1
|
Yang L, Kim D, Uzun H, Karanfil T, Hur J. Assessing trihalomethanes ( THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. CHEMOSPHERE 2015; 121:84-91. [PMID: 25475970 DOI: 10.1016/j.chemosphere.2014.11.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/08/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
The formation of disinfection byproducts (DBPs) is a major challenge in drinking water treatments. This study explored the applicability of fluorescence excitation-emission matrices and parallel factor analysis (EEM-PARAFAC) for assessing the formation potentials (FPs) of trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA), and the treatability of THM and NDMA precursors in nine drinking water treatment plants. Two humic-like and one tryptophan-like components were identified for the samples using PARAFAC. The total THM FP (TTHM FP) correlated strongly with humic-like component C2 (r=0.874), while NDMA FP showed a moderate and significant correlation with the tryptophan-like component C3 (r=0.628). The reduction by conventional treatment was more effective for C2 than C3, and for TTHM FP than NDMA FP. The treatability of DOM and TTHM FP correlated negatively with the absorption spectral slope (S275-295) and biological index (BIX) of the raw water, but it correlated positively with humification index (HIX). Our results demonstrated that PARAFAC components were valuable for assessing DBPs FP in drinking water treatments, and also that the raw water quality could affect the treatment efficiency.
Collapse
|
|
10 |
77 |
2
|
Chu W, Gao N, Yin D, Krasner SW. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:806-812. [PMID: 23856310 DOI: 10.1016/j.jhazmat.2013.06.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/26/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Haloacetamides (HAcAms) are an emerging class of nitrogenous disinfection by-products (N-DBPs) of health concern. However, there are very limited data on the formation and speciation of the nine bromine- and chlorine-containing haloacetamides (HAcAm9). In the study, their formation and speciation during chlor(am)ination were investigated for a group of waters with a range of specific ultraviolet absorbance at 254 nm (SUVA₂₅₄), dissolved organic nitrogen (DON), and bromide levels. The waters that were the least impacted by anthropogenic pollution had the lowest DON levels, the highest ratios of dissolved organic carbon (DOC) to DON, and exhibited the least HAcAm9 formation. DON/DOC may act as an indicator of HAcAm yields during chlorination. HAcAm9 exhibited more formation during chloramination in the low-SUVA waters with no bromide, relative to high-SUVA waters with bromide. The selected waters all formed primarily dihalogenated (di-) HAcAms, followed by trihalogenated (tri-) species and, to a much lesser extent, monohalogenated (mono-) HAcAms. Di-HAcAm formation had similar trends as that of HAcAm9; whereas chloramination formed more mono- and less tri-HAcAms than chlorination. Bromine utilization factors and bromine incorporation factor increased with decreasing and increasing bromide during either chlorination or chloramination, and bromine was easier to incorporate into tri-HAcAms during chloramination than chlorination.
Collapse
|
|
12 |
77 |
3
|
Mao Y, Guo D, Yao W, Wang X, Yang H, Xie YF, Komarneni S, Yu G, Wang Y. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination. WATER RESEARCH 2018; 130:322-332. [PMID: 29247948 DOI: 10.1016/j.watres.2017.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H2O2) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O3) to hydroxyl radicals (OH) by electro-generated H2O2, the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO3-) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation.
Collapse
|
|
7 |
48 |
4
|
Font-Ribera L, Kogevinas M, Schmalz C, Zwiener C, Marco E, Grimalt JO, Liu J, Zhang X, Mitch W, Critelli R, Naccarati A, Heederik D, Spithoven J, Arjona L, de Bont J, Gracia-Lavedan E, Villanueva CM. Environmental and personal determinants of the uptake of disinfection by-products during swimming. ENVIRONMENTAL RESEARCH 2016; 149:206-215. [PMID: 27214136 DOI: 10.1016/j.envres.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/20/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. OBJECTIVE We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and trichloramine in air, and evaluated personal determinants. METHODS A total of 116 adults swam during 40min in a chlorinated indoor pool. We measured chloroform, bromodichloromethane, dibromochloromethane and bromoform in exhaled breath and TCAA in urine before and after swimming, trichloramine in air and several DBPs in water. Personal determinants included sex, age, body mass index (BMI), distance swum, energy expenditure, heart rate and 12 polymorphisms in GSTT1, GSTZ1 and CYP2E1 genes. RESULTS Median level of exhaled total THMs and creatinine adjusted urine TCAA increased from 0.5 to 14.4µg/m(3) and from 2.5 to 5.8µmol/mol after swimming, respectively. The increase in exhaled brominated THMs was correlated with brominated THMs, haloacetic acids, haloacetonitriles, haloketones, chloramines, total organic carbon and total organic halogen in water and trichloramine in air. Such correlations were not detected for exhaled chloroform, total THMs or urine TCAA. Exhaled THM increased more in men, urine TCAA increased more in women, and both were affected by exercise intensity. Genetic variants were associated with differential increases in exposure biomarkers. CONCLUSION Our findings suggest that, although affected by sex, physical activity and polymorphisms in key metabolizing enzymes, brominated THMs in exhaled breath could be used as a non-invasive DBP exposure biomarker in swimming pools with bromide-containing source waters. This warrants confirmation with new studies.
