Paul A, Hazra S, Sharma G, Guedes da Silva MFC, Koch B, Pombeiro AJL. Unfolding biological properties of a versatile dicopper(II) precursor and its two mononuclear copper(II) derivatives.
J Inorg Biochem 2017;
174:25-36. [PMID:
28599129 DOI:
10.1016/j.jinorgbio.2017.05.013]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
Abstract
Synthesis, inter-conversions and biological study of the dichloro bridged dicopper(II) compound [CuLCl]2 (1) and its two mononuclear derivatives [CuLCl(H2O)]·H2O (2) and [CuLCl(py)] (3) (HL=2-(2-pyridylmethyleneamino)benzenesulfonic acid) are described. The dimeric compound 1 collapses into monomers 2 and 3 in the presence of coordinating solvents, water and pyridine, respectively, and 1 is regenerated upon simple stirring of 2 or 3 in methanol. The reactions of 1 with neutral (present study) and charged (earlier studies) ligands result in monomeric and multimeric compounds, respectively, attesting that it is a versatile dicopper(II) precursor. The anticancer activity of these copper complexes (1-3) was screened against lung (A-549) and breast (MDA-MB-231) human cancer cell lines. The IC50 (half maximal inhibitory concentration) value for one (3) of the compounds suggests preferential cytotoxicity against breast cancer MDA-MB-231 cell line. Furthermore, the IC50 value obtained for complex 3 is found to be almost two-fold times cytotoxic than the standard drug cisplatin. In addition, the underlying possible mechanism of its apoptosis-inducing efficacy in MDA-MB-231 cells has been rationalized by using flow cytometry (FACS) and Hoechst 33342/propidium iodide (PI) fluorescence staining. The stimulation of apoptotic induction for complex 3 has further been affirmed by reactive oxygen species (ROS) generation and mitochondrial aggregations studies.
Collapse