1
|
Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta 2013; 115:214-21. [PMID: 24054582 DOI: 10.1016/j.talanta.2013.04.038] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
A novel gold nanoparticle-modified graphite pencil electrode (AuNP-GPE) is prepared just by immersing a bare GPE in AuNP solution, followed by heating for 15 min. The bare and modified GPEs are characterized by FE-SEM imaging and cyclic voltammetry. The AuNP-GPEs showed excellent electrocatalytic activities with respect to hydrazine oxidation, with good reproducibility. To reduce the quantification and detection limits, and increase the hydrazine sensitivity, the pH and square wave voltammetry parameters are optimized. A square wave voltammetry study as a function of the hydrazine concentration showed that the AuNP-GPE detector's quantification limit was 100 nmol L(-1) hydrazine, much lower than the value obtained using amperometry (10 µmol L(-1)). The limits of detection (at 3σ) for hydrazine sensing at AuNP-GPEs using square wave voltammetry and amperometry were 42 nmol L(-1) and 3.07 µmol L(-1). Finally, the modified electrode was used to determine the hydrazine concentration in drinking water, and satisfactory results are obtained. This simple, rapid, low-cost method for fabricating a modified electrode is an attractive approach to the development of new sensors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
128 |
2
|
Tashkhourian J, Daneshi M, Nami-Ana F, Behbahani M, Bagheri A. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:117-124. [PMID: 27420383 DOI: 10.1016/j.jhazmat.2016.06.049] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 05/27/2023]
Abstract
A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.
Collapse
|
|
9 |
89 |
3
|
Wang J, Guo J, Zhang J, Zhang W, Zhang Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens Bioelectron 2017; 95:100-105. [PMID: 28431362 DOI: 10.1016/j.bios.2017.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
Abstract
C-reactive protein (CRP) is a widely accepted biomarker of cardiovascular disease and inflammation. In this study, a RNA aptamer-based electrochemical sandwich type aptasensor for CRP detection was described using the functionalized silica microspheres as immunoprobes. Silica microspheres (Si MSs), which have good monodispersity and uniform shape, were firstly synthesized. The silica microspheres functionlized with gold nanoparticles (Au NPs) provided large surface area for immobilizing signal molecules (Zinc ions, Zn2+) and antibodies (Ab). RNA aptamers, which were specific recognized to CRP, were assembled on the surface of Au NPs modified electrode via gold-sulfur affinity. In the presence of CRP, a sandwich structure of aptamer-CRP-immunoprobe was formed. Square wave voltammetry (SWV) was employed to record the sensing signal, and a clearly reductive peak corresponding to Zn2+ at about -1.16V (vs. SCE) was obtained. Under optimal conditions, the aptasensor showed wide linear range (0.005ngmL-1 to 125ngmL-1) and low detection limit (0.0017ngmL-1 at a signal-to-noise ratio of 3). Some possible interfering substance was also investigated, and the results obtained showed that the aptasensor possessed good selectivity. When the aptasensor was applied to real serum samples analysis, the satisfied results were obtained, indicating that the aptasensor possessed potential real application ability.
Collapse
|
Journal Article |
8 |
67 |
4
|
A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta 2017; 176:619-624. [PMID: 28917799 DOI: 10.1016/j.talanta.2017.08.057] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 11/23/2022]
Abstract
We report the design and fabrication of a "signal-on" electrochemical aptamer-based (E-AB) sensor for detection of ampicillin. The signaling of the sensor is based on target binding-induced changes in the conformation and flexibility of the methylene blue-modified aptamer probe. The sensor's response is fast; signal saturation can be reached in ~ 200s. Since all the sensor components are surface-immobilized, it is regenerable and can be reused for at least three times. It has demonstrated good specificity and is capable of differentiating between ampicillin and structurally similar antibiotics such as amoxicillin. More importantly, it is selective enough to be employed directly in complex samples, including serum, saliva, and milk. Although both alternating current voltammetry (ACV) and square wave voltammetry (SWV) are suitable sensor characterization techniques, our results show that ACV is better suited for target analysis. Even under the optimal experimental conditions, the limit of detection of the sensor obtained in ACV (1µM) is significantly lower than that obtained in SWV (30µM).
