1
|
Distinct amyloid-β and tau-associated microglia profiles in Alzheimer's disease. Acta Neuropathol 2021; 141:681-696. [PMID: 33609158 PMCID: PMC8043951 DOI: 10.1007/s00401-021-02263-w] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia and is characterized by abnormal extracellular aggregates of amyloid-β and intraneuronal hyperphosphorylated tau tangles and neuropil threads. Microglia, the tissue-resident macrophages of the central nervous system (CNS), are important for CNS homeostasis and implicated in AD pathology. In amyloid mouse models, a phagocytic/activated microglia phenotype has been identified. How increasing levels of amyloid-β and tau pathology affect human microglia transcriptional profiles is unknown. Here, we performed snRNAseq on 482,472 nuclei from non-demented control brains and AD brains containing only amyloid-β plaques or both amyloid-β plaques and tau pathology. Within the microglia population, distinct expression profiles were identified of which two were AD pathology-associated. The phagocytic/activated AD1-microglia population abundance strongly correlated with tissue amyloid-β load and localized to amyloid-β plaques. The AD2-microglia abundance strongly correlated with tissue phospho-tau load and these microglia were more abundant in samples with overt tau pathology. This full characterization of human disease-associated microglia phenotypes provides new insights in the pathophysiological role of microglia in AD and offers new targets for microglia-state-specific therapeutic strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
214 |
2
|
Liu SQ, Gao ZJ, Wu J, Zheng HM, Li B, Sun S, Meng XY, Wu Q. Single-cell and spatially resolved analysis uncovers cell heterogeneity of breast cancer. J Hematol Oncol 2022; 15:19. [PMID: 35241110 PMCID: PMC8895670 DOI: 10.1186/s13045-022-01236-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
The heterogeneity and the complex cellular architecture have a crucial effect on breast cancer progression and response to treatment. However, deciphering the neoplastic subtypes and their spatial organization is still challenging. Here, we combine single-nucleus RNA sequencing (snRNA-seq) with a microarray-based spatial transcriptomics (ST) to identify cell populations and their spatial distribution in breast cancer tissues. Malignant cells are clustered into distinct subpopulations. These cell clusters not only have diverse features, origins and functions, but also emerge to the crosstalk within subtypes. Furthermore, we find that these subclusters are mapped in distinct tissue regions, where discrepant enrichment of stromal cell types are observed. We also inferred the abundance of these tumorous subpopulations by deconvolution of large breast cancer RNA-seq cohorts, revealing differential association with patient survival and therapeutic response. Our study provides a novel insight for the cellular architecture of breast cancer and potential therapeutic strategies.
Collapse
|
Letter |
3 |
50 |
3
|
Cui Y, Franz AWE. Heterogeneity of midgut cells and their differential responses to blood meal ingestion by the mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103496. [PMID: 33188922 PMCID: PMC7739889 DOI: 10.1016/j.ibmb.2020.103496] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 05/11/2023]
Abstract
Mosquitoes are the most notorious hematophagous insects and due to their blood feeding behavior and genetic compatibility, numerous mosquito species are highly efficient vectors for certain human pathogenic parasites and viruses. The mosquito midgut is the principal organ of blood meal digestion and nutrient absorption. It is also the initial site of infection with blood meal acquired parasites and viruses. We conducted an analysis based on single-nucleus RNA sequencing (snRNA-Seq) to assess the cellular diversity of the midgut and how individual cells respond to blood meal ingestion to facilitate its digestion. Our study revealed the presence of 20 distinguishable cell-type clusters in the female midgut of Aedes aegypti. The identified cell types included intestinal stem cells (ISC), enteroblasts (EB), differentiating EB (dEB), enteroendocrine cells (EE), enterocytes (EC), EC-like cells, cardia cells, and visceral muscle (VM) cells. Blood meal ingestion dramatically changed the overall midgut cell type composition, profoundly increasing the proportions of ISC and three EC/EC-like clusters. In addition, transcriptional profiles of all cell types were strongly affected while genes involved in various metabolic processes were significantly upregulated. Our study provides a basis for further physiological and molecular studies on blood digestion, nutrient absorption, and cellular homeostasis in the mosquito midgut.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
32 |
4
|
