1
|
Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, Epel ES. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology 2013; 38:1835-42. [PMID: 23639252 PMCID: PMC3735679 DOI: 10.1016/j.psyneuen.2013.03.010] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/18/2013] [Indexed: 12/22/2022]
Abstract
In the past decade, the growing field of telomere science has opened exciting new avenues for understanding the cellular and molecular substrates of stress and stress-related aging processes over the lifespan. Shorter telomere length is associated with advancing chronological age and also increased disease morbidity and mortality. Emerging studies suggest that stress accelerates the erosion of telomeres from very early in life and possibly even influences the initial (newborn) setting of telomere length. In this review, we highlight recent empirical evidence linking stress and mental illnesses at various times across the lifespan with telomere erosion. We first present findings in the developmental programming of telomere biology linking prenatal stress to newborn and adult telomere length. We then present findings linking exposure to childhood trauma and to certain mental disorders with telomere shortening. Last, we review studies that characterize the relationship between related health-risk behaviors with telomere shortening over the lifespan, and how this process may further buffer the negative effects of stress on telomeres. A better understanding of the mechanisms that govern and regulate telomere biology throughout the lifespan may inform our understanding of etiology and the long-term consequences of stress and mental illnesses on aging processes in diverse populations and settings.
Collapse
|
research-article |
12 |
282 |
2
|
Huang DS, Wang Z, He XJ, Diplas BH, Yang R, Killela PJ, Meng Q, Ye ZY, Wang W, Jiang XT, Xu L, He XL, Zhao ZS, Xu WJ, Wang HJ, Ma YY, Xia YJ, Li L, Zhang RX, Jin T, Zhao ZK, Xu J, Yu S, Wu F, Liang J, Wang S, Jiao Y, Yan H, Tao HQ. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 2015; 51:969-76. [PMID: 25843513 PMCID: PMC4467782 DOI: 10.1016/j.ejca.2015.03.010] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter region in human cancers. Large scale studies of these mutations in multiple tumour types are limited, in particular in Asian populations. This study aimed to: analyse TERT promoter mutations in multiple tumour types in a large Chinese patient cohort, investigate novel tumour types and assess the functional significance of the mutations. METHODS TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumour types and 799 tumour tissues from Chinese cancer patients. Thymic epithelial tumours, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), telomerase activity by the telomeric repeat amplification protocol (TRAP) assay and promoter activity by the luciferase reporter assay. RESULTS TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%) and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in gastrointestinal stromal tumour (GIST), thymic epithelial tumours, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. CONCLUSIONS TERT promoter mutations are frequent in multiple tumour types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumourigenesis, making them potential therapeutic targets.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
277 |
3
|
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445:115-37. [PMID: 23711382 DOI: 10.1016/j.virol.2013.04.026] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on these proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression.
