1
|
Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015; 479-480:475-86. [PMID: 25759097 PMCID: PMC7111637 DOI: 10.1016/j.virol.2015.02.012] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide.
Review of structure, replication and recombination of porcine reproductive and respiratory syndrome virus. Homologous recombination to produce conventional subgenomic messenger RNA as well as heteroclite RNA. Discussion of structure, replication and recombination mechanisms that have yielded genotypic and phenotypic diversity.
Collapse
|
Review |
10 |
249 |
2
|
Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology 2013; 448:15-25. [PMID: 24314632 DOI: 10.1016/j.virol.2013.09.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/22/2013] [Accepted: 09/18/2013] [Indexed: 01/21/2023]
Abstract
We report a RNA species of 429 nucleotides derived from the 3' untranslated region of the viral genome in Dengue 2 virus (DENV-2) infected cells. The 3' terminal of viral RNA contained specific conserved structures that are important for the production of subgenomic RNA. Transient replicon assays suggested that loss of this small RNA has little effect on viral replication, and genetic analysis using recombinant viruses demonstrated that the existence of this subgenomic RNA is not essential for the life cycle of the DENV-2. Results from cytotoxicity and apoptosis assay revealed that the generation of subgenomic RNA is significant for DENV-2 viral cytopathicity and virus-induced apoptosis; and the deficiency could be partially restored by providing subgenomic RNA in trans from transfection. In addition, we found that subgenomic RNA modulates the phosphatidylinositol 3-kinase (PI3k)/Akt signaling pathway through a Bcl-2-related mechanism, resulting in apoptotic cell death.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
63 |
3
|
Fang P, Fang L, Liu X, Hong Y, Wang Y, Dong N, Ma P, Bi J, Wang D, Xiao S. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6. Virology 2016; 499:170-177. [PMID: 27661736 PMCID: PMC7111631 DOI: 10.1016/j.virol.2016.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfected with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
49 |
4
|
Kim JY, Bae JY, Bae S, Cha HH, Kwon JS, Suh MH, Lee HJ, Jung J, Kim MJ, Cui C, Park H, Lee J, Park MS, Kim SH. Diagnostic usefulness of subgenomic RNA detection of viable SARS-CoV-2 in patients with COVID-19. Clin Microbiol Infect 2021; 28:101-106. [PMID: 34400343 PMCID: PMC8360988 DOI: 10.1016/j.cmi.2021.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 12/19/2022]
Abstract
Objectives The development of a rapid diagnostic test for viable SARS-CoV-2 is important for infection control. Real-time RT-PCR assays detect non-viable virus, and cell culture differentiates viable virus but it takes several weeks and is labour-intensive. Subgenomic RNAs may reflect replication-competent virus. We therefore evaluated the usefulness of subgenomic RNAs for diagnosing viable SARS-CoV-2 in patients with COVID-19. Methods Patients with various severities of confirmed COVID-19 were enrolled at a tertiary hospital between February and December 2020. RT-PCR assay results for genomic and subgenomic RNA of SARS-CoV-2 from nasopharyngeal swab, sputum and saliva specimens were compared with cell culture results. Results A total 189 specimens from 20 COVID-19 patients were tested in genomic and subgenomic PCR assays and cultured on Vero cells. Of these 189 samples, 62 (33%) gave positive culture results, 93 (49%) negative results and the remaining 34 (18%) indeterminate results. Compared with cell culture results, the sensitivities of genomic RNA and subgenomic RNA of the N and S genes were comparable at 100%, but the specificity of subgenomic RNA (N, 65% and S, 68%) was higher than that of genomic RNA (N, 23% and S, 17%, p < 0.001). The mean durations of positive culture and subgenomic RNA were 11.39 ± 10.34 and 13.75 ± 11.22 days after symptom onset (p 0.437), respectively, while that of genomic RNA was 22.85 ± 11.83 days after symptom onset (p < 0.001). Discussion Our comparison of subgenomic RNA detection with symptom duration and SARS-CoV-2 culture positivity provides a significant advancement on the transmissibility-based approach beyond the detection of SARS-CoV-2 genomic RNA, and warrants further studies on the development of better diagnostic strategy.