Kang RB, Li Y, Rosselot C, Zhang T, Siddiq M, Rajbhandari P, Stewart AF, Scott DK, Garcia-Ocana A, Lu G. Single-nucleus RNA sequencing of human pancreatic islets identifies novel gene sets and distinguishes β-cell subpopulations with dynamic transcriptome profiles. Genome Med 2023; 15:30. [PMID: 37127706 PMCID: PMC10150516 DOI: 10.1186/s13073-023-01179-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) provides valuable insights into human islet cell types and their corresponding stable gene expression profiles. However, this approach requires cell dissociation that complicates its utility in vivo. On the other hand, single-nucleus RNA sequencing (snRNA-seq) has compatibility with frozen samples, elimination of dissociation-induced transcriptional stress responses, and affords enhanced information from intronic sequences that can be leveraged to identify pre-mRNA transcripts. METHODS We obtained nuclear preparations from fresh human islet cells and generated snRNA-seq datasets. We compared these datasets to scRNA-seq output obtained from human islet cells from the same donor. We employed snRNA-seq to obtain the transcriptomic profile of human islets engrafted in immunodeficient mice. In both analyses, we included the intronic reads in the snRNA-seq data with the GRCh38-2020-A library. RESULTS First, snRNA-seq analysis shows that the top four differentially and selectively expressed genes in human islet endocrine cells in vitro and in vivo are not the canonical genes but a new set of non-canonical gene markers including ZNF385D, TRPM3, LRFN2, PLUT (β-cells); PTPRT, FAP, PDK4, LOXL4 (α-cells); LRFN5, ADARB2, ERBB4, KCNT2 (δ-cells); and CACNA2D3, THSD7A, CNTNAP5, RBFOX3 (γ-cells). Second, by integrating information from scRNA-seq and snRNA-seq of human islet cells, we distinguish three β-cell sub-clusters: an INS pre-mRNA cluster (β3), an intermediate INS mRNA cluster (β2), and an INS mRNA-rich cluster (β1). These display distinct gene expression patterns representing different biological dynamic states both in vitro and in vivo. Interestingly, the INS mRNA-rich cluster (β1) becomes the predominant sub-cluster in vivo. CONCLUSIONS In summary, snRNA-seq and pre-mRNA analysis of human islet cells can accurately identify human islet cell populations, subpopulations, and their dynamic transcriptome profile in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
25 |
5
|
Ma Q, Ma W, Song TZ, Wu Z, Liu Z, Hu Z, Han JB, Xu L, Zeng B, Wang B, Sun Y, Yu DD, Wu Q, Yao YG, Zheng YT, Wang X. Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zool Res 2022; 43:1041-1062. [PMID: 36349357 PMCID: PMC9700497 DOI: 10.24272/j.issn.2095-8137.2022.443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs. However, cellular and molecular understanding of SARS-CoV-2 infection-associated pathology and immune defense features in different organs remains incomplete. Here, we profiled approximately 77 000 single-nucleus transcriptomes of the lung, liver, kidney, and cerebral cortex in rhesus macaques ( Macaca mulatta) infected with SARS-CoV-2 and healthy controls. Integrated analysis of the multi-organ dataset suggested that the liver harbored the strongest global transcriptional alterations. We observed prominent impairment in lung epithelial cells, especially in AT2 and ciliated cells, and evident signs of fibrosis in fibroblasts. These lung injury characteristics are similar to those reported in patients with coronavirus disease 2019 (COVID-19). Furthermore, we found suppressed MHC class I/II molecular activity in the lung, inflammatory response in the liver, and activation of the kynurenine pathway, which induced the development of an immunosuppressive microenvironment. Analysis of the kidney dataset highlighted tropism of tubule cells to SARS-CoV-2, and we found membranous nephropathy (an autoimmune disease) caused by podocyte dysregulation. In addition, we identified the pathological states of astrocytes and oligodendrocytes in the cerebral cortex, providing molecular insights into COVID-19-related neurological implications. Overall, our multi-organ single-nucleus transcriptomic survey of SARS-CoV-2-infected rhesus macaques broadens our understanding of disease features and antiviral immune defects caused by SARS-CoV-2 infection, which may facilitate the development of therapeutic interventions for COVID-19.
Collapse
|
research-article |
3 |
14 |
6
|
Hippocampal neuropathology in suicide: Gaps in our knowledge and opportunities for a breakthrough. Neurosci Biobehav Rev 2021; 132:542-552. [PMID: 34906612 DOI: 10.1016/j.neubiorev.2021.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023]
Abstract
Suicide is a major global hazard. There is a need for increasing suicide awareness and effective and evidence-based interventions, targeting both suicidal ideation and conduct. However, anti-suicide pharmacological effects are unsatisfactory. The human hippocampus is vulnerable to neuropsychiatric damages and subsequently releases psychobiological signals. Human hippocampal studies of suicide completers have shown mechanistic changes in neurobiology, which, however, could not reflect the neuropathological 'fingerprints' of fatal suicide ideations and suicide attempts. In this review, we provide several leading theories of suicide, including the serotoninergic system, Wnt pathway and brain-derived neurotrophic factor/tropomyosin receptor kinase B signalling, and discuss the evidence for their roles in suicide and treatment. Moreover, the cognitive dysfunctions associated with suicide risk are discussed, as well as the novel evidence on cognitive therapies that decrease suicidal ideation. We highlight the need to apply multi-omics techniques (including single-nucleus RNA sequencing and mass spectrometry histochemistry) on hippocampal samples from donors who died by suicide or legal euthanasia, to clarify the aetiology of suicide and propose novel therapeutic strategies.