Collapse
|
Journal Article |
8 |
66 |
5
|
Jemmeli D, Marcoccio E, Moscone D, Dridi C, Arduini F. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 2020; 216:120924. [PMID: 32456933 DOI: 10.1016/j.talanta.2020.120924] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022]
Abstract
Bisphenol A is one the most relevant endocrine disruptors for its toxicity and ubiquity in the environment, being largely employed as raw material for manufacturing processes of a wide number of compounds. Furthermore, bisphenol A is released in the drinking water when plastic-based bottles are incorrectly transported under sunlight, delivering contaminated drinking water. For the health of human beings and the environment, rapid and on site detection of bisphenol A in drinking water is an important issue. Herein, we report a novel and cost-effective printed electrochemical sensor for an enzymatic-free bisphenol A detection. This sensor encompasses the entire electrochemical cell printed on filter paper and the reagents for the measurement loaded in the cellulose fiber network, for delivering a reagent-free analytical tool. The working electrode was printed using ink modified with carbon black, a cost effective nanomaterial for sensitive and sustainable bisphenol A determination. Several parameters including pH, frequency, and amplitude were optimized allowing for a detection limit of 0.03 μM with two linear ranges 0.1-0.9 μM and 1 μM-50 μM, using square wave voltammetry as electrochemical technique. The satisfactory recovery values found in river and drinking water samples demonstrated the suitability of this sensor for screening analyses in water samples. These results revealed the attractiveness of this paper-based device thanks to the synergic combination of paper and carbon black as cost-effective materials.
Collapse
|
Journal Article |
5 |
54 |
6
|
Vilian ATE, Kim W, Park B, Oh SY, Kim T, Huh YS, Hwangbo CK, Han YK. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: A predictive strategy for heart failure. Biosens Bioelectron 2019; 142:111549. [PMID: 31400725 DOI: 10.1016/j.bios.2019.111549] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/18/2022]
Abstract
C-reactive protein (CRP) is considered a promising biomarker for the rapid and high-throughput real-time monitoring of cardiovascular disease and inflammation in unprocessed clinical samples. Implementation of this monitoring would enable various transformative biomedical applications. We have fabricated a highly specific sensor chip to detect CRP with a detection limit of 2.25 fg/mL. The protein was immobilized on top of a gold (Au) wire/polycarbonate (PC) substrate using 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride/N-hydroxy succinimide-activated 3-mercaptoproponic acid (MPA) as a self-assembled monolayer agent and bovine serum albumin (BSA) as a blocking agent. In contrast to the bare PC substrate, the CRP/BSA/anti-CRP/MPA/Au substrate exhibited a considerably high electrochemical signal toward CRP. The influence of the experimental parameters on CRP detection was assessed via various analysis methods, and these parameters were then optimized. The linear dynamic range of the CRP was 5-220 fg/mL for voltammetric and impedance analysis. Morever, the strategy exhibited high selectivity against various potential interfering species and was capable of directly probing trace amounts of the target CRP in human serum with excellent selectivity. The analytical assay based on the CRP/BSA/anti-CRP/MPA/Au substrate could be exploited as a potentially useful tool for detecting CRP in clinical samples.
Collapse
|
Journal Article |
6 |
49 |
7
|
Eissa S, Zourob M. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus. Mikrochim Acta 2020; 187:486. [PMID: 32761391 DOI: 10.1007/s00604-020-04423-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2020] [Indexed: 01/09/2023]
Abstract