Collapse
|
|
9 |
31 |
5
|
Zazouli MA, Kalankesh LR. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2017; 15:25. [PMID: 29234499 PMCID: PMC5721515 DOI: 10.1186/s40201-017-0285-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/30/2017] [Indexed: 05/23/2023]
Abstract
Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.
Collapse
|
Review |
8 |
22 |
6
|
Beita-Sandí W, Karanfil T. Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins. WATER RESEARCH 2017; 124:20-28. [PMID: 28734959 DOI: 10.1016/j.watres.2017.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Drinking water utilities are relying more than ever on water sources impacted by wastewater effluents. Disinfection/oxidation of these waters during water treatment may lead to the formation of several disinfection by-products, including the probable human carcinogen N-nitrosodimethylamine (NDMA) and the regulated trihalomethanes (THMs). In this study, the potential of ion exchange resins to control both NDMA and THMs precursors in a single treatment is presented. Two ion exchange resins were examined, a cation exchange resin (Plus) to target NDMA precursors and an anion exchange resin (MIEX) for THMs precursors control. We applied the resins, individually and combined, in the treatment of surface and wastewater effluent samples. The treatment with both resins removed simultaneously NDMA (43-85%) and THMs (39-65%) precursors. However, no removal of NDMA precursors was observed in the surface water with low initial NDMA FP (14 ng/L). The removals of NDMA FP and THMs FP with Plus and MIEX resins applied alone were (49-90%) and (41-69%), respectively. These results suggest no interaction between the resins, and thus the feasibility of effectively controlling NDMA and THMs precursors concomitantly. Additionally, the effects of the wastewater impact and the natural attenuation of precursors were studied. The results showed that neither the wastewater content nor the attenuation of the precursor affected the removals of NDMA and THMs precursors. Finally, experiments using a wastewater effluent sample showed that an increase in the calcium concentration resulted in a reduction in the removal of NDMA precursors of about 50%.
Collapse
|
|
8 |
16 |
7
|
Song Y, Ding N, Kanazawa T, Yamashita U, Yoshida Y. Cucurbitacin D is a new inflammasome activator in macrophages. Int Immunopharmacol 2013; 17:1044-50. [PMID: 24140411 DOI: 10.1016/j.intimp.2013.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 01/30/2023]
Abstract
We previously reported that cucurbitacin D isolated from Trichosanthes kirilowii has anti-tumor roles to leukemia cells. However, the effect of cucurbitacin D on immune cells is not fully understood although there is no toxic activity to normal cells. In this study, immunomodulating activities of cucurbitacin D were investigated in macrophages. Cucurbitacin D could increase LPS-induced interleukin (IL)-1β production in culture supernatant of THP-1 cells, peritoneal exudate cells (PECs), bone marrow derived macrophages (BMDMs), and RAW264 cells. At the transcriptional level, cucurbitacin D enhanced LPS-induced IL-1β mRNA expression through activation of ERK1/2 mitogen-activated protein kinases (MAPKs). At the posttranscriptional level, the activation of caspase-1 induced by cucurbitacin D has also been demonstrated following treatment with a caspase-1 inhibitor and siRNA. Importantly, cucurbitacin D has further been shown to induce inflammasome activation independent of ERK1/2 activation. Western blotting showed interaction of NOD-like receptor family, pyrin domain containing 3 (NALP3) and apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain (ASC), suggesting activation of the inflammasome and a possible reason for activation of caspase-1. Taken together, these results suggest that cucurbitacin D could initiate immunomodulating activity in macrophages to lead to inflammasome activation as well as enhancement of LPS signaling.