Collapse
|
Review |
4 |
10 |
7
|
Lindskrog SV, Schmøkel SS, Nordentoft I, Lamy P, Knudsen M, Prip F, Strandgaard T, Jensen JB, Dyrskjøt L. Single-nucleus and Spatially Resolved Intratumor Subtype Heterogeneity in Bladder Cancer. EUR UROL SUPPL 2023; 51:78-88. [PMID: 37187723 PMCID: PMC10175738 DOI: 10.1016/j.euros.2023.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
Background Current bulk transcriptomic classification systems for bladder cancer do not consider the level of intratumor subtype heterogeneity. Objective To investigate the extent and possible clinical impact of intratumor subtype heterogeneity across early and more advanced stages of bladder cancer. Design setting and participants We performed single-nucleus RNA sequencing (RNA-seq) of 48 bladder tumors and additional spatial transcriptomics for four of these tumors. Total bulk RNA-seq and spatial proteomics data were available from the same tumors for comparison, along with detailed clinical follow-up of the patients. Outcome measurements and statistical analysis The primary outcome was progression-free survival for non-muscle-invasive bladder cancer. Cox regression analysis, log-rank tests, Wilcoxon rank-sum tests, Spearman correlation, and Pearson correlation were used for statistical analysis. Results and limitations We found that the tumors exhibited varying levels of intratumor subtype heterogeneity and that the level of subtype heterogeneity can be estimated from both single-nucleus and bulk RNA-seq data, with high concordance between the two. We found that a higher class 2a weight estimated from bulk RNA-seq data is associated with worse outcome for patients with molecular high-risk class 2a tumors. The sparsity of the data generated using the DroNc-seq sequencing protocol is a limitation. Conclusions Our results indicate that discrete subtype assignments from bulk RNA-seq data may lack biological granularity and that continuous class scores may improve clinical risk stratification of patients with bladder cancer. Patient summary We found that several molecular subtypes can exist within a single bladder tumor and that continuous subtype scores can be used to identify a subgroup of patients with poor outcomes. Use of these subtype scores may improve risk stratification for patients with bladder cancer, which can help in making decisions on treatment.
Collapse
|
research-article |
2 |
10 |
8
|
Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti. BMC Genomics 2022; 23:119. [PMID: 35144549 PMCID: PMC8832747 DOI: 10.1186/s12864-022-08327-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aedes aegypti is a medically-important mosquito vector that transmits arboviruses including yellow fever, dengue, chikungunya, and Zika viruses to humans. The mosquito exhibits typical sexually dimorphic behaviors such as courtship, mating, host seeking, bloodfeeding, and oviposition. All these behaviors are mainly regulated by the brain; however, little is known about the function and neuron composition of the mosquito brain. In this study, we generated an initial atlas of the adult male and female brain of Ae. aegypti using 10xGenomics based single-nucleus RNA sequencing. RESULTS We identified 35 brain cell clusters in male and female brains, and 15 of those clusters were assigned to known cell types. Identified cell types include glia (astrocytes), Kenyon cells, (ventral) projection neurons, monoaminergic neurons, medulla neurons, and proximal medulla neurons. In addition, the cell type compositions of male and female brains were compared to each other showing that they were quantitatively distinct, as 17 out of 35 cell clusters varied significantly in their cell type proportions. Overall, the transcriptomes from each cell cluster looked very similar between the male and female brain as only up to 25 genes were differentially expressed in these clusters. The sex determination factor Nix was highly expressed in neurons and glia of the male brain, whereas doublesex (dsx) was expressed in all neuron and glia cell clusters of the male and female brain. CONCLUSIONS An initial cell atlas of the brain of the mosquito Ae. aegypti has been generated showing that the cellular compositions of the male and female brains of this hematophagous insect differ significantly from each other. Although some of the rare brain cell types have not been detected in our single biological replicate, this study provides an important basis for the further development of a complete brain cell atlas as well as a better understanding of the neurobiology of the brains of male and female mosquitoes and their sexually dimorphic behaviors.
Collapse
|
|
3 |
8 |
9
|
Qiu X, Wang HY, Yang ZY, Sun LM, Liu SN, Fan CQ, Zhu F. Uncovering the prominent role of satellite cells in paravertebral muscle development and aging by single-nucleus RNA sequencing. Genes Dis 2023; 10:2597-2613. [PMID: 37554180 PMCID: PMC10404979 DOI: 10.1016/j.gendis.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 02/05/2023] Open
Abstract
To uncover the role of satellite cells (SCs) in paravertebral muscle development and aging, we constructed a single-nucleus transcriptomic atlas of mouse paravertebral muscle across seven timepoints spanning the embryo (day 16.5) to old (month 24) stages. Eight cell types, including SCs, fast muscle cells, and slow muscle cells, were identified. An energy metabolism-related gene set, TCA CYCLE IN SENESCENCE, was enriched in SCs. Forty-two skeletal muscle disease-related genes were highly expressed in SCs and exhibited similar expression patterns. Among them, Pdha1 was the core gene in the TCA CYCLE IN SENESCENCE; Pgam2, Sod1, and Suclg1 are transcription factors closely associated with skeletal muscle energy metabolism. Transcription factor enrichment analysis of the 42 genes revealed that Myod1 and Mef2a were also highly expressed in SCs, which regulated Pdha1 expression and were associated with skeletal muscle development. These findings hint that energy metabolism may be pivotal in SCs development and aging. Three ligand-receptor pairs of extracellular matrix (ECM)-receptor interactions, Lamc1-Dag1, Lama2-Dag1, and Hspg2-Dag1, may play a vital role in SCs interactions with slow/fast muscle cells and SCs self-renewal. Finally, we built the first database of a skeletal muscle single-cell transcriptome, the Musculoskeletal Cell Atlas (http://www.mskca.tech), which lists 630,040 skeletal muscle cells and provides interactive visualization, a useful resource for revealing skeletal muscle cellular heterogeneity during development and aging. Our study could provide new targets and ideas for developing drugs to inhibit skeletal muscle aging and treat skeletal muscle diseases.