A novel electrochemical biosensor is reported for simultaneous detection of two of the most common food-borne pathogens: Listeria monocytogenes and Staphylococcus aureus. The biosensor is composed of an array of gold nanoparticles-modified screen-printed carbon electrodes on which magnetic nanoparticles coupled to specific peptides were immobilized via streptavidin-biotin interaction. Taking advantage of the proteolytic activities of the protease enzymes produced from the two bacteria on the specific peptides, the detection was achieved in 1 min. The detection was realized by measuring the percentage increase of the square wave voltammetric peak current at 0.1 V versus a Ag/AgCl reference electrode in ferro/ferricyanide redox couple after incubation with the bacteria protease. The integration of the specificity of the bacterial enzymes towards their peptide substrates with the sensitivity of the electrochemical detection on the sensor array allows the rapid, sensitive and selective quantification of the two bacteria. Outstanding sensitivities were achieved using this biosensor array platform with limit of detection of 9 CFU mL-1 for Listeria monocytogenes and 3 CFU mL-1 for Staphylococcus aureus. The multiplexing capability and selectivity of the array voltammetric biosensor were demonstrated by analysing samples of Staphylococcus aureus, Listeria monocytogenes or E. coli and also containing a mixture of two or three bacteria. Using this biosensor, the two bacteria were successfully quantified simultaneously in one step without the need for DNA extraction or amplification techniques. This platform offers promise for rapid, simple and cost-effective simultaneous detection of various bacteria. Graphical abstract.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
49 |
8
|
Liv L. Electrochemical immunosensor platform based on gold-clusters, cysteamine and glutaraldehyde modified electrode for diagnosing COVID-19. Microchem J 2021; 168:106445. [PMID: 34054147 PMCID: PMC8141695 DOI: 10.1016/j.microc.2021.106445] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022]
Abstract
Amid the global threat caused by the coronavirus disease 2019 (COVID-19) pandemic, developing sufficiently rapid, accurate, sensitive and selective methods of diagnosing both symptomatic and asymptomatic cases is essential to alleviating and controlling the pandemic’s effects. This article describes an electrochemical immunoassay platform developed to determine the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) spike antibody by using gold-clusters capped with cysteamine, glutaraldehyde, the spike protein of the SARS-CoV-2 antigen and bovine serum albumin on a glassy carbon electrode. The electrochemical oxidation signal of the antigen-based immunosensor at 0.9 V was used to detect the SARS-CoV-2 spike antibody. When saliva and oropharyngeal swab samples were analysed, the recovery and relative standard deviation values were 96.97%–101.99% and 4.99%–5.74%, respectively. The method’s limit of detection relative to the SARS-CoV-2 spike antibody in synthetic media and in saliva or oropharyngeal swab samples was 0.01 ag/mL, while the immunosensor’s linear response to the SARS-CoV-2 spike antibody varied from 0.1 to 1000 ag/mL. The cross-reactivity of the Middle East respiratory syndrome-coronavirus spike antigen was evaluated after being immobilised onto the functionalised gold-cluster based sensor, indicated that the good specifity of the produced immunosensor.
Collapse
|
Journal Article |
4 |
39 |
9
|
Chen X, Guo Z, Tang Y, Shen Y, Miao P. A highly sensitive gold nanoparticle-based electrochemical aptasensor for theophylline detection. Anal Chim Acta 2017; 999:54-59. [PMID: 29254574 DOI: 10.1016/j.aca.2017.10.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
Theophylline is a common bronchodilator for the treatment of diseases like asthma, bronchitis and emphysema. However, it should be strictly used and monitored due to its toxicity when the concentration is above certain levels. In this work, an electrochemical biosensor for theophylline detection is proposed by recognition of RNA aptamer and gold nanoparticle (AuNP)-based amplification technique. First, RNA aptamer is splitted into two single-stranded RNA probes. One is hybridized with DNA tetrahedron and the resulted nanostructure is then immobilized onto a gold electrode; the other is modified on the surface of AuNPs which is also labeled with methylene blue (MB) as electrochemical species. The recognition process between the two RNA probes and theophylline causes the localization of AuNPs and the enrichment of MB on the electrode interface. A significant electrochemical response is thus generated which is related to the concentration of initial theophylline. This proposed aptasensor shows excellent sensitivity and selectivity which could also be applied in quantitatively detection of theophylline in serums samples.