Collapse
|
Journal Article |
12 |
14 |
8
|
Benmarhnia T, Delpla I, Schwarz L, Rodriguez MJ, Levallois P. Heterogeneity in the Relationship between Disinfection By-Products in Drinking Water and Cancer: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050979. [PMID: 29757939 PMCID: PMC5982018 DOI: 10.3390/ijerph15050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/02/2022]
Abstract
The epidemiological evidence demonstrating the effect of disinfection by-products (DBPs) from drinking water on colon and rectal cancers is well documented. However, no systematic assessment has been conducted to assess the potential effect measure modification (EMM) in the relationship between DBPs and cancer. The objective of this paper is to conduct a systematic literature review to determine the extent to which EMM has been assessed in the relationship between DBPs in drinking water in past epidemiological studies. Selected articles (n = 19) were reviewed, and effect estimates and covariates that could have been used in an EMM assessment were gathered. Approximately half of the studies assess EMM (n = 10), but the majority of studies only estimate it relative to sex subgroups (n = 6 for bladder cancer and n = 2 both for rectal and colon cancers). Although EMM is rarely assessed, several variables that could have a potential modification effect are routinely collected in these studies, such as socioeconomic status or age. The role of environmental exposures through drinking water can play an important role and contribute to cancer disparities. We encourage a systematic use of subgroup analysis to understand which populations or territories are more vulnerable to the health impacts of DBPs.
Collapse
|
Systematic Review |
7 |
13 |
9
|
Jutaporn P, Laolertworakul W, Tungsudjawong K, Khongnakorn W, Leungprasert S. Parallel factor analysis of fluorescence excitation emissions to identify seasonal and watershed differences in trihalomethane precursors. CHEMOSPHERE 2021; 282:131061. [PMID: 34102490 DOI: 10.1016/j.chemosphere.2021.131061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Concentration and chemical composition of dissolved organic matter (DOM) play a major role in formation and speciation of disinfection by-products, such as trihalomethanes (THMs), in water treatment plants (WTPs) during disinfection. This study characterized DOM across the process trains of WTPs using fluorescence excitation emission matrices (EEMs) together with parallel factor analysis (PARAFAC). The PARAFAC model was developed from 216 EEMs of bimonthly water samples from three WTPs in Khon Kaen, Thailand, from May 2018 to Mar 2019. Three PARAFAC components identified were humic-like DOM of terrestrial, and microbial or agricultural origin, while the one protein-like component was previously defined as tryptophan-like fluorophore. The relationships between water quality parameters, including the maximum fluorescent intensities (Fmax) of PARAFAC components and THM formation potential (THM-FP) were investigated using Spearman's rank correlation. The Fmax of PARAFAC components, UVA254, DOC, and THM-FP were greater in dry season. Chloroform was the primary THM formed at two sites using surface water as their water source, while the site using surface water with saline groundwater intrusion had higher concentration of brominated THMs. Results indicated that Fmax of humic-like components extracted by PARAFAC analysis were the most accurate THM-FP surrogate parameter assessed for the water samples tested and the correlations between Fmax and THM-FP were site specific (ρ = 0.81-0.85). The result demonstrates that fluorescence spectroscopy analysis has yielded insights into relationships between the DOM optical characteristics and their total THM-FP even at sites with different speciation of THMs.
Collapse
|
|
4 |
11 |
10
|
Kumari M, Gupta SK. Cumulative human health risk analysis of trihalomethanes exposure in drinking water systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115949. [PMID: 35985263 DOI: 10.1016/j.jenvman.2022.115949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated compounds on reaction with natural organic substances present in water leads to the formation of trihalomethanes (THMs), a major type of disinfection by-products (DBPs). Trihalomethanes (THMs) are the most widely investigated DBPs in drinking water systems because of their carcinogenic potential and subsequent adverse effects on human health. This study investigated the effect of gastro-intestinal absorption factor on human health risk assessment. Monitoring and analysis of water quality parameters and THMs levels in drinking water treatment plants revealed that the average values (306.5 μg/L) exceeded the recommended US EPA guidelines of 80 μg/L. Spearman rank (rho) correlation coefficient indicated that dissolved organic carbon is the major parameter influencing THMs formation. Monte Carlo simulations base risk assessment study was conducted for three different exposure pathways. The observed human health risk exposure effects due to THMs were below the recommended USEPA level (1.0 × 10-6) for both the drinking water treatment plants. Seasonal disparity on risk estimation analysis revealed higher risk in summer season followed by autumn which is principally due to high concentration of THMs in summers.
