1
|
Cheng X, Guo H, Zhang Y, Wu X, Liu Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. WATER RESEARCH 2017; 113:80-88. [PMID: 28199865 DOI: 10.1016/j.watres.2017.02.016] [Citation(s) in RCA: 408] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/14/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
The reaction between persulfate (PS) and carbon nanotubes (CNTs) for the degradation of 2,4-dichlorophenol (2,4-DCP) was investigated. It was demonstrated that CNTs could efficiently activate PS for the degradation of 2,4-DCP. Results suggested that the neither hydroxyl radical (OH) nor sulfate radical (SO4-) was produced therein. For the first time, the generation of singlet oxygen (1O2) was proved by several methods including electron paramagnetic resonance spectrometry (EPR) and liquid chromatography mass spectrometry measurements. Moreover, the generation of the superoxide radical as a precursor of the singlet oxygen was also confirmed by using certain scavengers and EPR measurement, in which the presence of molecular oxygen was not required as a precursor of 1O2. The efficient generation of 1O2 using the PS/CNTs system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral conditions with the mineralization and toxicity evaluated. A kinetic model was developed to theoretically evaluate the adsorption and oxidation of 2,4-DCP on the CNTs. Accordingly, a catalytic mechanism was proposed involving the formation of a dioxirane intermediate between PS and CNTs, and the subsequent decomposition of this intermediate into 1O2.
Collapse
|
|
8 |
408 |
2
|
Luo R, Li M, Wang C, Zhang M, Nasir Khan MA, Sun X, Shen J, Han W, Wang L, Li J. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition. WATER RESEARCH 2019; 148:416-424. [PMID: 30399556 DOI: 10.1016/j.watres.2018.10.087] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5-500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl- markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.
Collapse
|
|
6 |
368 |
3
|
Knoll JD, Turro C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord Chem Rev 2015; 282-283:110-126. [PMID: 25729089 PMCID: PMC4343038 DOI: 10.1016/j.ccr.2014.05.018] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex.
Collapse
|
research-article |
10 |
321 |
4
|
Wang H, Guo W, Liu B, Wu Q, Luo H, Zhao Q, Si Q, Sseguya F, Ren N. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. WATER RESEARCH 2019; 160:405-414. [PMID: 31163316 DOI: 10.1016/j.watres.2019.05.059] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.
Collapse
|
|
6 |
300 |
5
|
The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111787. [PMID: 31958676 DOI: 10.1016/j.jphotobiol.2020.111787] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
The sensitivity for singlet oxygen (1O2) of two convenient 1O2 probes, 1,3-diphenylisobenzofuran (DPBF) and 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA), has been investigated in different aqueous environments. Both probes are commercially available at reasonable cost and can be used with standard UV-vis spectrometers. Although DPBF is not soluble in neat water and is not specific to the detection of 1O2, it has very high, essentially diffusion-limited, reactivity towards 1O2; it can trap up to 50% of all 1O2 created in alcohol/water or micellar solution, and even more when replacing H2O by D2O, which makes it highly useful when the process under investigation does not yield much 1O2. On the other hand, ABDA has a much lower reactivity, reacting with only 2% of the singlet oxygen generated in H2O, as well as a smaller extinction coefficient, resulting in a much smaller spectroscopic response, but is soluble in neat water and is specific for 1O2, allowing for discrimination from other reactive oxygen species. The results presented here not only allow a comparative assessment of the usefulness of the two 1O2 probes, but also provide a reference for an accurate absolute quantification of the amount of 1O2 generated in an experiment from the observed absorbance bleach.