Collapse
|
research-article |
2 |
6 |
10
|
Chang C, Zuo H, Li Y. Recent advances in deciphering hippocampus complexity using single-cell transcriptomics. Neurobiol Dis 2023; 179:106062. [PMID: 36878328 DOI: 10.1016/j.nbd.2023.106062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq) technologies have emerged as revolutionary and powerful tools, which have helped in achieving significant progress in biomedical research over the last decade. scRNA-seq and snRNA-seq resolve heterogeneous cell populations from different tissues and help reveal the function and dynamics at the single-cell level. The hippocampus is an essential component for cognitive functions, including learning, memory, and emotion regulation. However, the molecular mechanisms underlying the activity of hippocampus have not been fully elucidated. The development of scRNA-seq and snRNA-seq technologies provides strong support for attaining an in-depth understanding of hippocampal cell types and gene expression regulation from the single-cell transcriptome profiling perspective. This review summarizes the applications of scRNA-seq and snRNA-seq in the hippocampus to further expand our knowledge of the molecular mechanisms related to hippocampal development, health, and diseases.
Collapse
|
Review |
2 |
6 |
11
|
Kon T, Forrest SL, Lee S, Martinez-Valbuena I, Li J, Nassir N, Uddin MJ, Lang AE, Kovacs GG. Neuronal SNCA transcription during Lewy body formation. Acta Neuropathol Commun 2023; 11:185. [PMID: 37996943 PMCID: PMC10666428 DOI: 10.1186/s40478-023-01687-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Misfolded α-synuclein (α-syn) is believed to contribute to neurodegeneration in Lewy body disease (LBD) based on considerable evidence including a gene-dosage effect observed in relation to point mutations and multiplication of SNCA in familial Parkinson's disease. A contradictory concept proposes early loss of the physiological α-syn as the major driver of neurodegeneration. There is a paucity of data on SNCA transcripts in various α-syn immunoreactive cytopathologies. Here, the total cell body, nuclear, and cytoplasmic area density of SNCA transcripts in neurons without and with various α-syn immunoreactive cytopathologies in the substantia nigra and amygdala in autopsy cases of LBD (n = 5) were evaluated using RNAscope combined with immunofluorescence for disease-associated α-syn. Single-nucleus RNA sequencing was performed to elucidate cell-type specific SNCA expression in non-diseased frontal cortex (n = 3). SNCA transcripts were observed in the neuronal nucleus and cytoplasm in neurons without α-syn, those containing punctate α-syn immunoreactivity, irregular-shaped compact inclusion, and brainstem-type and cortical-type LBs. However, SNCA transcripts were only rarely found in the α-syn immunoreactive LB areas. The total cell body SNCA transcript area densities in neurons with punctate α-syn immunoreactivity were preserved but were significantly reduced in neurons with compact α-syn inclusions both in the substantia nigra and amygdala. This reduction was also observed in the cytoplasm but not in the nucleus. Only single SNCA transcripts were detected in astrocytes with or without disease-associated α-syn immunoreactivity in the amygdala. Single-nucleus RNA sequencing revealed that excitatory and inhibitory neurons, oligodendrocyte progenitor cells, oligodendrocytes, and homeostatic microglia expressed SNCA transcripts, while expression was largely absent in astrocytes and microglia. The preserved cellular SNCA expression in the more abundant non-Lewy body type α-syn cytopathologies might provide a pool for local protein production that can aggregate and serve as a seed for misfolded α-syn. Successful segregation of disease-associated α-syn is associated with the exhaustion of SNCA production in the terminal cytopathology, the Lewy body. Our observations inform therapy development focusing on targeting SNCA transcription in LBD.
