25/2023]
Abstract
Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The existence of TiO2 NPs in various illumination modes changed the surface chemistry of Ag NPs and then led to different toxicity effects. TiO2 NPs reduce the environmental risks of Ag NPs in natural light, but in continuous light, TiO2 NPs enhance the environmental risks of Ag NPs.
Collapse
|
|
11 |
28 |
14
|
Haag F, Ahmed L, Reiss K, Block E, Batista VS, Krautwurst D. Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3. Cell Mol Life Sci 2020; 77:2157-2179. [PMID: 31435697 PMCID: PMC7256108 DOI: 10.1007/s00018-019-03279-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse-so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs.
Collapse
|
research-article |
5 |
27 |
15
|
Ahmad A, Viljoen A. The in vitro antimicrobial activity of Cymbopogon essential oil (lemon grass) and its interaction with silver ions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:657-665. [PMID: 26055131 DOI: 10.1016/j.phymed.2015.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/28/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND It is well known that Cymbopogon (lemon grass) essential oil exhibits antimicrobial activity while the efficacy of silver ions as a disinfectant is equally well reported. HYPOTHESIS The antimicrobial activity of CEO and Ag(+) and their synergistic combinations will be useful in improving the current treatment strategies for various infections. STUDY DESIGN In the present study, we determined the chemical composition and in vitro antimicrobial activity of six different Cymbopogon essential oils (CEO's) alone and in combination with silver ions (Ag(+)) against two Gram-positive (Staphylococcus aureus and Enterococcus faecalis), two Gram-negative (Escherichia coli and Moraxella catarrhalis) and two yeast species (Candida albicans and Candida tropicalis). The nature of potential interactions was determined by fractional inhibitory concentration indices (FICIs) for CEO's and Ag(+) calculated from microdilution assays and time-kill curves. RESULTS Gas chromatography-mass spectrometry results confirmed the presence of nerol, geranial and geraniol as major volatile compounds. Minimum inhibitory concentration (MIC) values confirmed that all the tested pathogens are variably susceptible to both CEO's as well as Ag(+). The MIC of CEO's and Ag(+) against all the tested pathogens ranged from 0.032 mg/ml to 1 mg/ml and 0.004 and 0.064 mg/ml respectively, whereas when assayed in combination the FICI values were drastically reduced to range between 0.258 and 2.186, indicating synergy, additive and indifferent interactions. The most prominent interaction was observed between Cymbopogon flexuosus essential oil and Ag(+) against C. albicans with ∑FIC = 0.254. The synergistic interactions were further confirmed through the construction of isobolograms and time-kill plots. Transmission electron microscopy showed disturbance in the cell envelope upon the concomitant treatment of CEO's and Ag(+), which ultimately leads to cell death. CONCLUSION Results suggest that CEO's and Ag(+) when used in combination offers an opportunity to the formulation scientist to produce novel combinations acting synergistically in the continued quest to control important infectious pathogens.
Collapse
|
|
10 |
26 |
16
|
Wu H, Tong C. Ratiometric fluorometric determination of silver(I) by using blue-emitting silicon- and nitrogen-doped carbon quantum dots and red-emitting N-acetyl-L-cysteine-capped CdTe quantum dots. Mikrochim Acta 2019; 186:723. [PMID: 31655898 DOI: 10.1007/s00604-019-3818-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
A ratiometric fluorometric assay for silver(I) is described. The method makes use of a dually emitting quantum dot hybrid, which is composed of (a) blue-fluorescent silicon- and nitrogen-doped carbon quantum dots (CQDs), and (b) of red-emitting CdTe quantum dots (QDs) capped with N-acetyl-L-cysteine. The red-emitting CdTe QDs undergo strong and specific quenching by Ag(I), whereas the blue-emitting N,Si-CQDs are not quenched. The two kinds of QDs are mixed and used as a ratiometric fluorescent probe. A linear relationship is found between the log of intensities [(I608/I441)0/(I608/I441)] and the concentration of Ag(I) in the range from 5.0-1000 nM, and the limit of detection (at S/N = 3) is 1.7 nM. Possible interferents (including 17 general metal ions, 12 anions and fulvic acid) do not interfere with the determination. The assay was successfully used for the determination of Ag(I) in surface water and wastewater samples. The fluorescence quenching mechanism of the ratiometric assay system was also discussed in detailed. Graphical abstract Schematic representation of a ratiometric probe composed of silicon- and nitrogen-doped carbon quantum dots (N,Si-CQDs) and CdTe quantum dots capped by N-acetyl-L-cysteine (CdTe QDs). This dual-emission QDs hybrid was fabricated for ultrasensitive and highly selective detection of silver(I) in water samples.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