Collapse
|
|
4 |
26 |
5
|
Miller WA, Jackson J, Feng Y. Cis- and trans-regulation of luteovirus gene expression by the 3' end of the viral genome. Virus Res 2015; 206:37-45. [PMID: 25858272 DOI: 10.1016/j.virusres.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Translation of the 5.7 kb luteovirus genome is controlled by the 3' untranslated region (UTR). Base pairing between regions of the 3' UTR and sequences kilobases upstream is required for cap-independent translation and ribosomal frameshifting needed to synthesize the viral replicase. Luteoviruses produce subgenomic RNAs, which can serve as mRNA, but one sgRNA also regulates translation initiation in trans. As on all viruses, the 3' and 5' ends contain structures that are presumed to facilitate RNA synthesis. This review describes the structures and interactions of barley yellow dwarf virus RNA that facilitate the complex interplay between the above events and result in a successful virus infection. We also present surprising results on the apparent lack of need for some subgenomic RNAs for the virus to infect cells or whole plants. In summary, the UTRs of luteoviruses are highly complex entities that control and fine-tune many key events of the virus replication cycle.
Collapse
|
Review |
10 |
25 |
6
|
Telwatte S, Martin HA, Marczak R, Fozouni P, Vallejo-Gracia A, Kumar GR, Murray V, Lee S, Ott M, Wong JK, Yukl SA. Novel RT-ddPCR assays for measuring the levels of subgenomic and genomic SARS-CoV-2 transcripts. Methods 2022; 201:15-25. [PMID: 33882362 PMCID: PMC8105137 DOI: 10.1016/j.ymeth.2021.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The replication of SARS-CoV-2 and other coronaviruses depends on transcription of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and multiple different subgenomic mRNAs (sgRNAs) encompassing fragments arising from discontinuous transcription. Recent studies have aimed to characterize the expression of subgenomic SARS-CoV-2 transcripts in order to investigate their clinical significance. Here, we describe a novel panel of reverse transcription droplet digital PCR (RT-ddPCR) assays designed to specifically quantify multiple different subgenomic SARS-CoV-2 transcripts and distinguish them from transcripts that do not arise from discontinuous transcription at each locus. These assays can be applied to samples from SARS-CoV-2 infected patients to better understand the regulation of SARS-CoV-2 transcription and how different sgRNAs may contribute to viral pathogenesis and clinical disease severity.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
21 |
7
|
Gao F, Simon AE. Differential use of 3'CITEs by the subgenomic RNA of Pea enation mosaic virus 2. Virology 2017; 510:194-204. [PMID: 28750323 PMCID: PMC5891822 DOI: 10.1016/j.virol.2017.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022]
Abstract
The genomic RNA (gRNA) of Pea enation mosaic virus 2 (PEMV2) is the template for p33 and -1 frameshift product p94. The PEMV2 subgenomic RNA (sgRNA) encodes two overlapping ORFs, p26 and p27, which are required for movement and stability of the gRNA. Efficient translation of p33 requires two of three 3' proximal cap-independent translation enhancers (3'CITEs): the kl-TSS, which binds ribosomes and engages in a long-distance interaction with the 5'end; and the adjacent eIF4E-binding PTE. Unlike the gRNA, all three 3'CITEs were required for efficient translation of the sgRNA, which included the ribosome-binding 3'TSS. A hairpin in the 5' proximal coding region of p26/p27 supported translation by the 3'CITEs by engaging in a long-distance RNA:RNA interaction with the kl-TSS. These results strongly suggest that the 5' ends of PEMV2 gRNA and sgRNA connect with the 3'UTR through similar long-distance interactions while having different requirements for 3'CITEs.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
18 |
8
|
Abstract
The discovery of a new class of pathogen, viruses, in the late 19th century, ushered in a period of study of the biochemical and structural properties of these entities in which plant viruses played a prominent role. This was, in large part, due to the relative ease with which sufficient quantities of material could be produced for such analyses. As analytical techniques became increasingly sensitive, similar studies could be performed on the viruses from other organisms. However, plant viruses continued to play an important role in the development of molecular biology, including the demonstration that RNA can be infectious, the determination of the genetic code, the mechanism by which viral RNAs are translated, and some of the early studies on gene silencing. Thus, the study of plant viruses should not be considered a "niche" subject but rather part of the mainstream of virology and molecular biology.