Collapse
|
|
3 |
8 |
11
|
Ma D, Peng B, Zhang Y, Gao B, Wang Y, Yue Q, Li Q. Influences of dissolved organic matter characteristics on trihalomethanes formation during chlorine disinfection of membrane bioreactor effluents. BIORESOURCE TECHNOLOGY 2014; 165:81-87. [PMID: 24656487 DOI: 10.1016/j.biortech.2014.02.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Dissolved organic matter (DOM) in MBR-treated municipal wastewater intended for reuse was fractionated through ultrafiltration and XAD-8 resin adsorption and characterized by fluorescence spectroscopy. To probe the influences of DOM characteristics on trihalomethanes (THMs) formation reactivity during chlorination, THMs yield and speciation of DOM fractions was investigated. It was found that chlorine reactivity of DOM decreased with the decrease of molecular weight (MW), and MW>30kDa fractions produced over 55% of total THMs in chlorinated MBR effluent. Hydrophobic organics had much higher THMs formation reactivity than hydrophilic substances. Particularly, hydrophobic acids exhibited the highest chlorine reactivity and contributed up to 71% of total THMs formation. Meanwhile, low-MW and hydrophilic DOM were susceptible to produce bromine-containing THMs. Of the fluorescent DOM in MBR effluent, aromatic moieties and humic acid-like had higher chlorine reactivity. Conclusively, macromolecular and hydrophobic organics containing aromatic moieties and humic acid-like must be removed to reduce THMs formation.
Collapse
|
|
11 |
7 |
12
|
Fang C, Ou T, Wang X, Rui M, Chu W. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes. CHEMOSPHERE 2020; 260:127625. [PMID: 32758776 DOI: 10.1016/j.chemosphere.2020.127625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) are widely used in drinking water treatment and wastewater recycling. However, limited information was available regarding their performance in removing trihalomethanes (THMs). The present study investigated the effect of feed solution characteristics and membrane fouling on THM removal by UF/NF/RO membranes. The results indicated that THMs were poorly removed by UF membrane, and the removal was dominated by hydrophobic adsorption. In contrast, high removal of THMs was observed for NF/RO membranes, which was contributed by both size exclusion and hydrophobic adsorption. By comparing the adsorption of THMs on NF/RO membranes at different feed concentration, it was found that the role of hydrophobic adsorption was more important at lower feed concentration. The removal of THMs by UF/NF/RO membranes increased with increasing feed concentration, which can be ascribed to the enhanced diffusion at higher concentration gradient. With increasing ionic strength, THM removal was decreased significantly for UF membrane, but the removal by NF/RO membranes remained largely unchanged. By comparing THM removal by clean and fouled membranes, the effect of membrane fouling was examined. The removal of most THMs (except trichloromethane) decreased after fouling for UF membrane, whereas decreased removal was only observed for iodinated THMs for fouled NF/RO membranes.
Collapse
|
|
5 |
5 |
13
|
Formation of disinfection by-products and fungal contamination data in public swimming pools: A case study in Gonabad, Iran. Data Brief 2019; 22:326-331. [PMID: 30596127 PMCID: PMC6307501 DOI: 10.1016/j.dib.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022] Open
Abstract
Existence of fungi and disinfection by-products (DBPs) in public swimming pools water are dangerous since it can seriously affect on health of swimmers. This data study aimed to determine the fungi contamination and DBPs concentration including trihalomethanes (THMs), haloacetic acids (HAAs), halamines and cyanogen halides and haloacetonitriles (HANs) of swimming pools (chlorine based) in Gonabad County, Iran. So, the fungal load and DBPs concentration were investigated in two swimming pools in the middle of spring of 2017 by collecting a number of 9 water samples and 9 samples of lateral facilities of each pool by membrane filtration technique and sterile carpet. The DBPs concentrations were measured by gas chromatograph technique. The results showed that the pools were contaminated with Dermatophyte (trichophyton mentagrophytes and epidermophyton flucosomes), yeasts, and more with opportunistic saprophytic fungi. 24.8%, 22.7%, 16.9%, and 11.4% saprophytic fungi were separated from pool side, locker room, pool water, and shower positions, respectively. 7.4% and 3.2% of yeast fungi as well as 0.23% and 0.2% of dentofacies of causative agents of tinea were separated from the pools water and showers as well as locker room and shower positions, respectively. According to the data, halamines and cyanogen halides had the highest concentrations, followed by HAAs, THMs and HANs respectively. Among the halamines and cyanogen halides, HAAs, THMs and HANs, trichloramine acid was the most dominant species, followed by trichloroacetic acid and dichloramine, respectively.