Collapse
|
research-article |
2 |
5 |
12
|
Liu X, Ni G, Zhang P, Li H, Li J, Cavallazzi Sebold B, Wu X, Chen G, Yuan S, Wang T. Single-nucleus RNA sequencing and deep tissue proteomics reveal distinct tumour microenvironment in stage-I and II cervical cancer. J Exp Clin Cancer Res 2023; 42:28. [PMID: 36683048 PMCID: PMC9869594 DOI: 10.1186/s13046-023-02598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the 3rd most common cancer in women and the 4th leading cause of deaths in gynaecological malignancies, yet the exact progression of CC is inconclusive, mainly due to the high complexity of the changing tumour microenvironment (TME) at different stages of tumorigenesis. Importantly, a detailed comparative single-nucleus transcriptomic analysis of tumour microenvironment (TME) of CC patients at different stages is lacking. METHODS In this study, a total of 42,928 and 29,200 nuclei isolated from the tumour tissues of stage-I and II CC patients and subjected to single-nucleus RNA sequencing (snRNA-seq) analysis. The cell heterogeneity and functions were comparatively investigated using bioinformatic tools. In addition, label-free quantitative mass spectrometry based proteomic analysis was carried out. The proteome profiles of stage-I and II CC patients were compared, and an integrative analysis with the snRNA-seq was performed. RESULTS Compared with the stage-I CC (CCI) patients, the immune response relevant signalling pathways were largely suppressed in various immune cells of the stage-II CC (CCII) patients, yet the signalling associated with cell and tissue development was enriched, as well as metabolism for energy production suggested by the upregulation of genes associated with mitochondria. This was consistent with the quantitative proteomic analysis that showed the dominance of proteins promoting cell growth and intercellular matrix development in the TME of CCII group. The interferon-α and γ responses appeared the most activated pathways in many cell populations of the CCI patients. Several collagens, such as COL12A1, COL5A1, COL4A1 and COL4A2, were found significantly upregulated in the CCII group, suggesting their roles in diagnosing CC progression. A novel transcript AC244205.1 was detected as the most upregulated gene in CCII patients, and its possible mechanistic role in CC may be investigated further. CONCLUSIONS Our study provides important resources for decoding the progression of CC and set the foundation for developing novel approaches for diagnosing CC and tackling the immunosuppressive TME.
Collapse
|
research-article |
2 |
4 |
13
|
Chen J, Zhao X, Huang C, Lin J. Novel insights into molecular signatures and pathogenic cell populations shared by systemic lupus erythematosus and vascular dementia. Funct Integr Genomics 2023; 23:337. [PMID: 37971684 DOI: 10.1007/s10142-023-01270-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Although vascular dementia (VD) and systemic lupus erythematosus (SLE) may share immune-mediated pathophysiologic processes, the underlying mechanisms are unclear. This study investigated shared gene signatures in SLE versus VD, as well as their potential molecular mechanisms. Bulk RNA sequencing (RNAseq) and single-cell or single-nucleus RNAseq (sc/snRNAseq) datasets from SLE blood samples and VD brain samples were obtained from Gene Expression Omnibus. The identification of genes associated with both SLE and VD was performed using the weighted gene co-expression network analysis (WGCNA) and machine learning algorithms. For the sc/snRNAseq data, an unbiased clustering pipeline based on Seurat and CellChat was used to determine the cellular landscape profile and examine intracellular communication, respectively. The results were subsequently validated using a mice model of SLE with cognitive dysfunction (female MRL/lpr mice). WGCNA and machine learning identified C1QA, LY96, CD163, and MS4A4A as key genes for SLE and VD. sc/snRNAseq analyses revealed that CD163 and MS4A4A were upregulated in mononuclear phagocytes (MPs) from SLE and VD samples and were associated with monocyte-macrophage differentiation. Intriguingly, LGALS9-associated molecular pathway, as the only signaling pathway common between SLE and VD via CellChat analysis, exhibited significant upregulation in cortical microglia of MRL/lpr mice. Our analyses identified C1QA, LY96, CD163, and MS4A4A as potential biomarkers for SLE and VD. Moreover, the upregulation of CD163/MS4A4A and activation of LGALS9 signaling in MPs may contribute to the pathogenesis of VD with SLE. These findings offer novel insight into the mechanisms underlying VD in SLE patients.
Collapse
|
|
2 |
2 |
14
|
Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: An integrative study of single-nucleus transcriptomes and genetic association. RESEARCH SQUARE 2023:rs.3.rs-3335643. [PMID: 37790454 PMCID: PMC10543294 DOI: 10.21203/rs.3.rs-3335643/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. Methods We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. Results We identified 316 dysregulated LR interactions across six major cell types in AD PFC, of which 210 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 60 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport', among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. Conclusions Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.
Collapse
|
Preprint |
2 |
1 |
15
|
Feng M, Fei S, Zou J, Xia J, Lai W, Huang Y, Swevers L, Sun J. Single-Nucleus Sequencing of Silkworm Larval Brain Reveals the Key Role of Lysozyme in the Antiviral Immune Response in Brain Hemocytes. J Innate Immun 2024; 16:173-187. [PMID: 38387449 PMCID: PMC10965234 DOI: 10.1159/000537815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.
Collapse
|
research-article |
1 |
1 |
16
|
Cagnin S, Alessio E, Bonadio RS, Sales G. Single-Cell RNAseq Analysis of lncRNAs. Methods Mol Biol 2021; 2348:71-90. [PMID: 34160800 DOI: 10.1007/978-1-0716-1581-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mammalian genomes are pervasively transcribed and a small fraction of RNAs produced codify for proteins. The importance of noncoding RNAs for the maintenance of cell functions is well known (e.g., rRNAs, tRNAs), but only recently it was first demonstrated the involvement of microRNAs (miRNAs) in posttranscriptional regulation and then the activity of long noncoding RNAs (lncRNAs) in the regulation of miRNAs, DNA structure and protein function. LncRNAs have an expression more cell specific than other RNAs and basing on their subcellular localization exert different functions. In this book chapter we consider different protocols to evaluate the expression of lncRNAs at the single cell level using genome-wide approaches. We considered the skeletal muscle as example because the most abundant tissue in mammals involved in the regulation of metabolism and body movement. We firstly described how to isolate the smallest complete contractile system responsible for muscle metabolic and contractile traits (myofibers). We considered how to separate long and short RNAs to allow the sequencing of the full-length transcript using the SMART technique for the retrotranscription. Because of myofibers are multinucleated cells and because of it is better to perform single cell sequencing on fresh tissues we described the single-nucleus sequencing that can be applied to frozen tissues. The chapter concludes with a description of bioinformatics approaches to evaluate differential expression from single-cell or single-nucleus RNA sequencing.