Collapse
|
Review |
7 |
8 |
9
|
Lim YK, Kweon OJ, Kim HR, Kim TH, Lee MK. Clinical and epidemiologic characteristics of inconclusive results in SARS-CoV-2 RT-PCR assays. BMC Infect Dis 2021; 21:851. [PMID: 34418960 PMCID: PMC8379569 DOI: 10.1186/s12879-021-06534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Abstract
Background Inconclusive results in SARS-CoV-2 molecular assays cause confusion among clinicians and delay appropriate infection prevention and control. In this study, we aimed to characterize the respiratory specimens associated with inconclusive SARS-CoV-2 molecular assay results. Methods We re-evaluated inconclusive specimens by 3 additional RT-PCR assays and attempted to detect subgenomic RNA (sgRNA) in these specimens. Results Among follow-up tests from confirmed SARS-CoV-2 cases, 36.3% of the inconclusive results were classified as presumptive positive results (45/124). However, none of the specimens from 36 screening cases was classified as a presumptive positive result. Among 160 inconclusive specimens, sgRNAs were detected in 78 samples (48.8%): 58 were confirmed cases (58/124, 46.8%) and 20 were screening cases (20/36, 55.6%). Conclusions The results of our study suggest the recommendation of considering inconclusive results as positive results for confirmed SARS-CoV-2 cases. In screening cases, viral remnants could be partially amplified in PCR assays, and these inconclusive results could be related to previous infections. In addition, sgRNAs were detected in about half of the inconclusive specimens; however, the clinical significance of sgRNA is not yet clear. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06534-5.
Collapse
|
|
4 |
4 |
10
|
Roesmann F, Jakobsche I, Pallas C, Wilhelm A, Raffel J, Kohmer N, Toptan T, Berger A, Goetsch U, Ciesek S, Widera M. Comparison of the Ct-values for genomic and subgenomic SARS-CoV-2 RNA reveals limited predictive value for the presence of replication competent virus. J Clin Virol 2023; 165:105499. [PMID: 37327554 DOI: 10.1016/j.jcv.2023.105499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/18/2023]
Abstract
SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19. In addition to the full length positive-sensed, single-stranded genomic RNA (gRNA), viral subgenomic RNAs (sgRNAs) that are required for expression of the 3' region of the genome are synthesized in virus-infected cells. However, whether these sgRNA-species might be used as a measure of active virus replication and to predict infectivity is still under debate. The commonly used methods to monitor and quantitate SARS-CoV-2 infections are based on RT-qPCR analysis and the detection of gRNA. The infectivity of a sample obtained from nasopharyngeal or throat swabs is associated with the viral load and inversely correlates with Ct-values, however, a cut-off value predicting the infectivity highly depends on the performance of the assay. Furthermore, gRNA derived Ct-values result from nucleic acid detection and do not necessarily correspond to active replicating virus. We established a multiplex RT-qPCR assay on the cobas 6800 omni utility channel concomitantly detecting SARS-CoV-2 gRNAOrf1a/b, sgRNAE,7a,N, and human RNaseP-mRNA used as human input control. We compared the target specific Ct-values with the viral culture frequency and performed ROC curve analysis to determine the assay sensitivity and specificity. We found no advantage in the prediction of viral culture when using sgRNA detection compared to gRNA only, since Ct-values for gRNA and sgRNA were highly correlated and gRNA offered a slightly more reliable predictive value. Single Ct-values alone only provide a very limited prediction for the presence of replication competent virus. Hence, careful consideration of the medical history including symptom onset has to be considered for risk stratification.