Collapse
|
Journal Article |
5 |
253 |
6
|
Cheng X, Guo H, Zhang Y, Korshin GV, Yang B. Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship. WATER RESEARCH 2019; 157:406-414. [PMID: 30978663 DOI: 10.1016/j.watres.2019.03.096] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to elucidate the intrinsic mechanisms of PS activation by carbon nanotubes (CNTs). Singlet oxygen generation (1O2) and direct CNTs-mediated electron transfer were hypothesized to be two major pathways of the oxidation of 2,4-dichlorophenol (2,4-DCP) by PS in the presence of both unmodified and modified CNTs. For the first time, roles of CNT active sites responsible for PS activation were determined using CNT derivatization and structural characterization. By selectively deactivating the carbonyl, hydroxyl or carboxylic groups on CNTs surface and linear sweep voltammetry (LSV) analysis, CO groups were determined to be the main active sites contributing to the direct electron transfer oxidation, while singlet oxygen was generated at CNTs defects. Subsequent UV irradiation was shown to cause the recovery of surface defects with ID/IG of CNTs increasing by 21%. This resulted in the regeneration of the performance for the coupled system and allowed for multi-cycle activation of PS by CNTs. These results suggest that CNTs/PS system combined with regeneration based on UV irradiation can be used as an effective alternative process for continuous degradation of recalcitrant aqueous contaminants through the non-radical mechanism.
Collapse
|
|
6 |
146 |
7
|
Zhou Y, Jiang J, Gao Y, Pang SY, Yang Y, Ma J, Gu J, Li J, Wang Z, Wang LH, Yuan LP, Yang Y. Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen. WATER RESEARCH 2017; 125:209-218. [PMID: 28863343 DOI: 10.1016/j.watres.2017.08.049] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
In this study, the kinetics of reactions of peroxymonosulfate (PMS) with ten model phenols (including phenol, methylphenols, methoxyphenols, and dihydroxybenzenes) were examined. The oxidation kinetics of these phenols by PMS except for catechol and resorcinol showed autocatalysis in alkaline conditions (pH 8.5 and 10), due to the contribution of singlet oxygen (1O2) produced from PMS activation by quinone intermediates formed from their phenolic parents. The oxidation rates of ortho- and meta-substituted methylphenols and methoxyphenols by PMS were much higher than their para-substituted counterparts under similar conditions. This was attributed to the relatively low yields of quinone intermediates from para-substituted phenols. SMX could be efficiently degraded by PMS in the presence of phenols which showed great autocatalysis when they individually reacted with PMS, and the addition of methanol in excess had negligible influence suggesting that 1O2 rather than hydroxyl radical and sulfate radical played an important role. Transformation of SMX by 1O2 underwent three pathways including hydroxylation of aniline ring, oxidation of aromatic amine group to generate nitro-SMX, and oxidative coupling to generate azo-SMX and hydroxylated azo-SMX. These results obtained in this work improve the understanding of in situ chemical oxidation using PMS for remediation of subsurface, where phenolic and quinonoid moieties are ubiquitous.
Collapse
|
|
8 |
133 |
8
|
Nardi G, Manet I, Monti S, Miranda MA, Lhiaubet-Vallet V. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer. Free Radic Biol Med 2014; 77:64-70. [PMID: 25236741 DOI: 10.1016/j.freeradbiomed.2014.08.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies.
Collapse
|
|
11 |
128 |
9
|
Gao L, Guo Y, Zhan J, Yu G, Wang Y. Assessment of the validity of the quenching method for evaluating the role of reactive species in pollutant abatement during the persulfate-based process. WATER RESEARCH 2022; 221:118730. [PMID: 35714464 DOI: 10.1016/j.watres.2022.118730] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Reactive species such as sulfate radicals (SO4•-), hydroxyl radicals (•OH), and/or singlet oxygen (1O2) have often been proposed as the main reactive species for pollutant abatement during the persulfate-based process, and their relative importance is conventionally assessed by the quenching method based on an implicit fundamental assumption that the added high-concentration quenchers (e.g., tert-butanol and methanol) only scavenge their target reactive species, but do not considerably affect the other reaction mechanism of the system. To examine the validity of this assumption, this study evaluated the effects of several commonly used quenchers (tert-butanol, methanol, ethanol, isopropanol, furfuryl alcohol, and L-histidine) on the mechanism of a cobalt mediated peroxymonosulfate (Co(II)/PMS) process. The results demonstrate that besides quenching target reactive species, the added high-concentration quenchers can cause many confounding effects on the Co(II)/PMS process, e.g., accelerating PMS decomposition, interfering reactive species production, and quenching of non-target reactive species. Because of these confounding effects, the quenching method can actually lead to serious misinterpretation of the role of reactive species in pollutant abatement during the persulfate-based process. The findings of this study highlight that the underlying assumption of the quenching method is usually invalid for the persulfate-based process. Therefore, it should be cautious to apply the quenching method to investigate the mechanism of the persulfate-based process, and some debatable conclusions of prior studies obtained with the quenching method may require further verification.