Collapse
|
Journal Article |
8 |
33 |
10
|
Sáenz HSC, Hernández-Saravia LP, Selva JSG, Sukeri A, Espinoza-Montero PJ, Bertotti M. Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy. Mikrochim Acta 2018; 185:367. [PMID: 29987397 DOI: 10.1007/s00604-018-2898-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 11/30/2022]
Abstract
Nanoporous gold (NPG) structures were prepared on the surface of a gold microelectrode (Au-μE) by an anodization-reduction method. Cyclic voltammetry and field emission scanning electron microscopy were used to study the electrochemical properties and the morphology of the nanostructured film. Voltammetry showed an improved sensitivity for dopamine (DA) oxidation at this microelectrode when compared to a bare gold microelectrode, with a peak near 0.2 V (vs. Ag/AgCl) at a scan rate of 0.1 V s-1. This is due to the increased surface area and roughness. Square wave voltammetry shows a response that is linear in the 0.1-10 μmol L-1 DA concentration range, with a 30 nmol L-1 detection limit and a sensitivity of 1.18 mA (μmol L-1)-1 cm-2. The sensor is not interfered by ascorbic acid. The reproducibility, repeatability, long-term stability and real sample analysis (spiked urine) were assessed, and acceptable performance was achieved. The "proof-of-concept" detection of dopamine release was demonstrated by using scanning electrochemical microscopy (SECM) with the aim of future applications for single cell analysis. Graphical abstract A reproducible electrochemical approach was proposed to fabricate an NPG-microelectrode for DA detection, with enhanced sensitivity and selectivity. Besides, a proof-of-concept detection of DA release was also demonstrated by using SECM.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
32 |
11
|
Alizadeh T, Hamidi N, Ganjali MR, Rafiei F. Determination of subnanomolar levels of mercury (II) by using a graphite paste electrode modified with MWCNTs and Hg(II)-imprinted polymer nanoparticles. Mikrochim Acta 2017; 185:16. [PMID: 29594531 DOI: 10.1007/s00604-017-2534-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022]
Abstract
Mercury ion-imprinted polymer nanoparticles (Hg-IP-NPs) were synthesized via precipitation polymerization by using itaconic acid as a functional monomer. A carbon paste electrode was impregnated with the synthesized Hg-IP-NPs and MWCNTs to obtain a highly sensitive and selective electrode for determination of Hg(II). Mercury ion is first accumulated on the electrode surface via an open circuit procedure. After reduction of Hg(II) ions to its metallic form at a negative pre-potential, square wave anodic stripping voltammetry was applied to generate the electrochemical signal. The high affinity of the Hg-IP-NPs for Hg(II) was substantiated by comparing of the signals of electrodes with imprinted and non-imprinted polymer. The beneficial effect of MWCNTs on the voltammetric signal is also demonstrated. Under the optimized conditions and at a typical working potential of +0.05 V (vs. Ag/AgCl), the electrode has a linear response in the 0.1-20 nmol L-1 Hg(II) concentration range and a 29 pM detection limit. The electrochemical sensitivity is as high as 1441 A·M-1·cm-2 which is among the best values known. The electrode was applied to the determination of Hg(II) in water samples. Graphical abstract Schematic representation of the sensor electrode modified with mercury-imprinted polymer nanoparticles, and the recognition and voltammetric determination steps.
Collapse
|
Journal Article |
8 |
30 |
12
|
Qualitative and quantitative electroanalysis of synthetic phenolic antioxidant mixtures in edible oils based on their acid-base properties. Food Chem 2011; 127:1361-9. [PMID: 25214139 DOI: 10.1016/j.foodchem.2011.01.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 11/22/2022]
Abstract
A simple electroanalytical method using square wave voltammetry at a Pt band ultramicroelectrode to perform a qualitative and quantitative analysis of different synthetic antioxidant mixtures permitted by official regulations in edible oils is proposed. The methodology was based on the comparison of voltammetric signals obtained in acetonitrile+0.1M (C4H9)4NF6P with those recorded in the same reaction medium when different aliquots of (C4H9)4NOH were added to allow a qualitative differentiation between antioxidants. Firstly, studies on solutions prepared from commercial reagents were carried out. Then, the results obtained were transferred to the analysis of a real matrix, i.e., an edible olive oil. From real samples spiked with a known amount of different synthetic antioxidant mixtures, we could deduce the presence of these antioxidants by comparing results obtained in the neutral medium with those obtained after the successive addition of base. The standard addition method was used to quantify the individually spiked synthetic antioxidants in the real sample. Recovery percentages were between 88% and 118%. The reproducibility was 1.5%, 3.1%, 4.1% and 4.1% in ACN+0.1M TBAHFP and 1.5%, 4.6%, 6.6% and 2.5% in Bz/EtOH (1:2)+0.1M H2SO4 for TBHQ, BHA, BHT and PG, respectively. The repeatability was 1% for PG in both media. These parameters show a good system performance.