Collapse
|
|
2 |
2 |
11
|
Hyper-phosphorylation of nsp2-related proteins of porcine reproductive and respiratory syndrome virus. Virology 2020; 543:63-75. [PMID: 32174300 PMCID: PMC7112050 DOI: 10.1016/j.virol.2020.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
Viruses exploit phosphorylation of both viral and host proteins to support viral replication. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus replicase nsp2, and two nsp2-related −2/−1 frameshifting products, nsp2TF and nsp2N, are hyper-phosphorylated. By mapping phosphorylation sites, we subdivide an extended, previously uncharacterized region, located between the papain-like protease-2 (PLP2) domain and frameshifting site, into three distinct domains. These domains include two large hypervariable regions (HVR) with putative intrinsically disordered structures, separated by a conserved and partly structured interval domain that we defined as the inter-HVR conserved domain (IHCD). Abolishing phosphorylation of the inter-species conserved residue serine918, which is located within the IHCD region, abrogates accumulation of viral genomic and subgenomic RNAs and recombinant virus production. Our study reveals the biological significance of phosphorylation events in nsp2-related proteins, emphasizes pleiotropic functions of nsp2-related proteins in the viral life cycle, and presents potential links to pathogenesis.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
2 |
12
|
Functionally active cyclin-dependent kinase 9 is essential for porcine reproductive and respiratory syndrome virus subgenomic RNA synthesis. Mol Immunol 2021; 135:351-364. [PMID: 33990004 DOI: 10.1016/j.molimm.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a key regulator of RNA-polymerase II and a candidate therapeutic target for various virus infections such as respiratory syncytial virus, herpes simplex virus, human adenovirus, human cytomegalovirus, hepatitis virus B, and human papillomavirus. We employed CDK9-IN-1, a selective CDK9 inhibitor, to investigate the role of CDK9 in porcine reproductive and respiratory syndrome virus (PRRSV) infection. CDK9-IN-1 dose-dependently reduced PRRSV replication without cytotoxicity in the infected cells. The antiviral activity of CDK9-IN-1 was further confirmed by evaluating the effects of lentivirus-mediated CDK9 knockdown or CDK9 overexpression on PRRSV infection. Briefly, the depletion of CDK9 significantly inhibited viral replication, while the overexpression of CDK9 promoted viral replication. PRRSV infection also enhanced the nuclear export of CDK9 without affecting CDK9 protein expression. Viral replication cycle analyses further revealed that functionally active CDK9 in the cytosol advanced viral subgenomic RNA synthesis. Collectively, our data illustrated that CDK9 was a new host factor that was involved in PRRSV subgenomic RNA synthesis, and CDK9 inhibitor, CDK9-IN-1 was a promising antiviral candidate for PRRSV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
2 |
13
|
Thekke-Veetil T, McCoppin NK, Domier LL. Strain-specific association of soybean dwarf virus small subgenomic RNA with virus particles. Virus Res 2017; 242:100-105. [PMID: 28893654 DOI: 10.1016/j.virusres.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
Soybean dwarf virus (SbDV) produces a large subgenomic RNA (LsgRNA) for expression of structural and movement proteins and a small subgenomic RNA (SsgRNA) that does not contain an open reading frame. Sucrose gradient-purified SbDV virions from soybean plants systemically infected with SbDV by aphids and Nicotiana benthamiana leaves agroinfiltrated with infectious clones of two red clover SbDV isolates encapsidated genomic RNA and were associated with SsgRNA in a strain-specific manner. The LsgRNA was protected from RNase degradation, but not packaged into virions as indicated by its presence primarily in ELISA-negative fractions near the tops of sucrose gradients even in mutants that did not express coat protein. Nucleotide differences in the SsgRNA region between isolates conferred differential association of SsgRNA with virions.