Collapse
|
|
6 |
5 |
14
|
Data on THMs concentration and spatial trend in water distribution network (a preliminary study in center of Iran). MethodsX 2019; 6:760-763. [PMID: 31011549 PMCID: PMC6462497 DOI: 10.1016/j.mex.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/28/2019] [Indexed: 11/24/2022] Open
Abstract
The Trihalomethanes (THMs) formed due to a reaction between water disinfection chlorine and some natural organic matters, as chlorinated by products. The aim of this study was determination of THMs values and spatial trend in Yazd city water distribution network, in center of Iran. Sampling of tap water was done in two autumn and winter seasons. The THMs value were measured by using a gas chromatograph-mass spectrometer (GC/MS), Agilent Company 6890 N. The spatial analysis of THMs values was carried out using ArcGIS 10.1 to show the spatial spreading. The Kriging method was used to draw distribution maps. Using the Kriging method to illustrate the difference or precision of forecasts is relatively easy compared to the other interpolation methods. Also, the acceptable level of % RMSE (Root mean square error) was calculated for Kriging method (% RMSE > 40). Thus, this protocol as integrated between data and geraphic could easily used for reporting of THMs level in studies of water distribution network. Finally, the maximum THMs value were obtained lower than USEPA and WHO guidelines for drinking water (THMs < 40 ppb).
Collapse
|
Journal Article |
6 |
5 |
15
|
Hu S, Gong T, Wang J, Xian Q. Trihalomethane yields from twelve aromatic halogenated disinfection byproducts during chlor(am)ination. CHEMOSPHERE 2019; 228:668-675. [PMID: 31071557 DOI: 10.1016/j.chemosphere.2019.04.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
As the first identified category of disinfection byproducts (DBPs), trihalomethanes (THMs) have received continuous attention. Previous studies have demonstrated that the transformation of aromatic halogenated DBPs during chlor (am)ination resulted in the formation of THMs, which may occur in both water treatment plants and drinking water distribution systems. In this study, THM yields from aromatic chlorinated/brominated DBPs during chlorination and aromatic iodinated DBPs during chloramination were investigated. The trichloromethane (TCM) yields from 3,5-dichloro-4-hydroxybenzaldehyde, 3,5-dichlorosalicylic acid, 2,6-dichloro-4-nitrophenol, and 2,4,6-trichlorophenol were in the range of 0-11.4%, 0-8.4%, 0-6.4%, and 0-17.8%, respectively. The THM4 (TCM, bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM)) yields from 3,5-dibromo-4-hydroxybenzaldehyde, 3,5-dibromosalicylic acid, 2,6-dibromo-4-nitrophenol, and 2,4,6-tribromophenol were in the range of 0-12.9%, 0-27.0%, 0-8.6%, and 0-29.4%, respectively. The TCM and triiodomethane (TIM) yields from 3,5-diiodo-4-hydroxybenzaldehyde, 3,5-diiodosalicylic acid, 2,6-diiodo-4-nitrophenol, and 2,4,6-triiodophenol were in the range of 0-5.2%, 0-7.0%, 0-2.2%, and 0-10.6%, respectively. After 72 h, TCM yields from aromatic chlorinated DBPs were generally higher than that from their brominated analogues; TBM yields from aromatic brominated DBPs were significantly lower than TCM yields, BDCM yields, and DBCM yields; and among aromatic halogenated DBPs, 2,4,6-trihalophenol had the highest THM yields while 2,6-dihalo-4-nitrophenol had the lowest THM yields. Moreover, the results revealed that alkaline conditions and higher temperatures favored the THM yields from the twelve aromatic halogenated DBPs during chlor (am)ination, and chlorine/monochloramine dose affected the yields and speciation of THMs from the aromatic halogenated DBPs.