Collapse
|
Journal Article |
4 |
0 |
17
|
Lu M, Li J, Huang Q, Mao D, Yang G, Lan Y, Zeng J, Pan M, Shi S, Zou D. Single-Nucleus Landscape of Glial Cells and Neurons in Alzheimer's Disease. Mol Neurobiol 2025; 62:2695-2709. [PMID: 39153159 DOI: 10.1007/s12035-024-04428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a projected significant increase in incidence. Therefore, this study analyzed single-nucleus AD data to provide a theoretical basis for the clinical development and treatment of AD. We downloaded AD-related monocyte data from the Gene Expression Omnibus database, annotated cells, compared cell abundance between groups, and investigated glial and neuronal cell biological processes and pathways through functional enrichment analysis. Furthermore, we constructed a global regulatory network for AD based on cell communication and ecological analyses. Our findings revealed increased abundance of Capping Protein Regulator And Myosin 1 linker 1 (CARMIL1)+ astrocytes (AST), Immunoglobulin Superfamily Member 21 (IGSF21)+ microglia (MIC), SRY-Box Transcription Factor 6 (SOX6)+ inhibitory neurons (InNeu), and laminin alpha-2 chain (LAMA2)+ oligodendrocytes (OLI) cell subgroups in tissues of patients with AD, while prostaglandin D2 synthase (PTGDS)+ AST, Src Family Tyrosine Kinase (FYN)+ MIC, and Proteolipid Protein 1 (PLP1)+ InNeu subgroups specifically decreased. We found that the cell phenotype of patients with AD shifted from a simpler to a more complex state compared to the control group. Cell communication analysis revealed strong communication between MIC and NEU. Furthermore, AST, MIC, NEU, and OLI were involved in oxidative stress- and inflammation-related pathways, potentially contributing to disease development. This study provides a theoretical basis for further exploring the specific mechanisms underlying AD.
Collapse
|
|
1 |
|
18
|
Liu Q, Shen C, Dai Y, Tang T, Hou C, Yang H, Wang Y, Xu J, Lu Y, Wang Y, Shan Y, Wei P, Zhao G. Single-cell, single-nucleus and xenium-based spatial transcriptomics analyses reveal inflammatory activation and altered cell interactions in the hippocampus in mice with temporal lobe epilepsy. Biomark Res 2024; 12:103. [PMID: 39272194 PMCID: PMC11396644 DOI: 10.1186/s40364-024-00636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is among the most common types of epilepsy and often leads to cognitive, emotional, and psychiatric issues due to the frequent seizures. A notable pathological change related to TLE is hippocampal sclerosis (HS), which is characterized by neuronal loss, gliosis, and an increased neuron fibre density. The mechanisms underlying TLE-HS development remain unclear, but the reactive transcriptomic changes in glial cells and neurons of the hippocampus post-epileptogenesis may provide insights. METHODS To induce TLE, 200 nl of kainic acid (KA) was stereotactically injected into the hippocampal CA1 region of mice, followed by a 7-day postinjection period. Single-cell RNA sequencing (ScRNA-seq), single-nucleus RNA sequencing (SnRNA-seq), and Xenium-based spatial transcriptomics analyses were employed to evaluate the changes in mRNA expression in glial cells and neurons. RESULTS From the ScRNA-seq and SnRNA-seq data, 31,390 glial cells and 48,221 neuronal nuclei were identified. Analysis of the differentially expressed genes (DEGs) revealed significant transcriptomic alterations in the hippocampal cells of mice with TLE, affecting hundreds to thousands of mRNAs and their signalling pathways. Enrichment analysis indicated notable activation of stress and inflammatory pathways in the TLE hippocampus, while pathways related to axonal development and neural support were suppressed. Xenium analysis demonstrated the expression of all 247 genes across mouse brain sections, revealing the spatial distributions of their expression in 27 cell types. Integrated analysis of the DEGs identified via the three sequencing techniques revealed that Spp1, Trem2, and Cd68 were upregulated in all glial cell types and in the Xenium data; Penk, Sorcs3, and Plekha2 were upregulated in all neuronal cell types and in the Xenium data; and Tle4 and Sipa1l3 were downregulated in all glial cell types and in the Xenium data. CONCLUSION In this study, a high-resolution single-cell transcriptomic atlas of the hippocampus in mice with TLE was established, revealing potential intrinsic mechanisms driving TLE-associated inflammatory activation and altered cell interactions. These findings provide valuable insights for further exploration of HS development and epileptogenesis.