Collapse
|
|
8 |
1 |
14
|
Tang MHE, Ng KL, Edslev SM, Ellegaard K, Stegger M, Alexandersen S. Comparative subgenomic mRNA profiles of SARS-CoV-2 Alpha, Delta and Omicron BA.1, BA.2 and BA.5 sub-lineages using Danish COVID-19 genomic surveillance data. EBioMedicine 2023; 93:104669. [PMID: 37348163 PMCID: PMC10281627 DOI: 10.1016/j.ebiom.2023.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread worldwide in the population since it was first detected in late 2019. The transcription and replication of coronaviruses, although not fully understood, is characterised by the production of genomic length RNA and shorter subgenomic RNAs to make viral proteins and ultimately progeny virions. Observed levels of subgenomic RNAs differ between sub-lineages and open reading frames but their biological significance is presently unclear. METHODS Using a large and diverse panel of virus sequencing data produced as part of the Danish COVID-19 routine surveillance together with information in electronic health registries, we assessed the association of subgenomic RNA levels with demographic and clinical variables of the infected individuals. FINDINGS Our findings suggest no significant statistical relationship between levels of subgenomic RNAs and host-related factors. INTERPRETATION Differences between lineages and subgenomic ORFs may be related to differences in target cell tropism, early virus replication/transcription kinetics or sequence features. FUNDING The author(s) received no specific funding for this work.
Collapse
|
research-article |
2 |
|
15
|
Kron NS, Neuman BW, Kumar S, Blackwelder PL, Vidal D, Walker-Phelan DZ, Gibbs PDI, Fieber LA, Schmale MC. Expression dynamics of the aplysia abyssovirus. Virology 2024; 589:109890. [PMID: 37951086 PMCID: PMC10842508 DOI: 10.1016/j.virol.2023.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 11/13/2023]
Abstract
Two recent studies documented the genome of a novel, extremely large (35.9 kb), nidovirus in RNA sequence databases from the marine neural model Aplysia californica. The goal of the present study was to document the distribution and transcriptional dynamics of this virus, Aplysia abyssovirus 1 (AAbV), in maricultured and wild animals. We confirmed previous findings that AAbV RNA is widespread and reaches extraordinary levels in apparently healthy animals. Transmission electron microscopy identified viral replication factories in ciliated gill epithelial cells but not in neurons where viral RNA is most highly expressed. Viral transcripts do not exhibit evidence of discontinuous RNA synthesis as in coronaviruses but are consistent with production of a single leaderless subgenomic RNA, as in the Gill-associated virus of Penaeus monodon. Splicing patterns in chronically infected adults suggested high levels of defective genomes, possibly explaining the lack of obvious disease signs in high viral load animals.
Collapse
|
research-article |
1 |
|
16
|
Tang MHE, Bennedbaek M, Gunalan V, Qvesel AG, Thorsen TH, Larsen NB, Rasmussen LD, Krogsgaard LW, Rasmussen M, Stegger M, Alexandersen S. Variations in the persistence of 5'-end genomic and subgenomic SARS-CoV-2 RNAs in wastewater from aircraft, airports and wastewater treatment plants. Heliyon 2024; 10:e29703. [PMID: 38694057 PMCID: PMC11061675 DOI: 10.1016/j.heliyon.2024.e29703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Wastewater sequencing has become a powerful supplement to clinical testing in monitoring SARS-CoV-2 infections in the post-COVID-19 pandemic era. While its applications in measuring the viral burden and main circulating lineages in the community have proved their efficacy, the variations in sequencing quality and coverage across the different regions of the SARS-CoV-2 genome are not well understood. Furthermore, it is unclear how different sample origins, viral extraction and concentration methods and environmental factors impact the reads sequenced from wastewater. Using high-coverage, amplicon-based, paired-end read sequencing of viral RNA extracted from wastewater collected directly from aircraft, pooled from different aircraft and airport buildings or from regular wastewater plants, we assessed the genome coverage across the sample groups with a focus on the 5'-end region covering the leader sequence and investigated whether it was possible to detect subgenomic RNA from viral material recovered from wastewater. We identified distinct patterns in the persistence of the different genomic regions across the different types of wastewaters and the existence of chimeric reads mapping to non-amplified regions. Our findings suggest that preservation of the 5'-end of the genome and the ability to detect subgenomic RNA reads, though highly susceptible to environment and sample processing conditions, may be indicative of the quality and amount of the viral RNA present in wastewater.