Collapse
|
|
3 |
125 |
10
|
Itri R, Junqueira HC, Mertins O, Baptista MS. Membrane changes under oxidative stress: the impact of oxidized lipids. Biophys Rev 2014; 6:47-61. [PMID: 28509959 DOI: 10.1007/s12551-013-0128-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Studying photosensitized oxidation of unsaturated phospholipids is of importance for understanding the basic processes underlying photodynamic therapy, photoaging and many other biological dysfunctions. In this review we show that the giant unilamellar vesicle, when used as a simplified model of biological membranes, is a powerful tool to investigate how in situ photogenerated oxidative species impact the phospholipid bilayer. The extent of membrane damage can be modulated by choosing a specific photosensitizer (PS) which is activated by light irradiation and can react by either type I and or type II mechanism. We will show that type II PS generates only singlet oxygen which reacts to the phospholipid acyl double bond. The byproduct thus formed is a lipid hydroperoxide which accumulates in the membrane as a function of singlet oxygen production and induces an increase in its area without significantly affecting membrane permeability. The presence of a lipid hydroperoxide can also play an important role in the formation of the lipid domain for mimetic plasma membranes. Lipid hydroperoxides can be also transformed in shortened chain compounds, such as aldehydes and carboxylic acids, in the presence of a PS that reacts via the type I mechanism. The presence of such byproducts may form hydrophilic pores in the membrane for moderate oxidative stress or promote membrane disruption for massive oxidation. Our results provide a new tool to explore membrane response to an oxidative stress and may have implications in biological signaling of redox misbalance.
Collapse
|
Review |
11 |
121 |
11
|
Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:2-10. [PMID: 24726298 DOI: 10.1016/j.jphotobiol.2014.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/20/2022]
Abstract
This review attempts to summarize molecular mechanisms, spectral and intensity properties, detection techniques and applications of ultra-weak photon emission. Ultra-weak photon emission is the chemiluminescence from biological systems where electronically excited species are formed during oxidative metabolic or oxidative stress processes. It is generally accepted that photons are emitted (1) at near UVA, visible, and near IR spectral ranges from 350 to 1300nm and (2) at the intensity of photon emission in the range of several units to several hundreds (oxidative metabolic process) and several hundreds to several thousands (oxidative stress process) photons s(-1)cm(-2). Current development in detection using low-noise photomultiplier tubes and imaging using highly sensitive charge coupled device cameras allows temporal and spatial visualization of oxidative metabolic or oxidative stress processes, respectively. As the phenomenon of ultra-weak photon emission reflects oxidative metabolic or oxidative stress processes, it can be widely used as a non-invasive tool for monitoring of the physiological state of biological systems.
Collapse
|
Review |
11 |
109 |
12
|
Ehrenshaft M, Deterding LJ, Mason RP. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic Biol Med 2015; 89:220-8. [PMID: 26393422 PMCID: PMC4684788 DOI: 10.1016/j.freeradbiomed.2015.08.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 01/22/2023]
Abstract
Proteins comprise a majority of the dry weight of a cell, rendering them a major target for oxidative modification. Oxidation of proteins can result in significant alterations in protein molecular mass such as breakage of the polypeptide backbone and/or polymerization of monomers into dimers, multimers, and sometimes insoluble aggregates. Protein oxidation can also result in structural changes to amino acid residue side chains, conversions that have only a modest effect on protein size but can have widespread consequences for protein function. There are a wide range of rate constants for amino acid reactivity, with cysteine, methionine, tyrosine, phenylalanine, and tryptophan having the highest rate constants with commonly encountered biological oxidants. Free tryptophan and tryptophan protein residues react at a diffusion-limited rate with hydroxyl radical and also have high rate constants for reactions with singlet oxygen and ozone. Although oxidation of proteins in general and tryptophan residues specifically can have effects detrimental to the health of cells and organisms, some modifications are neutral, whereas others contribute to the function of the protein in question or may act as a signal that damaged proteins need to be replaced. This review provides a brief overview of the chemical mechanisms by which tryptophan residues become oxidized, presents both the strengths and the weaknesses of some of the techniques used to detect these oxidative interactions, and discusses selected examples of the biological consequences of tryptophan oxidation in proteins from animals, plants, and microbes.