Collapse
|
|
1 |
|
19
|
Zhu R, Pan X, Wang S, Qiu Z, Gu C, Yao X, Li W. Updated skin transcriptomic atlas depicted by reciprocal contribution of single-nucleus RNA sequencing and single-cell RNA sequencing. J Dermatol Sci 2023; 111:22-31. [PMID: 37407342 DOI: 10.1016/j.jdermsci.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of skin biology, but its utility is restricted by the requirement of fresh samples, inadequate dissociation-induced cell loss or death, and activation during tissue digestion. Single-nucleus RNA sequencing (snRNA-seq) can use frozen, hard-to-dissociate materials, which might be a promising method to circumvent the limitations of scRNA-seq for the skin tissue. OBJECTIVE To profile skin cells using snRNA-seq in parallel with scRNA-seq. METHODS We performed snRNA-seq in parallel with scRNA-seq for the bisected skin sample of one person and integrated previously published scRNA-seq data for analysis. We comparatively analyzed the differences in cell proportions and gene expression between the two methods. The differentiation trajectories of keratinocytes and fibroblasts were analyzed by Slingshot analysis. RESULTS snRNA-seq was less susceptible to contamination from mitochondrial and ribosomal RNA, and exhibited a greater capacity to detect transcription factors. snRNA-seq identified more spatially and functionally relevant keratinocyte clusters that constitute cell trajectories with expected differentiation dynamics. Novel markers, e.g., LYPD3, EMP2, and CSTB, were revealed for different differentiation stages of keratinocytes, and NFIB and GRHL1 were identified as transcription factors involving in the proliferation and functional differentiation of keratinocytes. Fibroblasts were found in a state of activation in scRNA-seq. And scRNA-seq detected a greater number of immune cells. CONCLUSIONS We generated an updated atlas of the skin transcriptome based on the reciprocal contribution of scRNA-seq and snRNA-seq.
Collapse
|
|
2 |
|
20
|
Qu W, Lam M, McInvale JJ, Mares JA, Kwon S, Humala N, Mahajan A, Nguyen T, Jakubiak KA, Mun JY, Tedesco TG, Al-Dalahmah O, Hussaini SA, Sproul AA, Siegelin MD, De Jager PL, Canoll P, Menon V, Hargus G. Xenografted human iPSC-derived neurons with the familial Alzheimer's disease APP V717I mutation reveal dysregulated transcriptome signatures linked to synaptic function and implicate LINGO2 as a disease signaling mediator. Acta Neuropathol 2024; 147:107. [PMID: 38918213 PMCID: PMC11199265 DOI: 10.1007/s00401-024-02755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and disease mechanisms are still not fully understood. Here, we explored pathological changes in human induced pluripotent stem cell (iPSC)-derived neurons carrying the familial AD APPV717I mutation after cell injection into the mouse forebrain. APPV717I mutant iPSCs and isogenic controls were differentiated into neurons revealing enhanced Aβ42 production, elevated phospho-tau, and impaired neurite outgrowth in APPV717I neurons. Two months after transplantation, APPV717I and control neural cells showed robust engraftment but at 12 months post-injection, APPV717I grafts were smaller and demonstrated impaired neurite outgrowth compared to controls, while plaque and tangle pathology were not seen. Single-nucleus RNA-sequencing of micro-dissected grafts, performed 2 months after cell injection, identified significantly altered transcriptome signatures in APPV717I iPSC-derived neurons pointing towards dysregulated synaptic function and axon guidance. Interestingly, APPV717I neurons showed an increased expression of genes, many of which are also upregulated in postmortem neurons of AD patients including the transmembrane protein LINGO2. Downregulation of LINGO2 in cultured APPV717I neurons rescued neurite outgrowth deficits and reversed key AD-associated transcriptional changes related but not limited to synaptic function, apoptosis and cellular senescence. These results provide important insights into transcriptional dysregulation in xenografted APPV717I neurons linked to synaptic function, and they indicate that LINGO2 may represent a potential therapeutic target in AD.
Collapse
|
research-article |
1 |
|
21
|
Zhu JH, Guan XC, Yi LL, Xu H, Li QY, Cheng WJ, Xie YX, Li WZ, Zhao HY, Wei HJ, Zhao SM. Single-nucleus transcriptome sequencing reveals hepatic cell atlas in pigs. BMC Genomics 2023; 24:770. [PMID: 38087243 PMCID: PMC10717992 DOI: 10.1186/s12864-023-09765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. RESULTS The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. CONCLUSIONS In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.