Collapse
|
research-article |
1 |
|
17
|
Du T, Gao C, Lu S, Liu Q, Yang Y, Yu W, Li W, Qiao Sun Y, Tang C, Wang J, Gao J, Zhang Y, Luo F, Yang Y, Yang YG, Peng X. Differential Transcriptomic Landscapes of SARS-CoV-2 Variants in Multiple Organs from Infected Rhesus Macaques. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1014-1029. [PMID: 37451436 PMCID: PMC10928377 DOI: 10.1016/j.gpb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the persistent coronavirus disease 2019 (COVID-19) pandemic, which has resulted in millions of deaths worldwide and brought an enormous public health and global economic burden. The recurring global wave of infections has been exacerbated by growing variants of SARS-CoV-2. In this study, the virological characteristics of the original SARS-CoV-2 strain and its variants of concern (VOCs; including Alpha, Beta, and Delta) in vitro, as well as differential transcriptomic landscapes in multiple organs (lung, right ventricle, blood, cerebral cortex, and cerebellum) from the infected rhesus macaques, were elucidated. The original strain of SARS-CoV-2 caused a stronger innate immune response in host cells, and its VOCs markedly increased the levels of subgenomic RNAs, such as N, Orf9b, Orf6, and Orf7ab, which are known as the innate immune antagonists and the inhibitors of antiviral factors. Intriguingly, the original SARS-CoV-2 strain and Alpha variant induced larger alteration of RNA abundance in tissues of rhesus monkeys than Beta and Delta variants did. Moreover, a hyperinflammatory state and active immune response were shown in the right ventricles of rhesus monkeys by the up-regulation of inflammation- and immune-related RNAs. Furthermore, peripheral blood may mediate signaling transmission among tissues to coordinate the molecular changes in the infected individuals. Collectively, these data provide insights into the pathogenesis of COVID-19 at the early stage of infection by the original SARS-CoV-2 strain and its VOCs.
Collapse
|
research-article |
2 |
|
18
|
Bokolia NP, Gadepalli R. Identification of consensus hairpin loop structure among the negative sense subgenomic RNAs of SARS-CoV-2. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2023; 47:28. [PMID: 36852284 PMCID: PMC9947893 DOI: 10.1186/s42269-023-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND SARS-CoV-2 is the causative agent of worldwide pandemic disease coronavirus disease 19. SARS-CoV-2 bears positive sense RNA genome that has organized and complex pattern of replication/transcription process including the generation of subgenomic RNAs. Transcription regulatory sequences have important role in the pausing of replication/transcription and generation of subgenomic RNAs. RESULTS In the present bioinformatics analysis, a consensus secondary structure was identified among negative sense subgenomic RNAs of SARS-CoV-2. This consensus region is present at the adjacent of initiation codon. CONCLUSIONS This study proposed that consensus structured domain could involve in mediating the long pausing of replication/transcription complex and responsible for subgenomic RNA production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-023-01002-3.