Collapse
|
Research Support, N.I.H., Intramural |
10 |
105 |
13
|
Tabish TA, Zhang S, Winyard PG. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species. Redox Biol 2017; 15:34-40. [PMID: 29197802 PMCID: PMC5723279 DOI: 10.1016/j.redox.2017.11.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS) production. Lower production of ROS by currently available theranostic agents, e.g. magnetic nanoparticles, carbon nanotubes, gold nanostructures or polymeric nanoparticles, restricts their clinical application in cancer therapy. Oxidative stress induced by graphene accumulated in living organs is due to acellular factors which may affect physiological interactions between graphene and target tissues and cells. Acellular factors include particle size, shape, surface charge, surface containing functional groups, and light activation. Cellular responses such as mitochondrial respiration, graphene-cell interactions and pH of the medium are also determinants of ROS production. The mechanisms of ROS production by graphene and the role of ROS for cancer treatment, are poorly understood. The aim of this review is to set the theoretical basis for further research in developing graphene-based theranostic platforms.
Collapse
|
Review |
8 |
105 |
14
|
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N. ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radic Biol Med 2018; 122:52-64. [PMID: 29410363 DOI: 10.1016/j.freeradbiomed.2018.01.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signalling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidising equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signalling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (1O2) and hydrogen peroxide (H2O2), initiate distinct signalling pathways when photosynthesis is perturbed. 1O2, because of its potent reactivity means that it initiates but does not transduce signalling. In contrast, the lower reactivity of H2O2 means that it can also be a mobile messenger in a spatially-defined signalling pathway. How plants translate a H2O2 message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells.
Collapse
|
Review |
7 |
103 |
15
|
Liu Z, Ding H, Zhao C, Wang T, Wang P, Dionysiou DD. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential. WATER RESEARCH 2019; 159:111-121. [PMID: 31082642 DOI: 10.1016/j.watres.2019.04.052] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
The combination of peroxymonosulfate (PMS) and electrolysis with an activated carbon fiber (ACF) as cathode (E-ACF-PMS) was systematically investigated. A synergistic effect was observed in the E-ACF-PMS process. Compared with the E-ACF-PDS process, the E-ACF-PMS process spent one-third as much energy for elimination of carbamazepine (CBZ). Increased PMS concentration, current density, and pH value significantly enhanced CBZ elimination. It was also noted that the presence of phosphate (PO43-), bicarbonate (HCO3-), and humic acid (HA) inhibited CBZ removal, while the presence of chloride ion (Cl-) accelerated it. According to radical scavenging experiments and the estimation of relative contribution, reactive oxygen species oxidation (including OH, SO4•-, and 1O2) played an important role in CBZ degradation, accounting for 75.67%. We systematically explored the production mechanism for 1O2 and the results demonstrated that 1O2 was mainly generated on the cathode, rather than generated by O2•- or O2 reported by other researchers. Possible degradation pathways for CBZ in E-ACF-PMS process were also proposed. Finally, the potential for practical applications was explored and compared with E-ACF-PDS. The results of SEM images, BET, and nitrogen adsorption isotherm before and after ACF reuse for 50 times suggested that ACF could maintain its adsorption capacity and catalytic ability in the E-ACF-PMS process. Testing also suggested that the protection of ACF in electrochemical oxidation was based on its relatively high current intensity and removal efficiency. The removal efficiencies of other organic pollutants, including nitrobenzene (NB), sulfamethoxazole (SMX), diclofenac (DC), and tetracycline (TC) were also evaluated. In addition, experiments were conducted to study the effects of different water matrices and toxicology implications and results demonstrated that substituting PMS for PDS in an E-ACF system could create a more efficient, sustainable, and with less secondary toxicity process for wastewater treatment.