Collapse
|
|
6 |
4 |
16
|
Ma D, Gao B, Xia C, Wang Y, Yue Q, Li Q. Effects of sludge retention times on reactivity of effluent dissolved organic matter for trihalomethane formation in hybrid powdered activated carbon membrane bioreactors. BIORESOURCE TECHNOLOGY 2014; 166:381-388. [PMID: 24929809 DOI: 10.1016/j.biortech.2014.05.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
In this study, real municipal wastewater intended for reuse was treated by two identical hybrid PAC/MBRs (membrane bioreactors with powdered activated carbon addition), which were operated at sludge retention times (SRTs) of 30 and 180 days, respectively. In order to investigate the effects of SRT on trihalomethane (THM) formation in chlorinated PAC/MBR effluents, characteristics and THM formation reactivity of effluent dissolved organic matter (EfOM) at different SRTs were examined. PAC/MBR-180 had higher level of EfOM, which contained less simple aromatic proteins and exhibited lower specific UV absorbance. EfOM with molecular weight <5 kDa from PAC/MBR-30 (23%) was lower than PAC/MBR-180 (26%). About 50% of EfOM from PAC/MBR-30 was hydrophobic acids, which was higher than that from PAC/MBR-180 (about 36%). EfOM at SRT 180 days exhibited higher hydrophilicity. Prolonging SRT greatly reduced THM formation reactivity of EfOM, but increased the formation of bromine-containing species during chlorination of PAC/MBR effluents.
Collapse
|
|
11 |
4 |
17
|
Bond T, Graham N. Predicting chloroform production from organic precursors. WATER RESEARCH 2017; 124:167-176. [PMID: 28756219 DOI: 10.1016/j.watres.2017.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
Quantitative methods which link molecular descriptors for recognized precursors to formation of drinking water disinfection byproducts are scarce. This study aimed to develop a simple mathematical tool for predicting chloroform (trichloromethane) yields resulting from aqueous chlorination of model organic precursors. Experimental chloroform yields from 211 precursors were collated from 22 literature studies from 1977 onwards. Nineteen descriptors, some established and others developed during this study, were used as inputs in a multiple linear regression model. The final model, calibrated using five-way leave-many-out cross-validation, contains three descriptors. Two novel empirical descriptors, which quantify the impact of adjacent substituents on aromatic and enolizable chlorine substitution sites, were the most significant. The model has r2 = 0.91 and a standard error of 8.93% mol/mol. Experimental validation, using 10 previously untested precursors, showed a mean discrepancy of 5.3% mol/mol between experimental and predicted chloroform yields. The model gives insight to the influence that specific functional groups, including hydroxyl, chlorine and carboxyl, have on chloroform formation and the relative contributions made by separate substitution sites in the same molecule. It is anticipated that the detailed approach can be updated and extended as new experimental data emerges, to encompass additional precursors and groups of disinfection byproducts.
Collapse
|
|
8 |
3 |
18
|
Papageorgiou A, Papadakis N, Voutsa D. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1841-1851. [PMID: 26400244 DOI: 10.1007/s11356-015-5433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.
Collapse
|
|
9 |
2 |
19
|
Liao XB, Cheng YS, Liu ZH, Shen LL, Zhao L, Chen C, Li F, Zhang XJ. Performance of BAC for DBPs precursors' removal for one year with micro-polluted lake water in East-China. ENVIRONMENTAL TECHNOLOGY 2020; 41:3554-3561. [PMID: 31072242 DOI: 10.1080/09593330.2019.1615132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Effectiveness of biological activated carbon (BAC) filter in removing disinfection byproducts (DBPs) precursors of micro-polluted lake water for one year was conducted. The formation potential (FP) of DBPs (trihalomethanes (THMs), haloacetic acids (HAAs) and Nitrosamines (NAs)), dissolved organic carbon (DOC), molecular weight (MW) distribution and excitation emission matrix fluorescence (EEM) of dissolved organic material (DOM) in the influent and effluent of BAC were determined. The results indicated that the removal efficiency (RE) of DOC ranged from 42.9-28.3%. Neither virgin GAC nor long-term operated BAC could efficiently dispose of THMs and HAAs precursors (RE from 35.2-18.8%, from 42 to 8.4%, respectively), however, BAC still showed good ability in removal of NAs precursors after a year operation, of which RE just dropped from 81.7-69.6%. There was strong correlation between RE of NAs precursors and DOC with small MW (<0.5 kDa). The removal of HAAs precursors showed relatively close relation to aromatic protein-like components and soluble microbial pollutants (SMPs). Weak direct relationship was found between the water quality parameters and THMs precursors.