Collapse
|
research-article |
2 |
|
19
|
Campbell AJ, Anderson JR, Wilusz J. A plant-infecting subviral RNA associated with poleroviruses produces a subgenomic RNA which resists exonuclease XRN1 in vitro. Virology 2022; 566:1-8. [PMID: 34808564 PMCID: PMC9832584 DOI: 10.1016/j.virol.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
|
20
|
Yang Y, Feng X, Pan Y, Wang X, Peng T, Niu C, Qu W, Zou Q, Dong L, Dai X, Li M, Fang X. A culture-free method for rapidly and accurately quantifying active SARS-CoV-2. Anal Bioanal Chem 2023; 415:5745-5753. [PMID: 37486370 DOI: 10.1007/s00216-023-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Determining the quantity of active virus is the most important basis to judge the risk of virus infection, which usually relies on the virus median tissue culture infectious dose (TCID50) assay performed in a biosafety level 3 laboratory within 5-7 days. We have developed a culture-free method for rapid and accurate quantification of active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by targeting subgenomic RNA (sgRNA) based on reverse transcription digital PCR (RT-dPCR). The dynamic range of quantitative assays for sgRNA-N and sgRNA-E by RT-dPCR was investigated, and the result showed that the limits of detection (LoD) and quantification (LoQ) were 2 copies/reaction and 10 copies/reaction, respectively. The delta strain (NMDC60042793) of SARS-CoV-2 was cultured at an average titer of 106.13 TCID50/mL and used to evaluate the developed quantification method. Copy number concentrations of the cultured SARS-CoV-2 sgRNA and genomic RNA (gRNA) gave excellent linearity (R2 = 0.9999) with SARS-CoV-2 titers in the range from 500 to 105 TCID50/mL. Validation of 63 positive clinical samples further proves that the quantification of sgRNA-N by RT-dPCR is more sensitive for active virus quantitative detection. It is notable that we can infer the active virus titer through quantification of SARS-CoV-2 sgRNA based on the linear relationship in a biosafety level 2 laboratory within 3 h. It can be used to timely and effectively identify infectious patients and reduce unnecessary isolation especially when a large number of COVID-19 infected people impose a burden on medical resources.
Collapse
|
|
2 |
|
21
|
Cheng YH, Chen CH, Liu PC, Chen WT, Hsu CJ, Chen CC, Sun JR. Reverse transcription-quantitative PCR assays for detecting SARS-CoV-2 using subgenomic RNA load. Heliyon 2025; 11:e42503. [PMID: 40034326 PMCID: PMC11874546 DOI: 10.1016/j.heliyon.2025.e42503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
SARS-CoV-2, the virus responsible for COVID-19, triggers the synthesis of full-length genomic RNA (gRNA) and subgenomic RNAs (sgRNAs) in host cells upon infection. Traditional PCR aimed at targeting gRNA to detect viral presence is insufficient. sgRNAs serve as novel markers for active viral replication. However, the utility of reverse transcription-quantitative PCR (RT-qPCR) assays targeting sgRNAs as indicators of active viral load and infectivity in rodent models has not been validated. We developed four RT-qPCR assays targeting the SARS-CoV-2 genes-ORF1ab, N, E, and E-sgRNA and two RT-qPCR assays for housekeeping genes Hamster G apdh, and Mouse Actb. We used serial dilutions to establish standard curves for quantification. These assays demonstrated high amplification efficiency (96%-97 %) and a strong correlation between the cycle threshold (Ct) values and logarithmic copy number of the genes (R2 = 0.9933-0.9996). Analyzing 102 residual rodent lung tissue samples, we compared the viral loads quantified using RT-qPCR assays with those determined by viral culture. A strong correlation emerged between the RT-qPCR assays' detection of positivity and the viral culture results. Notably, the quantification of viral loads using the E-sgRNA RT-qPCR assay correlated more closely with viral culture outcomes than with other targets (r = 0.93, p < 0.001). These results underscore the sgRNA RT-qPCR assay's potential for tracking actively replicating viruses in rodent models infected with SARS-CoV-2, offering a reliable alternative to traditional viral culture methods.
Collapse
|
research-article |
1 |
|