Collapse
|
|
6 |
100 |
16
|
Durantini AM, Heredia DA, Durantini JE, Durantini EN. BODIPYs to the rescue: Potential applications in photodynamic inactivation. Eur J Med Chem 2017; 144:651-661. [PMID: 29289888 DOI: 10.1016/j.ejmech.2017.12.068] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives have been proposed in several potential biomedical applications. BODIPYs absorb strongly in blue-green region with high fluorescence emission, properties that convert them in effective fluorophores in the field of biological labeling. However, BODIPY structures can be conveniently modified by heavy atoms substitution to obtain photosensitizers with applications in photodynamic therapy. Also, external heavy atoms effect can be used to increase the photodynamic activity of these compounds. In recent years, BODIPYs have been proposed as phototherapeutic agents for the photodynamic inactivation of microorganisms. Therefore, BODIPY structures need to be optimized to produce an efficient photocytotoxic activity. In this way, amphiphilic cationic BODIPYs can selectively bind to microbial cells, inducing an effective photokilling of pathogenic microbial cells. This review summarizes the attributes of BODIPY derivatives for applications as antimicrobial photosensitizing agents.
Collapse
|
Review |
8 |
100 |
17
|
Wan Z, Mao H, Guo M, Li Y, Zhu A, Yang H, He H, Shen J, Zhou L, Jiang Z, Ge C, Chen X, Yang X, Liu G, Chen H. Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Am J Cancer Res 2014; 4:399-411. [PMID: 24578723 PMCID: PMC3936292 DOI: 10.7150/thno.8171] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/06/2014] [Indexed: 11/25/2022] Open
Abstract
It is highly desirable to develop theranostic nanoparticles for achieving cancer imaging with enhanced contrast and simultaneously multimodal synergistic therapy. Herein, we report a theranostic micelle system hierarchically assembling cyanine dye (indocyanine green) and chemotherapeutic compound (doxorubicin) (I/D-Micelles) as a novel theranostic platform with high drug loading, good stability and enhanced cellular uptake via clathrin-mediated endocytosis. I/D-Micelles exhibit the multiple functionalities including near-infrared fluorescence (NIRF), hyperthermia and intracellular singlet oxygen from indocyanine green, and simultaneous cytotoxicity from doxorubicin. Upon photoirradiation, I/D-Micelles can induce NIRF imaging, acute photothermal therapy via hyperthermia and simultaneous synergistic chemotherapy via singlet oxygen-triggered disruption of lysosomal membranes, eventually leading to enhanced NIRF imaging and superior tumor eradication without any re-growth. Our results suggest that the hierarchical micelles can act as a superior theranostic platform for cancer imaging and multimodal synergistic therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
96 |
18
|
Cristale J, Dantas RF, De Luca A, Sans C, Esplugas S, Lacorte S. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:242-249. [PMID: 27217300 DOI: 10.1016/j.jhazmat.2016.05.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
The wide use of organophosphorous flame retardants (OPFR) and plasticizers causes a continuous release of large quantities into natural waters. One of the main contributors to micropollutants depletion in surface water is sunlight induced phototransformations. This study aims to elucidate whether alkyl, chloroalkyl and aryl organophosphorus flame retardants undergo phototransformations in river water. To perform the experiments, nine OPFR were subjected to natural sunlight, Xe lamp (simulated sunlight) and UV-C irradiations in ultra-pure Milli-Q water, Milli-Q water with humic acid and river water. Experiments demonstrated that OPFR achieve an important degree of photodegradation noticeable at long irradiation time, although direct photolysis did not account as the main photodegration mechanism. Results indicated that sunlight absorbing OPFR exhibited photosensitizing activity. The presence of azide in ultra- pure water inhibited some OPFR photodegration by singlet oxygen (1O2) scavenging, and the absence of dissolved oxygen significantly depleted most of OPFR removal. In the conditions studied, humic acid inhibited OPFR phototransformations, while river water enhanced their removal. Results from this study point out the need to further investigate the role of some OPFR as photosensitizers, which are important for fate and ecological risk assessment of flame retardants and other micropollutants in water.