Collapse
|
|
5 |
2 |
20
|
Iqbal M, Taylor-Edmonds L, Ebrahimi S, Zollbrecht N, Andrews RC. Low toxicological impact of wastewaters on drinking water sources. WATER RESEARCH 2020; 171:115376. [PMID: 31862443 DOI: 10.1016/j.watres.2019.115376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Surface waters may contain varying levels of wastewater effluent associated with de facto reuse, which may influence their toxicological properties both prior to and following treatment. This study examined the genotoxic response of three surface waters containing a range of wastewater effluent (5%, 10%, and 25% by volume). The SOS Chromotest™ was used to assay the genotoxicity of both chlorinated and unchlorinated mixtures. Chlorinated mixtures were also analyzed for trihalomethanes (THMs), haloacetonitriles (HANs), and halonitromethanes (HNMs); their concentrations were used to calculate a relative toxicity index for each sample, based on published potencies in the comet assay and subsequently referred to as predicted genotoxicity. Wastewater effluents were observed to be reactive in the genotoxicity assay, whereas raw and chlorinated surface waters were not. Upon chlorination, surface waters containing 5% or 10% wastewater did not elicit a response and only modest effects were observed for higher wastewater ratios (25%). The measured SOS responses correlated well with predicted genotoxicity (R = 0.92) and THM concentrations (R = 0.92). This is important since THMs themselves are non-reactive in either the SOS or comet genotoxic assays, but their formation may serve as surrogates for non-regulated DBPs which drive toxic effects.
Collapse
|
|
5 |
1 |
21
|
Delpla I, Rodriguez MJ. Variability of disinfection by-products at a full-scale treatment plant following rainfall events. CHEMOSPHERE 2017; 166:453-462. [PMID: 27710882 DOI: 10.1016/j.chemosphere.2016.09.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/14/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The quality of drinking water sources can decrease when contaminants are transported by overland and subsurface flow and discharged into surface waters following rainfall events. Increases in organic contaminants such as road salts and organic matter may occur and potentially modify disinfection by-products (DBPs) concentration and speciation. This study investigated the effects of various spring rainfall events on the quality of treated waters at a large water treatment plant through the implementation of intensive water quality monitoring of raw, filtered and treated waters during different rainfall events. DBPs (four trihalomethanes and six haloacetic acids) and their explanatory variables (pH, turbidity, water temperature, specific ultraviolet absorbance, total and dissolved organic carbon, bromide and chlorine dose) were measured during four rainfall events. The results showed that water quality degrades during and following rainfall, leading to small increases in trihalomethanes (THM4) and haloacetic acids (HAA6) in treated waters. While THM4 and HAA6 levels remained low during the pre-rainfall period (<9 μg/L) for the four sampling campaigns, small increases in THM4 and HAA6 during and after spring rainfall events were observed. During the rainfall and post-rainfall periods, concentration peaks corresponding to 3-fold and 2-fold increases (respectively 27.5 μg/L for THM4 and 12.6 μg/L for HAA6) compared to pre-rainfall levels were also measured. A slight decrease in harmful brominated THM and HAA proportion was also observed following rainfall events.
Collapse
|
|
8 |
1 |
22
|
Pilot Test on Pre-Swim Hygiene as a Factor Limiting Trihalomethane Precursors in Pool Water by Reducing Organic Matter in an Operational Facility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207547. [PMID: 33081349 PMCID: PMC7589656 DOI: 10.3390/ijerph17207547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
Pool water must be constantly disinfected. Chlorine compounds used to disinfect pools react with organic substances such as sweat, urine, and personal care products introduced into pool water by users and results in the formation of disinfection byproducts. Trihalomethanes (THM), including chloroform and dissolved organic carbon (DOC) concentrations, were quantified using a two-stage process: determining initial THM and chloroform levels; then searching for a cheap and easy-to-use method to improve water quality. The method proposed here to limit THM and DOC concentrations in water is controlled showering. At three swimming pool facilities, chloroform concentrations (13.8 ± 0.33 µg/L, 15.5 ± 0.44 µg/L, and 13.9 ± 0.06 µg/L) were below the threshold concentration of 30 μg/L. At a fourth facility, however, the chloroform concentration exceeded that threshold (40.7 ± 9.68 μg/L) when showering was not controlled. Those conditions improved after the introduction of a mandatory shower; concentrations of DOC, THMs, and chloroform all decreased. The chloroform concentration decreased to 29.4 ± 3.8 μg/L, the THM concentration was 31.3 ± 3.9 μg/L, and the DOC concentration was 6.09 ± 0.05 mg/L. Pilot tests were carried out at real facilities to determine whether the control of pre-swim hygiene was possible. The introduction of proper pre-swim hygiene limited the concentration of DOC in water and can lead to a healthier environment for everyone attending the swimming facility.