Collapse
|
Journal Article |
14 |
30 |
13
|
El-Said WA, Al-Bogami AS, Alshitari W. Synthesis of gold nanoparticles@reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120237. [PMID: 34352502 PMCID: PMC8327772 DOI: 10.1016/j.saa.2021.120237] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 05/05/2023]
Abstract
Here, we reported the synthesis of reduced porous graphene oxide (rPGO) decorated with gold nanoparticles (Au NPs) to modify the ITO electrode. Then we used this highly uniform Au NPs@rPGO modified ITO electrode as a surface-enhanced Raman spectroscopy-active surface and a working electrode. The uses of the Au nanoparticles and porous graphene enhance the Raman signals and the electrochemical conductivity. COVID-19 protein-based biosensor was developed based on immobilization of anti-COVID-19 antibodies onto the modified electrode and its uses as a probe for capturing the COVID-19 protein. The developed biosensor showed the capability of monitoring the COVID-19 protein within a concentration range from 100 nmol/L to 1 pmol/L with a limit of detection (LOD) of 75 fmol/L. Furthermore, COVID-19 protein was detected based on electrochemical techniques within a concentration range from 100 nmol/L to 500 fmol/L that showed a LOD of 39.5 fmol/L. Finally, three concentrations of COVID-19 protein spiked in human serum were investigated. Thus, the present sensor showed high efficiency towards the detection of COVID-19.
Collapse
|
research-article |
3 |
29 |
14
|
Ramya R, Muthukumaran P, Wilson J. Electron beam-irradiated polypyrrole decorated with Bovine serum albumin pores: Simultaneous determination of epinephrine and L-tyrosine. Biosens Bioelectron 2018; 108:53-61. [PMID: 29499559 DOI: 10.1016/j.bios.2018.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
Abstract
In current work highly sensitive and stable electrochemical sensor for simultaneous non-enzymatic detection of epinephrine (EP), L-tyrosine (L-Tyr) is constructed based on Electron beam irradiated Polypyrrole (EB-Ppy) nanospheres (Zeta potential 33.69 mV at pH 7) embedded over bovine serum albumin (BSA) (Zeta potential - 11.54 mV at pH 7) porous structure, fabricated by simple chemical routes. The BSA structure has the advantages of large surface area, excellent structure stability, rich pore channels and redox mediator role. The constructed sensor exhibited excellent sensor performances by the combination of protein with NH group and recorded the linear response of EP, L-Tyr individual in the concentration range of 100 nM-1 mM, 100 nM-800 μM, with detection limit 7.1 nM, 8.8 nM (S/N = 3σ/b). The EB-Ppy-BSA/GCE electrochemical sensor manifests intriguing application with good sensitivity, selectivity and reproducibility towards the EP, L-Tyr detection. The practical analytical utility provides great promise by selective measurements in tea, and chicken extract which has a promising future for biological and healthcare applications.
Collapse
|
Journal Article |
7 |
29 |
15
|
Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, Raston NHA, Alhoshani A, Jinap S. Electrochemical determination of zearalenone using a label-free competitive aptasensor. Mikrochim Acta 2020; 187:266. [PMID: 32279134 DOI: 10.1007/s00604-020-4218-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
Abstract
An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
28 |
16
|
Lavanya N, Sekar C, Ficarra S, Tellone E, Bonavita A, Leonardi SG, Neri G. A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:53-60. [PMID: 26952397 DOI: 10.1016/j.msec.2016.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/02/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
An effective strategy to fabricate a novel disposable screen printing carbon electrode modified by iron doped tin dioxide nanoparticles for carbamazepine (CBZ) detection has been developed. Fe-SnO2 (Fe=0 to 5 wt.%) NPs were synthesized by a simple microwave irradiation method and assessed for their structural and morphological changes due to Fe doping into SnO2 matrix by X-ray diffraction and scanning and transmission electron microscopy. The electrochemical behaviour of carbamazepine at the Fe-SnO2 modified screen printed carbon electrode (SPCE) was investigated by cyclic voltammetry and square wave voltammetry. Electron transfer coefficient α (0.63) and electron transfer rate constant ks (0.69 s(-1)) values of the 5 wt.% Fe-SnO2 modified SPCE indicate that the diffusion controlled process takes place on the electrode surface. The fabricated sensor displayed a good electrooxidation response towards the detection of CBZ at a lower oxidation potential of 0.8 V in phosphate buffer solution at pH7.0. Under the optimal conditions, the sensor showed fast and sensitive current response to CBZ over a wide linear range of 0.5-100 μM with a low detection limit of 92 nM. Furthermore, the practical application of the modified electrode has been investigated by the determination of CBZ in pharmaceutical products using standard addition method.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