Collapse
|
|
8 |
95 |
19
|
Jiang M, Lu J, Ji Y, Kong D. Bicarbonate-activated persulfate oxidation of acetaminophen. WATER RESEARCH 2017; 116:324-331. [PMID: 28359044 DOI: 10.1016/j.watres.2017.03.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
Persulfate (PS) is widely used as an oxidant for in situ chemical remediation of contaminated groundwater. In this study we demonstrated for the first time that PS could be activated by bicarbonate. Acetaminophen was used as the probe compound to examine the reactivity of PS/bicarbonate system. It was found that acetaminophen could be effectively transformed and the reaction rate appeared pseudo-first-order to the concentrations of both acetaminophen and PS. Radical scavenger tests indicated that neither free radicals (SO4- and HO) nor superoxide (O2-) was responsible for acetaminophen transformation. Generation of singlet oxygen (1O2) was verified using furfuryl alcohol (FFA) as a probe. Formation of 1O2 was further quantified in D2O fortified solution based on kinetic solvent isotopic effect (KSIE) but it was found that 1O2 contributed only 51.4% of the total FFA transformation. The other 48.6% was presumed to be ascribed to the reaction with peroxymonocarbonate (HCO4-). However, the transformation of acetaminophen was mostly due to the reaction with HCO4- but not 1O2. Instead of degradation, HCO4- oxidized acetaminophen via a one-electron abstraction mechanism resulting in the generation of acetaminophen radicals which coupled to each other to form dimers and trimers. HCO4- also hydrolyzed rapidly to form hydrogen peroxide (H2O2) which led to the formation of 1O2, during which O2- was a key intermediates. Because bicarbonate is ubiquitously presented in groundwater, the findings of this research provide important insights into the fundamental processes involved in PS oxidation in subsurface.
Collapse
|
|
8 |
93 |
20
|
Pospíšil P, Prasad A, Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:11-23. [PMID: 24674863 DOI: 10.1016/j.jphotobiol.2014.02.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Ultra-weak photon emission originates from the relaxation of electronically excited species formed in the biological systems such as microorganisms, plants and animals including humans. Electronically excited species are formed during the oxidative metabolic processes and the oxidative stress reactions that are associated with the production of reactive oxygen species (ROS). The review attempts to overview experimental evidence on the involvement of superoxide anion radical, hydrogen peroxide, hydroxyl radical and singlet oxygen in both the spontaneous and the stress-induced ultra-weak photon emission. The oxidation of biomolecules comprising either the hydrogen abstraction by superoxide anion and hydroxyl radicals or the cycloaddition of singlet oxygen initiate a cascade of oxidative reactions that lead to the formation of electronically excited species such as triplet excited carbonyl, excited pigments and singlet oxygen. The photon emission of these electronically excited species is in the following regions of the spectrum (1) triplet excited carbonyl in the near UVA and blue-green areas (350-550nm), (2) singlet and triplet excited pigments in the green-red (550-750nm) and red-near IR (750-1000nm) areas, respectively and (3) singlet oxygen in the red (634 and 703nm) and near IR (1270nm) areas. The understanding of the role of ROS in photon emission allows us to use the spontaneous and stress-induced ultra-weak photon emission as a non-invasive tool for monitoring of the oxidative metabolic processes and the oxidative stress reactions in biological systems in vivo, respectively.
