Obradovic M, Stanimirovic J, Panic A, Bogdanovic N, Sudar-Milovanovic E, Cenic-Milosevic D, Isenovic ER. Regulation of Na+/K+-ATPase by Estradiol and IGF-1 in Cardio-Metabolic Diseases.
Curr Pharm Des 2018;
23:1551-1561. [PMID:
28164755 DOI:
10.2174/1381612823666170203113455]
[Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND
The sodium/potassium- adenosine- triphosphatase (Na+/K+-ATPase) is an important mediator in vasculature tone and contractility, and its abnormal regulation has been implicated in many diseases such as obesity, insulin resistance, diabetes, and hypertension. Decreased Na+/K+-ATPase abundance and its altered isoform expression induce cardiomyocytes death and cardiac dysfunction, possibly leading to the development of myocardial dilation and heart failure. Therefore, the regulation of Na+/K+-ATPase activity/expression could be important in treatment and possible prevention of cardio-metabolic diseases. A number of hormones and environmental factors regulate the function of Na+/K+-ATPase in response to changing cellular requirements. Estradiol and insulin like growth factor-1 (IGF-1) are among potent hormones that positively regulate Na+/K+- ATPase activity or de novo synthesis of α - and β - subunits. Both estradiol and IGF-1 have a huge therapeutic potential in treatment of vasculopathy in cardio-metabolic diseases.
METHODS
We searched the MEDLINE and PUBMED databases for all English and non-English articles with an English abstract from April 1978 to May 2016. The main data search terms were: Na+/K+-ATPase; estradiol and Na+/K+-ATPase; estradiol, Na+/K+-ATPase and CVS; estradiol, Na+/K+-ATPase and CVD; estradiol, Na+/K+- ATPase and obesity; estradiol, Na+/K+-ATPase and diabetes; estradiol, Na+/K+-ATPase and hypertension; IGF-1; IGF-1 and Na+/K+-ATPase; IGF-1, Na+/K+-ATPase and CVS; IGF-1, Na+/K+-ATPase and CVD; IGF-1, Na+/K+- ATPase and obesity; IGF-1, Na+/K+-ATPase and diabetes; IGF-1, Na+/K+-ATPase and hypertension.
RESULTS
The present review discusses the latest data from animal and human studies which focus on the effects of estradiol and IGF-1 on Na+/K+-ATPase regulation in physiological and pathophysiological conditions in cardiovascular system.
CONCLUSION
Understanding the molecular mechanisms of estradiol and IGF-1 action on Na+/K+-ATPase in humans, may help resolving outstanding issues and developing new strategies for the protection and treatment of cardiovascular diseases.
Collapse