27 |
17
|
Bartlett CA, Taylor S, Fernandez C, Wanklyn C, Burton D, Enston E, Raniczkowska A, Black M, Murphy L. Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva. Chem Cent J 2016; 10:3. [PMID: 26839583 PMCID: PMC4735951 DOI: 10.1186/s13065-016-0147-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/07/2016] [Indexed: 11/17/2022] Open
Abstract
Background Methamphetamine has an adverse effect on the ability to drive safely. Police need to quickly screen potentially impaired drivers therefore a rapid disposable test for methamphetamine is highly desirable. This is the first proof-of-concept report of a disposable electrochemical test for methamphetamine in undiluted saliva. Results A screen printed carbon electrode is used for the N,N′-(1,4-phenylene)-dibenzenesulfonamide mediated detection of methamphetamine in saliva buffer and saliva. The oxidized mediator reacts with methamphetamine to give an electrochemically active adduct which can undergo electrochemical reduction. Galvanostatic oxidation in combination with a double square wave reduction technique resulted in detection of methamphetamine in undiluted saliva with a response time of 55 s and lower detection limit of 400 ng/mL. Conclusions Using a double square wave voltammetry technique, rapid detection of methamphetamine in undiluted saliva can be achieved, however there is significant donor variation in response and the detection limit is significantly higher than desired. Further optimization of the assay and sensor format is required to improve the detection limit and reduce donor effects. Electronic supplementary material The online version of this article (doi:10.1186/s13065-016-0147-2) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
9 |
27 |
18
|
Turunc E, Kahraman O, Binzet R. Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Anal Biochem 2021; 621:114123. [PMID: 33549546 DOI: 10.1016/j.ab.2021.114123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
In the present study, a simple, cheaply and environmental friendly method was evaluated for the synthesis of silver nanoparticle via Cupressus sempervirens L. (CSPE) pollen extract as reducing and stabilizing agent. Various parameters such as volume of CSPE, temperature and reaction time on AgNPs formation were investigated spectrophotometrically to optimize reaction conditions. The electrochemical behavior of the biosynthesized AgNPs were investigated by cyclic voltammetry and square wave voltammetry techniques. An electrosensor based on AgNPs modified glassy carbon electrode were constructed and tested on electro reduction of hydrogen peroxide in phosphate buffer medium. The prepared electrosensor could detect the H2O2 in the range of 5.0 μM - 2.5 mM with a detection limit of 0.23 μM. In addition, the antioxidant activity of biosynthesized AgNPs were evaluated against DPPH free radical. Results obtained from the antioxidant study suggested that CSPE mediated AgNPs exhibit a good antioxidant effect.
Collapse
|
Journal Article |
4 |
26 |
19
|
Upadhyay SS, Gadhari NS, Srivastava AK. Biomimetic sensor for ethambutol employing β-cyclodextrin mediated chiral copper metal organic framework and carbon nanofibers modified glassy carbon electrode. Biosens Bioelectron 2020; 165:112397. [PMID: 32729518 DOI: 10.1016/j.bios.2020.112397] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Stereochemical configuration of the drug is responsible for racemic switch with enantiomers in presence of chiral environment for human beings. Therefore, its determination in racemic and pharmaceutical samples becomes a challenge. Addressing this issue, an enantioselective electrochemical biomimetic sensor for discrimination of isomers of ethambutol (ETB) employing square wave voltammetry (SWV) is reported for the first time. For this purpose, a chiral host, β-Cyclodextrin based copper metal organic framework (CD-CuMOF) was synthesized and used for chelate complexation of ETB isomers (SS-ETB/RR-ETB). A glassy carbon electrode (GCE) is chemically modified using CD-CuMOF and carbon nanofibers (CNF) composite material to construct a sensor in the form of (CD-CuMOF-CNF-GCE). The behaviour of CD-CuMOF for ETB isomers on GCE is postulated to be an artificial enzyme model (AEM) as it mimics the catalytic activity similar to enzyme alcohol dehydrogenase for ETB. The biosensor exhibits excellent peak potential difference (ΔEp (SS-RR) = 108 mV) between ETB isomers using SWV showing a clear distinction in the racemic mixture. It showed a linear response in the range of 1.0 x 10-7 to 1 x 10-4 M and 5.0 x 10-7 to 2.5 x 10-4 M with low detection limit of 3.10 x 10-8 M and 8.52 x 10-8 M for RR-ETB and SS-ETB isomers respectively. The sensor was applied for the estimation of ETB isomers in racemic mixture and real samples viz., blood, urine and pharmaceutical. The CD-CuMOF is a low-cost material with higher stability than enzyme and offers an advantage for sensing and catalysis in future.
