1
|
Escher BI, Abagyan R, Embry M, Klüver N, Redman AD, Zarfl C, Parkerton TF. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:269-286. [PMID: 31569266 DOI: 10.1002/etc.4602] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 05/19/2023]
Abstract
Ionizable organic chemicals (IOCs) such as organic acids and bases are an important substance class requiring aquatic hazard evaluation. Although the aquatic toxicity of IOCs is highly dependent on the water pH, many toxicity studies in the literature cannot be interpreted because pH was not reported or not kept constant during the experiment, calling for an adaptation and improvement of testing guidelines. The modulating influence of pH on toxicity is mainly caused by pH-dependent uptake and bioaccumulation of IOCs, which can be described by ion-trapping and toxicokinetic models. The internal effect concentrations of IOCs were found to be independent of the external pH because of organisms' and cells' ability to maintain a stable internal pH milieu. If the external pH is close to the internal pH, existing quantitative structure-activity relationships (QSARs) for neutral organics can be adapted by substituting the octanol-water partition coefficient by the ionization-corrected liposome-water distribution ratio as the hydrophobicity descriptor, demonstrated by modification of the target lipid model. Charged, zwitterionic and neutral species of an IOC can all contribute to observed toxicity, either through concentration-additive mixture effects or by interaction of different species, as is the case for uncoupling of mitochondrial respiration. For specifically acting IOCs, we recommend a 2-step screening procedure with ion-trapping/QSAR models used to predict the baseline toxicity, followed by adjustment using the toxic ratio derived from in vitro systems. Receptor- or plasma-binding models also show promise for elucidating IOC toxicity. The present review is intended to help demystify the ecotoxicity of IOCs and provide recommendations for their hazard and risk assessment. Environ Toxicol Chem 2020;39:269-286. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
|
Review |
5 |
45 |
2
|
Hansen BH, Parkerton T, Nordtug T, Størseth TR, Redman A. Modeling the toxicity of dissolved crude oil exposures to characterize the sensitivity of cod (Gadus morhua) larvae and role of individual and unresolved hydrocarbons. MARINE POLLUTION BULLETIN 2019; 138:286-294. [PMID: 30660275 DOI: 10.1016/j.marpolbul.2018.10.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/03/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Toxicity of weathered oil was investigated using Atlantic cod (Gadus morhua) larvae. A novel exposure system was applied to differentiate effects associated with dissolved and droplet oil with and without dispersant. After a 4-day exposure and subsequent 4-day recovery period, survival and growth were determined. Analytical data characterizing test oil composition included polyaromatic hydrocarbons (PAH) based on GC/MS and unresolved hydrocarbon classes obtained by two-dimensional chromatography coupled with flame ionization detection was used as input to an oil solubility model to calculate toxic units (TUs) of dissolved PAHs and whole oil, respectively. Critical target lipid body burdens derived from modeling characterizing the sensitivity of effect endpoints investigated were consistent across treatments and within the range previously reported for pelagic species. Individually measured PAHs captured only 3-11% of the TUs associated with the whole oil highlighting the limitations of traditional total PAH exposure metrics for expressing oil toxicity data.
Collapse
|
|
6 |
24 |
3
|
Redman AD, Parkerton TF, Paumen ML, McGrath JA, den Haan K, Di Toro DM. Extension and validation of the target lipid model for deriving predicted no-effect concentrations for soils and sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2679-2687. [PMID: 25195918 DOI: 10.1002/etc.2737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/09/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Substance risk assessments require estimation of predicted no-effect concentrations (PNECs) in soil and sediment. The present study applies the target lipid model (TLM) and equilibrium partitioning (EqP) model to toxicity data to evaluate the extrapolation of the TLM-derived aquatic PNECs to these compartments. This extrapolation assumes that the sensitivity of aquatic species is similar to that of terrestrial and benthic species. The acute species sensitivity distribution, expressed in terms of species-specific critical target lipid body burdens, was computed using the TLM-EqP framework and found to span a similar range as the aquatic organism species sensitivity distribution but with a slightly lower median value (less than 2 times). The species sensitivity distribution for acute-to-chronic ratios also exhibited a similar range and distribution across species, suggesting similar mechanisms of action. This hypothesis was further tested by comparing empirical soil/sediment chronic effect levels to the calculated PNEC derived using TLM-EqP. The results showed that 95% of the compiled chronic effects data fell above the PNEC, confirming an adequate protection level. These findings support the conclusion that TLM-derived aquatic PNECs can be successfully extrapolated to derive credible PNECs for soil and sediment compartments.
