Jin H, Lindblad P, Bhaya D. Building an Inducible
T7 RNA Polymerase/T7 Promoter Circuit in Synechocystis sp. PCC6803.
ACS Synth Biol 2019;
8:655-660. [PMID:
30935196 DOI:
10.1021/acssynbio.8b00515]
[Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop tightly regulated orthogonal gene expression circuits in the photoautotrophic cyanobacterium Synechocystis sp. PCC6803 (Syn6803), we designed a circuit in which a native inducible promoter drives the expression of phage T7 RNA polymerase (T7RNAP). T7RNAP, in turn, specifically recognizes the T7 promoter that is designed to drive GFP expression. In Syn6803, this T7RNAP/T7promoter-GFP circuit produces high GFP fluorescence, which was further enhanced by using mutant T7 promoters. We also tested two orthogonal inducible promoters, Trc1O and L03, but these promoters drive T7RNAP to levels that are toxic in E. coli. Introduction of a protein degradation tag alleviated this problem. However, in Syn6803, these circuits did not function successfully. This highlights the underappreciated fact that similar circuits work with varying efficiencies in different chassis organisms. This lays the groundwork for developing new orthogonally controlled phage RNA polymerase-dependent expression systems in Syn6803.
Collapse