Collapse
|
Review |
11 |
92 |
21
|
Meng H, Nie C, Li W, Duan X, Lai B, Ao Z, Wang S, An T. Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: Epicarp and mesocarp of citrus peels as examples. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123043. [PMID: 32526439 DOI: 10.1016/j.jhazmat.2020.123043] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
In this work, the cellulose-enriched mesocarp of tangerine peels (TP) and the lignin-enriched epicarp of the peels (e-TPs) were used as examples to unveil the link between the basic components (cellulose, hemicellulose and lignin) in lignocellulosic biomass and catalytic activity of biochar towards peroxymonosulfate (PMS) activation. The TP biochar exhibits sheet-like morphology and high porosity, while the e-TPs biochar shows a bulk morphology. Accordingly, the former outperformed the latter in terms of catalytic degradation of phenol with PMS, attributing to the higher content of cellulose than lignin in the TP precursor, which was further supported by comparing the catalytic activity of biochar prepared from binary mixtures containing different proportions of cellulose and lignin. Nonradical oxidation pathway based on singlet oxygen (1O2) and electron-transfer mechanism was involved in the TP biochar/PMS system and the key role of CO group in biochar for 1O2 generation was computationally demonstrated. Additionally, the unique porous structure and surface chemistry of TP biochar endows it an excellent adsorbent for various organic pollutants. Herein, this work provides an insight into the effect of lignocellulosic biomass source on the catalytic property of biochar, which would be beneficial to screen lignocellulosic biowastes to prepare high-performance biochar for water remediation.
Collapse
|
|
5 |
90 |
22
|
Bauer G. The synergistic effect between hydrogen peroxide and nitrite, two long-lived molecular species from cold atmospheric plasma, triggers tumor cells to induce their own cell death. Redox Biol 2019; 26:101291. [PMID: 31421409 PMCID: PMC6831866 DOI: 10.1016/j.redox.2019.101291] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Nitrite and H2O2 are long-lived species in cold atmospheric plasma and plasma-activated medium. It is known that their synergistic interaction is required for selective apoptosis induction in tumor cells that are treated with plasma-activated medium. This study shows that the interaction between nitrite and H2O2 leads to the formation of peroxynitrite, followed by singlet oxygen generation through the interaction between peroxynitrite and residual H2O2. This primary singlet oxygen causes local inactivation of few catalase molecules on the surface of tumor cells. As a consequence, H2O2 and peroxynitrite that are constantly produced by tumor cells and are usually decomposed by their protective membrane-associated catalase, are surviving at the site of locally inactivated catalase. This leads to the generation of secondary singlet oxygen through the interaction between tumor cell-derived H2O2 and peroxynitrite. This selfsustained process leads to autoamplification of secondary singlet oxygen generation and catalase inactivation. Inactivation of catalase allows the influx of H2O2 through aquaporins, leading to intracellular glutathione depletion and sensitization of the cells for apoptosis induction through lipid peroxidation. It also allows to establish intercellular apoptosis-inducing HOCl signaling, driven by active NOX1 and finalized by lipid peroxidation through hydroxyl radicals that activates the mitochondrial pathway of apoptosis. This experimentally established model is based on a triggering function of CAP and PAM-derived H2O2/nitrite that causes selective cell death in tumor cells based on their own ROS and RNS. This model explains the selectivity of CAP and PAM action towards tumor cells and is in contradiction to previous models that implicated that ROS/RNS from CAP or PAM were sufficient to directly cause cell death of tumor cells.