26 |
17
|
Fang W, Chi Z, Li W, Zhang X, Zhang Q. Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: from the aspects of antioxidant enzyme activities and molecular interaction mechanisms. J Nanobiotechnology 2019; 17:66. [PMID: 31101056 PMCID: PMC6524268 DOI: 10.1186/s12951-019-0502-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The wide application of silver nanoparticles (AgNPs) in medicals and daily utensils increases the risk of human exposure. The study on cell and protein changes induced by medical AgNPs (20 nm) and Ag+ gave insights into the toxicity mechanisms of them. RESULTS AgNPs and Ag+ affected the enzymatic and non-enzymatic antioxidant systems of red blood cells (RBCs). When RBCs were exposed to AgNPs or Ag+ (0-0.24 μg/mL), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were more sensitive to Ag+, whereas the RBCs had slightly higher glutathione (GSH) contents treated by AgNPs. Both AgNPs and Ag+ increased the malondialdehyde (MDA) content of RBCs, but the difference was not significant. The difference in the change of the enzyme activity indicated that AgNPs and Ag+ have different influencing mechanisms on CAT and GPX. And SOD has stronger resistance to both of AgNPs and Ag+. When AgNPs or Ag+ (0-10 μg/mL) was directly applied on enzymatic proteins, although AgNPs or Ag+ at a high concentration was toxic, at the concentration below 0.4 μg/mL could promote the activities of CAT/SOD/GPX. The spectroscopic results (fluorescence, synchronous fluorescence, resonance light scattering and ultraviolet absorption), including the changes in amino acid microenvironment, peptide chain conformation, and aggregation state, indicated that the interaction mechanism and conformational changes were also the important factors for the changes in the activities of SOD/CAT when SOD/CAT were directly exposed to AgNPs or Ag+. CONCLUSIONS Low concentration (< 0.4 μg/mL) of AgNPs is relatively safe and the direct effects of AgNPs and Ag+ on enzymes are important reasons for the change in antioxidant capacity of RBCs.
Collapse
|
Comparative Study |
6 |
25 |
18
|
Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples. Saudi J Biol Sci 2017; 24:589-594. [PMID: 28386184 PMCID: PMC5372420 DOI: 10.1016/j.sjbs.2017.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/23/2016] [Accepted: 01/07/2017] [Indexed: 11/25/2022] Open
Abstract
A cloud point extraction (CPE) method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS) The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I)/diethyldithiocarbamate (DDTC) complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I)/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL−1 Ag+ in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL−1 for both Zn2+ and Cu2+, 80 μg·mL−1 for Pb2+, 1000 μg·mL−1 for Mn2+, and 100 μg·mL−1 for both Cd2+ and Ni2+. The calibration curve was linear in the range of 1–500 ng·mL−1 with a limit of detection (LOD) at 0.3 ng·mL−1. The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.
Collapse
|
Journal Article |
8 |
24 |
19
|
Li L, Bi Z, Hu Y, Sun L, Song Y, Chen S, Mo F, Yang J, Wei Y, Wei X. Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell Biol Toxicol 2021; 37:177-191. [PMID: 32367270 DOI: 10.1007/s10565-020-09526-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023]
Abstract
Owing to the excellent antibacterial and antiviral activity, silver nanoparticles have a widespread use in the food and pharmaceutical industries. With the increase in the production and use of the related products, the potential hazard of silver nanoparticles has aroused public attention. The main purpose of this study is to explore the toxicity of silver nanoparticles and induction of lung inflammation in vitro and in vivo. Here, we validated that small amounts of silver ions dissolved from silver nanoparticles caused the depolarization of plasma membrane, resulting in an overload of intracellular sodium and calcium, and eventually led to the cell necrosis. The blockers of calcium or sodium channels inversed the toxicity of silver ions. Then, we instilled silver nanoparticles or silver nitrate (50 μg per mouse) into the lungs of mice, and this induced pulmonary injury and mitochondrial content release, led to the recruitment of neutrophils to the lung tissue via p38 MAPK pathway. Altogether, these data show that released silver ions from nanoparticles induced cell necrosis through Na+ and Ca2+ influx and triggered pulmonary inflammation through elevating mitochondrial-related contents released from these necrotic cells.