Collapse
|
|
11 |
20 |
4
|
Turner NR, Parkerton TF, Renegar DA. Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. MARINE POLLUTION BULLETIN 2021; 169:112560. [PMID: 34091251 DOI: 10.1016/j.marpolbul.2021.112560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Coral reefs are keystone coastal ecosystems that can be exposed to petroleum hydrocarbons from multiple sources, and when selecting spill response methods to limit environmental damages, corals represent one of the highest valued resources for protection. Because previous research to characterize the sensitivity of coral species to petroleum hydrocarbon exposures is limited, a continuous-flow passive dosing system and toxicity testing protocol was designed to evaluate the acute effects of two representative petroleum compounds, toluene and phenanthrene, on five coral species: Acropora cervicornis, Porites astreoides, Siderastera siderea, Stephanocoenia intersepta, and Solenastrea bournoni. Using analytically confirmed exposures, sublethal and lethal endpoints were calculated for each species, and used as model inputs to determine critical target lipid body burdens (CTLBBs) for characterizing species sensitivity. Further, quantification of the time-dependent toxicity of single hydrocarbon exposures is described to provide model inputs for improved simulation of spill impacts to corals in coastal tropical environments.
Collapse
|
|
4 |
15 |
5
|
McGrath J, Getzinger G, Redman AD, Edwards M, Martin Aparicio A, Vaiopoulou E. Application of the Target Lipid Model to Assess Toxicity of Heterocyclic Aromatic Compounds to Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3000-3009. [PMID: 34407226 PMCID: PMC9292752 DOI: 10.1002/etc.5194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Heterocyclic aromatic compounds can be found in crude oil and coal and often co-exist in environmental samples with their homocyclic aromatic counterparts. The target lipid model (TLM) is a modeling framework that relates aquatic toxicity to the octanol-water partition coefficient (KOW ) that has been calibrated and validated for hydrocarbons. A systematic analysis of the applicability of the TLM to heterocyclic aromatic compounds has not been performed. The objective of the present study was to compile reliable toxicity data for heterocycles and determine whether observed toxicity could be successfully described by the TLM. Results indicated that the TLM could be applied to this compound class by adopting an empirically derived coefficient that accounts for partitioning between water and lipid. This coefficient was larger than previously reported for aromatic hydrocarbons, indicating that these heterocyclic compounds exhibit higher affinity to target lipid and toxicity. A mechanistic evaluation confirmed that the hydrogen bonding accepting moieties of the heteroatoms helped explain differences in partitioning behavior. Given the TLM chemical class coefficient reported in the present study, heterocyclic aromatics can now be explicitly incorporated in TLM-based risk assessments of petroleum substances, other products, or environmental media containing these compounds. Environ Toxicol Chem 2021;40:3000-3009. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
research-article |
4 |
13 |
6
|
Maloney EM, Naile J, Saunders DMV. Quantifying the effect of weathering on acute oil toxicity using the PETROTOX model. MARINE POLLUTION BULLETIN 2021; 162:111849. [PMID: 33248672 DOI: 10.1016/j.marpolbul.2020.111849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Following accidental release into marine environments, crude oil progressively weathers, influencing composition, fate, and toxicity. However, published studies draw conflicting conclusions on the effects of oil weathering on ecotoxicity. Using the PETROTOX model, this study characterized the effect of weathering on acute oil toxicity for four aquatic species. Results indicated that predicted acute toxicity decreased with increased oil weathering, due to reductions in overall concentrations and bioavailability of hydrocarbon constituents.
Collapse
|
|
4 |
4 |
7
|
Turner NR, Bera G, Renegar DA, Frank TM, Riegl BM, Sericano JL, Sweet S, Knap AH. Measured and predicted acute toxicity of phenanthrene and MC252 crude oil to vertically migrating deep-sea crustaceans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45270-45281. [PMID: 32789631 DOI: 10.1007/s11356-020-10436-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Deep-water column micronekton play a key role in oceanic food webs and represent an important trophic link between deep- and shallow-water ecosystems. Thus, the potential impacts of sub-surface hydrocarbon plumes on these organisms are critical to developing a more complete understanding of ocean-wide effects resulting from deep-sea oil spills. This work was designed to advance the understanding of hydrocarbon toxicity in several ecologically important deep-sea micronekton species using controlled laboratory exposures aimed at determining lethal threshold exposure levels. The current study confirmed the results previously determined for five deep-sea micronekton by measuring lethal threshold levels for phenanthrene between 81.2 and 277.5 μg/L. These results were used to calibrate the target lipid model and to calculate a critical target lipid body burden for each species. In addition, an oil solubility model was used to predict the acute toxicity of MC252 crude oil to vertically migrating crustaceans, Janicella spinacauda and Euphausiidae spp., and to compare the predictions with results of a 48-h constant exposure toxicity test with passive-dosing. Results confirmed that the tested deep-sea micronekton appear more sensitive than many other organisms when exposed to dissolved oil, but baseline stress complicated interpretation of results.