Collapse
|
Journal Article |
5 |
26 |
20
|
Chrouda A, Sbartai A, Baraket A, Renaud L, Maaref A, Jaffrezic-Renault N. An aptasensor for ochratoxin A based on grafting of polyethylene glycol on a boron-doped diamond microcell. Anal Biochem 2015; 488:36-44. [PMID: 26255699 DOI: 10.1016/j.ab.2015.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/19/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022]
Abstract
A novel strategy for the fabrication of an electrochemical label-free aptasensor for small-size molecules is proposed and demonstrated as an aptasensor for ochratoxin A (OTA). A long spacer chain of polyethylene glycol (PEG) was immobilized on a boron-doped diamond (BDD) microcell via electrochemical oxidation of its terminal amino groups. The amino-aptamer was then covalently linked to the carboxyl end of the immobilized PEG as a two-piece macromolecule, autoassembled at the BDD surface, forming a dense layer. Due to a change in conformation of the aptamer on the target analyte binding, a decrease of the electron transfer rate of the redox [Fe(CN)6](4-/3-) probe was observed. To quantify the amount of OTA, the decrease of the square wave voltammetry (SWV) peak maximum of this probe was monitored. The plot of the peak maximum against the logarithm of OTA concentration was linear along the range from 0.01 to 13.2 ng/L, with a detection limit of 0.01 ng/L. This concept was validated on spiked real samples of rice.
Collapse
|
Validation Study |
10 |
26 |
21
|
Zhang S, Ma H, Yan L, Cao W, Yan T, Wei Q, Du B. Copper-doped titanium dioxide nanoparticles as dual-functional labels for fabrication of electrochemical immunosensors. Biosens Bioelectron 2014; 59:335-41. [PMID: 24747572 DOI: 10.1016/j.bios.2014.03.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Constructions of versatile electroactive labels are key issues in the development of electrochemical immunosensors. In this study, copper-doped titanium dioxide nanoparticle (Cu@TiO2) was synthesized and used as labels for fabrication of sandwich-type electrochemical immunosensors on glassy carbon electrode (GCE). Due to the presence of copper ions, Cu@TiO2 shows a strong response current when coupled to an electrode. The prepared nanocomposite also shows high electrocatalytic activity towards reduction of hydrogen peroxide (H2O2). The dual functionality of Cu@TiO2 enables the fabrication of immunosensor using different detection modes, that is, square wave voltammetry (SWV) or chronoamperometry (CA). While Cu@TiO2 was used as labels of secondary antibodies (Ab2), carboxyl functionalized graphene oxide (CFGO) was used as electrode materials to immobilize primary antibodies (Ab1). Using human immunoglobulin G (IgG) as a model analyte, the immunosensor shows high sensitivity, acceptable stability and good reproducibility for both detection modes. Under optimal conditions, a linear range from 0.1 pg/mL to 100 ng/mL with a detection limit of 0.052 pg/mL was obtained for SWV analysis. For CA analysis, a wider linear range from 0.01 pg/mL to 100 ng/mL and a lower detection limit of 0.0043 pg/mL were obtained. The proposed metal ion-based enzyme-free and noble metal-free immunosensor may have promising applications in clinical diagnoses and many other fields.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
25 |
22
|
Diouani MF, Ouerghi O, Refai A, Belgacem K, Tlili C, Laouini D, Essafi M. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 74:465-470. [PMID: 28254318 DOI: 10.1016/j.msec.2016.12.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a worldwide disease considered as a major health problem with high morbidity and mortality rates. Poor detection of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis remains a major obstacle to the global control of this disease. Here we report the development of a new test based on the detection of the major virulent factor of Mtb, namely the early secreted antigenic target 6-kDa protein or ESAT-6. A label free electrochemical immunosensor using an anti-ESAT-6 monoclonal antibody as a bio-receptor is described herein. Anti-ESAT-6 antibodies were first covalently immobilized on the surface of a gold screen-printed electrode functionalized via a self-assembled thiol monolayer. Interaction between the bio-receptor and ESAT-6 antigen was evaluated by square wave voltammetry method using [Fe(CN)6]3-/4- as redox probe. The detection limit of ESAT-6 antigen was 7ng/ml. The immunosensor has also been able to detect native ESAT-6 antigen secreted in cell culture filtrates of three pathogenic strains of Mtb (CDC1551, H37RV and H8N8). Overall, this work describes an immune-electrochemical biosensor, based on ESAT-6 antigen detection, as a useful diagnostic tool for tuberculosis.