Collapse
|
|
4 |
24 |
20
|
F Gonçalves S, D Pavlaki M, Lopes R, Hammes J, Gallego-Urrea JA, Hassellöv M, Jurkschat K, Crossley A, Loureiro S. Effects of silver nanoparticles on the freshwater snail Physa acuta: The role of test media and snails' life cycle stage. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:243-253. [PMID: 27312215 DOI: 10.1002/etc.3532] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/20/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used worldwide, most likely leading to their release into the environment and a subsequent increase of environmental concentrations. Studies of their deleterious effects on organisms is crucial to understand their environmental impacts. The freshwater snail Physa acuta was chosen to evaluate the potential deleterious effects of AgNPs and their counterpart AgNO3 , through water-only exposures. The toxicity of AgNPs is greatly influenced by medium composition. Thus, 2 media were tested: artificial pond water (APW) and modified APW (adapted by removing calcium chloride). Acute tests (96 h) were performed with juvenile and adult snails in both media to assess lethality, and egg mass chronic tests were conducted with APW medium only to assess embryo viability and mortality, carried out until 90% hatching success was reached in the control. Acute toxicity increased with decreasing shell length for both silver forms (ion and nanoparticle); that is, juveniles were more sensitive than adults. Different test media led to dissimilar median lethal concentrations, with chloride playing an important role in toxicity, most likely by complexation with silver ions, which would reduce the bioavailability, uptake, and toxicity of silver. Chronic tests showed that hatching success was more sensitive to silver in the ionic form than in the particulate form. Different forms of silver, exposure media, and life cycle stages led to different patterns of toxicity, highlighting an impairment in the snails' life cycle. Environ Toxicol Chem 2017;36:243-253. © 2016 SETAC.
Collapse
|
|
8 |
24 |
21
|
Barker LK, Giska JR, Radniecki TS, Semprini L. Effects of short- and long-term exposure of silver nanoparticles and silver ions to Nitrosomonas europaea biofilms and planktonic cells. CHEMOSPHERE 2018; 206:606-614. [PMID: 29778938 DOI: 10.1016/j.chemosphere.2018.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of silver nanoparticles (AgNPs) in consumer products, and their resulting influx into wastewater, may pose a threat to biological nutrient removal in wastewater treatment plants. Planktonic ammonia-oxidizing bacteria (AOB), which convert ammonia to nitrite in the first step of nitrification, are highly sensitive to AgNPs and their released silver ions (Ag+), but the sensitivity of AOB biofilms to AgNPs and Ag+ is less clear. This study demonstrated that biofilms of Nitrosomonas europaea, a model AOB, were more resistant to both short-term and long-term exposure to AgNP and Ag+ than planktonic cells. The increased resistance of N. europaea biofilms was attributed primarily to the increased biomass and slower growth rates present in the biofilm. Similar inhibition mechanisms were observed for AgNPs and Ag+ in both planktonic cells and biofilms with enzymatic inhibition observed at lower concentrations and cell lysis observed at higher concentrations. Long-term continuous exposure to AgNPs lowered the inhibitory concentration by 1-2 orders of magnitude below that required by short-term exposures. Although the total AgNP load was similar between the short and long-term exposure scenarios, the long-term exposure resulted in an order of magnitude more silver being associated in the biofilms and is the primary reason for the increased sensitivity observed. This suggests that short-term batch toxicity assays may greatly underestimate the sensitivity of biofilm treatment systems to long-term exposures of low concentrations of AgNPs and Ag+.
Collapse
|
|
7 |
22 |
22
|
Ultrasensitive colorimetric determination of silver(I) based on the peroxidase mimicking activity of a hybrid material composed of graphitic carbon nitride and platinum nanoparticles. Mikrochim Acta 2018; 185:273. [PMID: 29705889 DOI: 10.1007/s00604-018-2816-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Abstract
A hybrid material composed of graphitic carbon nitride (g-C3N4) and platinum nanoparticles (PtNPs) with peroxidase mimicking activity was used to design a rapid, sensitive and low-cost colorimetric method for the determination of Ag(I). The g-C3N4-PtNPs hybrid was synthesized by reduction of chloroplatinic acid using sodium borohydride under ultrasonication and in the presence of g-C3N4. The hybrid can catalyze the oxidation 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue-colored product with an absorption maximum at 652 nm. On addition of Ag(I) and in the presence of citric acid, it will be reduced to form Ag(0) under the catalytic action of PtNPs. Ag(0) is then adsorbed on the surface of the g-C3N4-PtNPs. This results in the inhibition of the enzyme mimetic activity of the hybrid. Hence, less blue product will be formed from TMB. Under optimum conditions, Ag(I) can be quantified in the 0.05-5.0 nM concentration range with a 22 pM detection limit. This assay is rapid and reliable and was applied to the determination of Ag(I) in spiked real water samples. Graphical abstract A hybrid nanomaterial consisting of graphitic carbon nitride and platinum nanoparticles (g-C3N4-PtNPs) can catalyze the oxidation of tetramethylbenzidine (TMB) to produce a blue-colored product (TMBox). The enzyme mimetic activity of the hybrid is inhibited by Ag+, thereby decreasing the generation of blue product from TMB.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