Collapse
|
|
5 |
3 |
8
|
Colvin KA, Parkerton TF, Redman AD, Lewis C, Galloway TS. Miniaturised marine tests as indicators of aromatic hydrocarbon toxicity: Potential applicability to oil spill assessment. MARINE POLLUTION BULLETIN 2021; 165:112151. [PMID: 33601277 DOI: 10.1016/j.marpolbul.2021.112151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Assessing oil spill toxicity in real time is challenging due to dynamic field exposures and lack of simple, rapid, and sensitive tests. We investigated the relative sensitivity of two commercially available marine toxicity tests to aromatic hydrocarbons using the target lipid model (TLM). State of the art passive dosing in sealed vials was used to assess the sensitivity of brine shrimp (Artemia franciscana) and rotifer (Brachionus plicatilis). Organisms were exposed to toluene, 1-methylnaphthalene and phenanthrene for 24 h. Toxicity results were analysed using the TLM to estimate the critical target lipid body burden and support comparison to empirical data for 79 other aquatic organisms. Our findings demonstrate the applicability of passive dosing to test small volumes and indicate that the two rapid cyst-based assays are insensitive in detecting hydrocarbon exposures compared to other aquatic species. Our results highlight the limitations of applying these tests for oil pollution monitoring and decision-making.
Collapse
|
|
4 |
3 |
9
|
Bejarano AC, Barron MG. Aqueous and tissue residue-based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:56-64. [PMID: 26184086 DOI: 10.1002/etc.3164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/17/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within studies. Target lipid (TLM) ICE models were also developed using target lipid concentrations of the type 2 model dataset (type 2-TLM). Analyses were performed to assess model prediction uncertainty introduced by each approach. Most statistically significant models (90%; 266 models total) had mean square errors < 0.27 and adjusted coefficients of determination (adj R(2) ) > 0.59, with the lowest amount of variation in mean square errors noted for type 2-TLM followed by type 2 models. Cross-validation success (>0.62) across most models (86% of all models) confirmed the agreement between ICE predicted and observed values. Despite differences in model predictive ability, most predicted values across all 3 ICE model types were within a 2-fold difference of the observed values. As a result, no statistically significant differences (p > 0.05) were found between most ICE-based and empirical species sensitivity distributions (SSDs). In most cases hazard concentrations were within or below the 95% confidence intervals of the direct-empirical SSD-based values, regardless of model choice. Interspecies correlation estimation-based 5th percentile (HC5) values showed a 200- to 900-fold increase as the log KOW increased from 2 to 5.3. Results indicate that ICE models for aromatic compounds provide a statistically based approach for deriving conservative hazard estimates for protecting aquatic life.
Collapse
|
|
9 |
1 |
10
|
Dubiel J, Scovil A, Speers-Roesch B, Wiseman S, de Jourdan B, Philibert D. Exposure to individual polycyclic aromatic compounds impairs the cardiac performance of American lobster (Homarus americanus) larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106863. [PMID: 38422926 DOI: 10.1016/j.aquatox.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The potential for oil spills poses a threat to marine organisms, the toxicity of which has been attributed primarily to polycyclic aromatic compounds (PACs). Predictive tools such as the target lipid model (TLM) have been developed to forecast and assess these risks. The aim of the present study was to characterize the cardiotoxicity of 10 structurally diverse PACs in American lobster (Homarus americanus) larvae by assessing heart rate following a 48 h exposure in a passive dosing system, and subsequently use the TLM framework to calculate a critical target lipid body burden (CTLBB) for bradycardia. Exposure to 8 of the 10 PACs resulted in concentration-dependent bradycardia, with phenanthrene causing the greatest effect. The TLM was able to effectively characterize bradycardia in American lobsters, and the cardiotoxic CTLBB value determined in this study is among the most sensitive endpoints included in the CTLBB database. This study is one of the first to apply the TLM to a cardiac endpoint and will improve predictive models for assessing sublethal impacts of oil spills on American lobster populations.
Collapse
|
|
1 |
|
11
|
Zhou W, Liang J, Pan H, Liu J, Liu Y, Zhao Y. A model of the physiological and biochemical characteristics of earthworms (Eisenia fetida) in petroleum-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:459-466. [PMID: 30852311 DOI: 10.1016/j.ecoenv.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Current researches found some terrestrial animals absorb petroleum hydrocarbons (PHCs) in oil-polluted soil. However, the absorption behaviour between various biological tissues remains unclear. The aim of our study is to determine the toxic effects and enrichment behaviours of earthworms (Eisenia fetida) in petroleum-contaminated soils and to provide a reasonable dynamics model to explain the migration of PHCs within earthworm tissues. The PHCs are divided into three fractions by equivalent carbon number. An experimental analysis of the PHC concentrations in 3 different earthworm organ systems (body-wall tissue, body fluid and gut tissue) from a contamination exposure experiment at different time intervals was implemented. A dynamics model was built to simulate the absorption mechanism. The model results perform well. The PHC concentrations in the earthworm tissues were gut > body fluid > body wall. The PHCs in the gut reached equilibrium first, and those in the body-wall tissues reached equilibrium last. In the gut tissue, the PHC concentration was different from those in the body-wall tissue and body fluid due to the influence of the feeding rule. In addition, as the length of the carbon chain increases, the molecular size increases, which makes it more difficult for petroleum hydrocarbon fractions to enter an organ system. As a result, the concentration of PHCs in each type of tissue decreases with increasing carbon chain length. This study can provide a theoretical foundation for chemical monitoring in soil.
Collapse
|
|
6 |
|