Collapse
|
Journal Article |
9 |
25 |
23
|
Robledo SN, Zachetti VGL, Zon MA, Fernández H. Quantitative determination of tocopherols in edible vegetable oils using electrochemical ultra-microsensors combined with chemometric tools. Talanta 2013; 116:964-71. [PMID: 24148502 DOI: 10.1016/j.talanta.2013.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 11/15/2022]
Abstract
We have developed an electroanalytical method to quantify different isomers of tocopherols in edible vegetable oils. The method uses the square wave voltammetry on a carbon fiber disk ultramicroelectrode in benzene/ethanol+0.1 mol L(-1)H2SO4. Because the oxidation peaks of these natural antioxidants show an important overlapping, we have used two chemometric tools to obtain the multivariate calibration model. One method was the multivariate curve resolution-alternating least square (MCR-ALS), which assumes a linear behavior, i.e., the total signal is the sum of individual signals of components, and another nonlinear method such as artificial neuronal networks (ANNs). From the accuracy and precision analysis between nominal and estimated concentrations by both methods, we could infer that the ANNs method was a good model to quantify tocopherols in edible oil samples. Recovery percentages were between 94% and 99%. In addition, we found a difference of 1.4-6.8% between the total content of tocopherols in edible oil samples and the vitamin E content declared by the manufacturers.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
24 |
24
|
El-Said WA, Al‐Bogami AS, Alshitari W, El-Hady DA, Saleh TS, El-Mokhtar MA, Choi JW. Electrochemical Microbiosensor for Detecting COVID-19 in a Patient Sample Based on Gold Microcuboids Pattern. BIOCHIP JOURNAL 2021; 15:287-295. [PMID: 34394845 PMCID: PMC8350553 DOI: 10.1007/s13206-021-00030-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
As continues increasing the COVID-19 infections, there is an urgent need for developing fast, simple, selective, and accurate COVID-19 biosensors. A highly uniform gold (Au) microcuboid pattern was used as a microelectrode that allowed monitoring a small analyte. The electrochemical biosensor was used to monitor the COVID-19 S protein within a concentration range from 100 to 5 pmol L−1; it showed a lower detection limit of 276 fmol L−1. Finally, the developed COVID-19 sensor was used to detect a positive sample from a human patient obtained through a nasal swab; the results were confirmed using the PCR technique. The results showed that the SWV technique showed high sensitivity towards detecting COVID-19 and good efficiency for detecting COVID-19 in a positive human sample.
Collapse
|
|
4 |
24 |
25
|
Magriñá I, Toldrà A, Campàs M, Ortiz M, Simonova A, Katakis I, Hocek M, O'Sullivan CK. Electrochemical genosensor for the direct detection of tailed PCR amplicons incorporating ferrocene labelled dATP. Biosens Bioelectron 2019; 134:76-82. [PMID: 30954929 DOI: 10.1016/j.bios.2019.03.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/09/2023]
Abstract
An electrochemical genosensor for the detection and quantification of Karlodinium armiger is presented. The genosensor exploits tailed primers and ferrocene labelled dATP analogue to produce PCR products that can be directly hybridised on a gold electrode array and quantitatively measured using square wave voltammetry. Tailed primers consist of a sequence specific for the target, followed by a carbon spacer and a sequence specifically designed not to bind to genomic DNA, resulting in a duplex flanked by single stranded binding primers. The incorporation of the 7-(ferrocenylethynyl)-7-deaza-2'-deoxyadenosine triphosphate was optimised in terms of a compromise between maximum PCR efficiency and the limit of detection and sensitivity attainable using electrochemical detection via hybridisation of the tailed, ferrocene labelled PCR product. A limit of detection of 277aM with a linear range from 315aM to 10 fM starting DNA concentration and a sensitivity of 122 nA decade-1 was achieved. The system was successfully applied to the detection of genomic DNA in real seawater samples.
Collapse
|
Journal Article |
6 |
22 |