19 |
23
|
Nie X, Wu S, Liao S, Chen J, Huang F, Li W, Wang Q, Wei Q. Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125786. [PMID: 33873032 DOI: 10.1016/j.jhazmat.2021.125786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Toward the goal of preventing microbial infections in hospitals or other healthcare institutions, here we developed a self-disinfecting textile with synergistic photodynamic/photothermal antibacterial property. Porphyrinic Metal-organic frameworks (PCN-224) and Ag nanoparticles (NPs) were in situ grown on knitted cotton textile (KCT) successively to achieve rapid photodynamic antibacterial and durable bacteriostatic effect. Light-driven singlet oxygen (1O2) generated from PCN-224 and heat generated from Ag could function synergistically to realize rapid bacterial inactivation. Interestingly, 1O2 could promote Ag NPs to be degraded to release more Ag+ ions, achieving durable bacteriostatic effect. Antibacterial assay demonstrated 6 and 4.49 log unit inactivation toward two typical bacterial strains (E. coli and S. aureus) under Xe arc lamp in 30 min, respectively. Even after ten washes, the textile still maintained 6 log unit bacterial inactivation. Mechanism study proved light-driven 1O2 and heat are main factors causing bacterial inactivation, they could work synergistically to enhance bacterial inactivation efficiency. Photothermal study revealed that the textile could reach to 69 ℃ under visible light and 79.1 ℃ under 780-nm light-laser, which showed much potential in photothermal material applications. Taken together, our findings demonstrated a synergistic self-disinfecting cotton textile that exhibited constructive significance for preventing microbial infections and transmissions.
Collapse
|
|
4 |
19 |
24
|
Xiang QQ, Gao Y, Li QQ, Ling J, Chen LQ. Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nanosilver and silver nitrate. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122562. [PMID: 32213387 DOI: 10.1016/j.jhazmat.2020.122562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Although the toxic effects of silver nanoparticles (AgNPs) on fish gills have been reported, the underlying mechanism of toxicity remains unclear. The present study aimed to elucidate the mechanism of toxicity in the gills of common carp following exposure to AgNPs and silver nitrate (AgNO3) using histopathology and proteomics. Histopathological findings revealed that both AgNPs and AgNO3 caused telangiectasia and epithelial cell hyperplasia in fish gills; however, the pathological features and location of lesions caused by the two forms of silver were markedly different. Proteomics revealed that AgNPs and AgNO3 induced 139 and 185 differential expression proteins (DEPs) in gills, respectively, and the two forms of silver induced only 42 shared proteins. AgNPs specifically induced 87 DEPs which mainly involved signaling mechanisms, cytoskeleton, and the arachidonic acid metabolism processes. AgNO3 specifically induced 125 DEPs that were mainly clustered in the glutathione metabolism and protease processes. These results suggested that the toxic effects of AgNPs and AgNO3 were dramatically different in terms of protein expression in fish gills, which may provide novel perspectives for understanding the toxicity mechanism of silver nanoparticles in fish gills.
Collapse
|
|
5 |
17 |
25
|
Huang Z, Xu P, Chen G, Zeng G, Chen A, Song Z, He K, Yuan L, Li H, Hu L. Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium. CHEMOSPHERE 2018; 196:575-584. [PMID: 29331621 DOI: 10.1016/j.chemosphere.2017.12.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the influence of silver ions (Ag+) on the cytotoxicity of silver nanoparticles (AgNPs) in Phanerochaete chrysosporium and noted the degree of extracellular secretions in response to the toxicant's stress. Oxalate production was elicited with moderate concentrations of 2,4-dichlorophenol (2,4-DCP) and AgNPs reaching a plateau at 10 mg/L and 10 μM, respectively. Increased oxalate accumulation was accompanied by higher activities of manganese peroxidase (MnP) and lignin peroxidase (LiP). However, the secretion of oxalate, MnP and LiP was significantly inhibited owing to Ag+ incorporation into AgNP solution. Production of extracellular polymeric substances (EPS) significantly elevated with an increase in 2,4-DCP concentrations; however, after 24 h of exposure to 100 mg/L 2,4-DCP, an obvious decrease in EPS occurred, indicating that part of EPS could be consumed as carbon and energy sources to ameliorate biological tolerance to toxic stress. Furthermore, AgNP-induced "particle-specific" cytotoxicity was substantially enhanced with additional Ag+ as evidenced by its significant negative impact on cellular growth, plasma membrane integrity, and morphological preservation compared with AgNPs at equal Ag concentration.
Collapse
|
|
7 |
16 |