H2O2 and nitrite generate peroxynitrite, followed by primary singlet oxygen formation. Primary singlet oxygen causes local inactivation of tumor cell protective catalase. Amplificatory generation of secondary singlet oxygen and catalase inactivation are established. Inactivation of catalase allows aquaporin-mediated influx of H2O2 and glutathione depletion. In this way, CAP and PAM trigger tumor cells to contribute to their own cell death.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
89 |
23
|
Cieplik F, Späth A, Regensburger J, Gollmer A, Tabenski L, Hiller KA, Bäumler W, Maisch T, Schmalz G. Photodynamic biofilm inactivation by SAPYR--an exclusive singlet oxygen photosensitizer. Free Radic Biol Med 2013; 65:477-487. [PMID: 23891675 DOI: 10.1016/j.freeradbiomed.2013.07.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/28/2013] [Accepted: 07/18/2013] [Indexed: 01/08/2023]
Abstract
Prevention and control of biofilm-growing microorganisms are serious problems in public health due to increasing resistances of some pathogens against antimicrobial drugs and the potential of these microorganisms to cause severe infections in patients. Therefore, alternative approaches that are capable of killing pathogens are needed to supplement standard treatment modalities. One alternative is the photodynamic inactivation of bacteria (PIB). The lethal effect of PIB is based on the principle that visible light activates a photosensitizer, leading to the formation of reactive oxygen species, e.g., singlet oxygen, which induces phototoxicity immediately during illumination. SAPYR is a new generation of photosensitizers. Based on a 7-perinaphthenone structure, it shows a singlet oxygen quantum yield ΦΔ of 99% and is water soluble and photostable. Moreover, it contains a positive charge for good adherence to cell walls of pathogens. In this study, the PIB properties of SAPYR were investigated against monospecies and polyspecies biofilms formed in vitro by oral key pathogens. SAPYR showed a dual mechanism of action against biofilms: (I) it disrupts the structure of the biofilm even without illumination; (II) when irradiated, it inactivates bacteria in a polymicrobial biofilm after one single treatment with an efficacy of ≥ 99.99%. These results encourage further investigation on the potential of PIB using SAPYR for the treatment of localized infectious diseases.
Collapse
|
|
12 |
89 |
24
|
Garcia-Diaz M, Huang YY, Hamblin MR. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016; 109:158-166. [PMID: 27374076 PMCID: PMC5075498 DOI: 10.1016/j.ymeth.2016.06.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy involves the excitation of a non-toxic dye by harmless visible light to produce a long-lived triplet state that can interact with molecular oxygen to produce reactive oxygen species (ROS), which can damage biomolecules and kill cells. ROS produced by electron transfer (Type 1) include superoxide, hydrogen peroxide and hydroxyl radical (HO), while singlet oxygen (1O2) is produced by energy transfer. Diverse methods exist to distinguish between these two pathways, some of which are more specific or more sensitive than others. In this review we cover the use of two fluorescence probes: singlet oxygen sensor green (SOSG) detects 1O2; and 4-hydroxyphenyl-fluorescein (HPF) that detects HO. Interesting data was collected concerning the photochemical pathways of functionalized fullerenes compared to tetrapyrroles, stable synthetic bacteriochlorins with and without central metals, phenothiazinium dyes interacting with inorganic salts such as azide.
Collapse
|
Review |
9 |
88 |
25
|
Brame J, Long M, Li Q, Alvarez P. Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. WATER RESEARCH 2014; 60:259-266. [PMID: 24867602 DOI: 10.1016/j.watres.2014.05.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 05/24/2023]
Abstract
The ability of reactive oxygen species (ROS) to interact with target pollutants is crucial for efficient water treatment using advanced oxidation processes (AOPs), and inhibition by natural organic matter (NOM) can significantly reduce degradation efficiency. We compare OH-based degradation (H2O2-UV) to (1)O2-based degradation (Rose Bengal) of several probe compounds (furfuryl alcohol, ranitidine, cimetidine) interacting in water containing background constituents likely to be found in treatment water such as natural organic matter (NOM) and phosphate, as well as in effluent from a waste-water treatment plant (WWTP). Hydroxyl radicals were much more susceptible to hindrance by all three background matrices (NOM, phosphate and WWTP effluent) tested, while (1)O2 was only slightly inhibited by NOM and not by phosphate or WWTP effluent. A mechanistic model accounting for this inhibition in terms of radical scavenging and inner filter effects was developed, and accurately simulated the results of the NOM interactions. These results underscore the importance of considering the effect of background constituents in the selection of photocatalysts and in the design of AOPs for emerging applications in tertiary treatment of wastewater effluent and disinfection of natural waters.
Collapse
|
Comparative Study |
11 |
87 |