Collapse
|
research-article |
2 |
|
22
|
Zhang B, Xi Y, Huang Y, Zhang Y, Guo F, Yang H. Integration of single-nucleus RNA sequencing and network disturbance to elucidate crosstalk between multicomponent drugs and trigeminal ganglia cells in migraine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117286. [PMID: 37838292 DOI: 10.1016/j.jep.2023.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine is caused by hyperactivity of the trigeminovascular system, where trigeminal ganglia (TG) plays an important role. TG is composed of multiple neuronal and non-neuronal cell types, which is related to "neuro-inflammation-vascular" disorder in migraine. Tou Tong Ning capsule (TTNC), a CFDA-approved traditional Chinese medicine for treating migraine, has the characteristics of "multicomponents, multitargets, multipathways". AIM OF THE STUDY To clarify the mechanism of TTNC and elucidate crosstalk between multicomponent drugs and neuronal and non-neuronal functions and cells in migraine. MATERIALS AND METHODS We integrated single-nucleus RNA sequencing and a quantitative evaluation algorithm of the disturbance of multitarget drugs on the disease network and explored the specific pathology of migraine and corresponding compounds. A cerebrovascular smooth muscle spasmolytic activity experiment was carried out to verify the results of the bioinformatics analysis. RESULTS TTNC exhibited its regulation activities in neuronal and non-neuronal aspects based on drugs attack to four subnetworks and cell specific networks, which explored the MoA of TTNC in comprehensive and refined perspectives. Compared to neuronal regulation, TTNC showed more significant attack score on non-neuronal biological function (smooth muscle and vessel). And TTNC compound clusters C1, C6 and C7, targeting non-neuronal function and cells, had larger group area than C10, C4 and C6 for neuronal function and cell, which implied that TTNC may mainly regulate the non-neuronal function, e.g., vessel smooth muscle contraction. Contraction of cerebrovascular smooth muscle of mice ex vivo confirmed the vasodilation activity of TTNC and active compounds from C1, C6, C9 (Emodin, Luteolin and Levistilide A). Literature mining confirmed the vasospasmodolytic activity and neuroprotective effect of TTNC. CONCLUSIONS The study found that TTNC may primarily alleviate non-neuronal functional disorders in migraine by relaxing cerebral vascular smooth muscle cell spasm to alleviate migraine. Integrating single-nucleus RNA sequencing data and network disturbance tools provides a new strategy for the pharmacological mechanism of multicomponent drugs through cell subtyping.
Collapse
|
|
1 |
|
23
|
Schubert C, Schulz K, Sonner JK, Hadjilaou A, Seemann AL, Gierke J, Vieira V, Meurs N, Woo MS, Lohr C, Morellini F, Hirnet D, Friese MA. Neuroinflammation causes mitral cell dysfunction and olfactory impairment in a multiple sclerosis model. J Neuroinflammation 2025; 22:71. [PMID: 40057769 PMCID: PMC11889885 DOI: 10.1186/s12974-025-03388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/19/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Olfactory dysfunction is an underestimated symptom in multiple sclerosis (MS). Here, we examined the pathogenic mechanisms underlying inflammation-induced dysfunction of the olfactory bulb using the animal model of MS, experimental autoimmune encephalomyelitis (EAE). RESULTS Reduced olfactory function in EAE was associated with the degeneration of short-axon neurons, immature neurons, and both mitral and tufted cells, along with their synaptic interactions and axonal repertoire. To dissect the mechanisms underlying the susceptibility of mitral cells, the main projection neurons of the olfactory bulb, we profiled their responses to neuroinflammation by single-nucleus RNA sequencing followed by functional validation. Neuroinflammation resulted in the induction of potassium channel transcripts in mitral cells, which was reflected in increased halothane-induced outward currents of these cells, likely contributing to the impaired olfaction in EAE animals. CONCLUSION This study reveals the crucial role of mitral cells and their potassium channel activity in the olfactory bulb during EAE, thereby enhancing our understanding of neuroinflammation-induced neurodegeneration in MS.
Collapse
|
research-article |
1 |
|
24
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Mayfield RD. Integrative Genomics Approach Identifies Glial Transcriptomic Dysregulation and Risk in the Cortex of Individuals With Alcohol Use Disorder. Biol Psychiatry 2025:S0006-3223(25)00994-1. [PMID: 40024496 DOI: 10.1016/j.biopsych.2025.02.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Previous studies of AUD used underpowered single-cell analysis or bulk homogenates of postmortem brain tissue, which obscure gene expression changes in specific cell types. Therefore, we sought to conduct the largest-to-date single-nucleus RNA sequencing (snRNA-seq) postmortem brain study in AUD to elucidate transcriptomic pathology with cell type-specific resolution. METHODS Here, we performed snRNA-seq and high-dimensional network analysis of 73 postmortem samples from individuals with AUD (n = 36, nnuclei = 248,873) and neurotypical control individuals (n = 37, nnuclei = 210,573) in the dorsolateral prefrontal cortex from both male and female donors. Additionally, we performed analysis for cell type-specific enrichment of aggregate genetic risk for AUD as well as integration of the AUD proteome for secondary validation. RESULTS We identified 32 distinct cell clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glial populations. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and coexpression modules linked to AUD. Differential gene expression was secondarily validated by integration of a publicly available AUD proteome. Finally, analysis for aggregate genetic risk for AUD identified subtypes of glia as potential key players not only affected by but also causally linked to the progression of AUD. CONCLUSIONS These results highlight the importance of cell type-specific molecular changes in AUD and offer opportunities to identify novel targets for treatment on the single-nucleus level.
Collapse
|
|
1 |
|
25
|
Tiwari S, Beyer M, Aranki SF, Neyazi M, Oudit GY, Layton O, Seidman JG, Seidman CE, Muehlschlegel JD. GLP1R upregulation in mitral regurgitation observed at a single nucleus level. J Mol Cell Cardiol 2025; 203:7-9. [PMID: 40209981 DOI: 10.1016/j.yjmcc.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
|
Letter |
1 |
|