Collapse
|
|
5 |
1 |
23
|
Li H, Zhou B, Xu X, Huo R, Zhou T, Dong X, Ye C, Li T, Xie L, Pang W. The insightful water quality analysis and predictive model establishment via machine learning in dual-source drinking water distribution system. ENVIRONMENTAL RESEARCH 2024; 250:118474. [PMID: 38368920 DOI: 10.1016/j.envres.2024.118474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Dual-source drinking water distribution systems (DWDS) over single-source water supply systems are becoming more practical in providing water for megacities. However, the more complex water supply problems are also generated, especially at the hydraulic junction. Herein, we have sampled for a one-year and analyzed the water quality at the hydraulic junction of a dual-source DWDS. The results show that visible changes in drinking water quality, including turbidity, pH, UV254, DOC, residual chlorine, and trihalomethanes (TMHs), are observed at the sample point between 10 and 12 km to one drinking water plant. The average concentration of residual chlorine decreases from 0.74 ± 0.05 mg/L to 0.31 ± 0.11 mg/L during the water supplied from 0 to 10 km and then increases to 0.75 ± 0.05 mg/L at the end of 22 km. Whereas the THMs shows an opposite trend, the concentration reaches to a peak level at hydraulic junction area (10-12 km). According to parallel factor (PARAFAC) and high-performance size-exclusion chromatography (HPSEC) analysis, organic matters vary significantly during water distribution, and tryptophan-like substances and amino acids are closely related to the level of THMs. The hydraulic junction area is confirmed to be located at 10-12 km based on the water quality variation. Furthermore, data-driven models are established by machine learning (ML) with test R2 higher than 0.8 for THMs prediction. And the SHAP analysis explains the model results and identifies the positive (water temperature and water supply distance) and negative (residual chlorine and pH) key factors influencing the THMs formation. This study conducts a deep understanding of water quality at the hydraulic junction areas and establishes predictive models for THMs formation in dual-sources DWDS.
Collapse
|
|
1 |
|
24
|
Yoon Y, Jung Y, Kwon M, Cho E, Kang JW. Alternative Electrode Materials and Ceramic Filter Minimize Disinfection Byproducts in Point-of-Use Electrochemical Water Treatment. ENVIRONMENTAL ENGINEERING SCIENCE 2013; 30:742-749. [PMID: 24381482 PMCID: PMC3875186 DOI: 10.1089/ees.2013.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions.
Collapse
|
research-article |
12 |
|
25
|
Momeniha F, Jafari AJ, Faridi S, Rafiee A, Oskouie AA. Effects of exposure to trihalomethanes in swimming pool waters on metabolomics profile: a randomized parallel design trial. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:533-544. [PMID: 39464829 PMCID: PMC11499471 DOI: 10.1007/s40201-024-00912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/23/2024] [Indexed: 10/29/2024]
Abstract
Biological mechanisms of exposure to Trihalomethanes (THMs) in swimming pools remain unclear. Investigation of short-term changes in metabolomic profiles due to exposure to THMs during swimming can help to understand the health effects-related mechanisms. With this in view, we aimed to assess exposure of swimmers to THMs in chlorine and ozone-chlorine swimming pools using the metabolomics approach from September 2020 to January 2021 in Tehran. Two parallel panels of 29 healthy adult subjects swam over 60 min in either of swimming pools. Blood samples were collected before and 2 h after swimming to assess metabolomic profile using Hydrogen-Nuclear Magnetic Resonance Spectroscopy (H-NMR). Differential metabolites between the two groups were identified by multivariate analysis methods such as Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) and Random Forest (RF). The levels of THMs in exhaled air as a biomarker of exposure and the metabolic profile as a biomarker of the effect changed significantly between two participants of swimming pools. Based on the significant metabolites, the biochemical pathways were identified by the method of Metabolite Setts Enrichment Analysis (MSEA) and by using the Metaboanalyst platform. The pathways of tryptophan metabolism, galactose metabolism and fructose and mannose metabolism were the most important biochemically significant pathways in individuals after exposure to THMs. Finally, findings from metabolic changes in our study indicate that exposure to THMs in swimming pools can activate the mechanisms of central nervous system disorders, increased uric acid, increased risk of bladder cancer and oxidative stress. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00912-2.
Collapse
|
research-article |
1 |
|