Collapse
|
Review |
12 |
262 |
4
|
Lindqvist D, Epel ES, Mellon SH, Penninx BW, Révész D, Verhoeven JE, Reus VI, Lin J, Mahan L, Hough CM, Rosser R, Bersani FS, Blackburn EH, Wolkowitz OM. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev 2015; 55:333-64. [PMID: 25999120 PMCID: PMC4501875 DOI: 10.1016/j.neubiorev.2015.05.007] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Many psychiatric illnesses are associated with early mortality and with an increased risk of developing physical diseases that are more typically seen in the elderly. Moreover, certain psychiatric illnesses may be associated with accelerated cellular aging, evidenced by shortened leukocyte telomere length (LTL), which could underlie this association. Shortened LTL reflects a cell's mitotic history and cumulative exposure to inflammation and oxidation as well as the availability of telomerase, a telomere-lengthening enzyme. Critically short telomeres can cause cells to undergo senescence, apoptosis or genomic instability, and shorter LTL correlates with poorer health and predicts mortality. Emerging data suggest that LTL may be reduced in certain psychiatric illnesses, perhaps in proportion to exposure to the psychiatric illnesses, although conflicting data exist. Telomerase has been less well characterized in psychiatric illnesses, but a role in depression and in antidepressant and neurotrophic effects has been suggested by preclinical and clinical studies. In this article, studies on LTL and telomerase activity in psychiatric illnesses are critically reviewed, potential mediators are discussed, and future directions are suggested. A deeper understanding of cellular aging in psychiatric illnesses could lead to re-conceptualizing them as systemic illnesses with manifestations inside and outside the brain and could identify new treatment targets.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
228 |
5
|
Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, Fan Y, Lu X, Zhou X, Liu H, Atala A, Rohozinski J, Zhang Y. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 2014; 31:1840-56. [PMID: 23666768 DOI: 10.1002/stem.1424] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/21/2013] [Indexed: 12/16/2022]
Abstract
We sought to biologically characterize and identify a subpopulation of urine-derived stem cells (USCs) with the capacity for multipotent differentiation. We demonstrated that single USCs can expand to a large population with 60-70 population doublings. Nine of 15 individual USC clones expressed detectable levels of telomerase and have long telomeres. These cells expressed pericyte and mesenchymal stem cell markers. Upon induction with appropriate media in vitro, USCs differentiated into bladder-associated cell types, including functional urothelial and smooth muscle cell lineages. When the differentiated USCs were seeded onto a scaffold and subcutaneously implanted into nude mice, multilayered tissue-like structures formed consisting of urothelium and smooth muscle. Additionally, USCs were able to differentiate into endothelial, osteogenic, chondrogenic, adipogenic, skeletal myogenic, and neurogenic lineages but did not form teratomas during the 1-month study despite telomerase activity. USCs may be useful in cell-based therapies and tissue engineering applications, including urogenital reconstruction.
Collapse
|
Journal Article |
11 |
221 |
6
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
207 |
7
|
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 2022; 73:101507. [PMID: 34736994 PMCID: PMC8920518 DOI: 10.1016/j.arr.2021.101507] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Short telomeres confer risk of degenerative diseases. Chronic psychological stress can lead to disease through many pathways, and research from in vitro studies to human longitudinal studies has pointed to stress-induced telomere damage as an important pathway. However, there has not been a comprehensive model to describe how changes in stress physiology and neuroendocrine pathways can lead to changes in telomere biology. Critically short telomeres or the collapse of the telomere structure caused by displacement of telomere binding protein complex shelterin elicit a DNA damage response and lead to senescence or apoptosis. In this narrative review, we summarize the key roles glucocorticoids, reactive oxygen species (ROS) and mitochondria, and inflammation play in mediating the relationship between psychological stress and telomere maintenance. We emphasis that these mediators are interconnected and reinforce each other in positive feedback loops. Telomere length has not been studied across the lifespan yet, but the initial setting point at birth appears to be the most influential point, as it sets the lifetime trajectory, and is influenced by stress. We describe two types of intergenerational stress effects on telomeres - prenatal stress effects on telomeres during fetal development, and 'telotype transmission" -the directly inherited transmission of short telomeres from parental germline. It is clear that the initial simplistic view of telomere length as a mitotic clock has evolved into a far more complex picture of both transgenerational telomere influences, and of interconnected molecular and cellular pathways and networks, as hallmarks of aging where telomere maintenance is a key player interacting with mitochondria. Further mechanistic investigations testing this comprehensive model of stress mediators shaping telomere biology and the telomere-mitochondrial nexus will lead to better understanding from cell to human lifespan aging, and could lead to anti-aging interventions.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
180 |
8
|
Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci 2018. [PMID: 29526163 PMCID: PMC5846307 DOI: 10.1186/s12929-018-0422-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.
Collapse
|
Review |
7 |
150 |
9
|
Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 771:15-31. [PMID: 28342451 DOI: 10.1016/j.mrrev.2016.11.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Telomere repeats at chromosomal ends, critical to genome integrity, are maintained through an elaborate network of proteins and pathways. Shelterin complex proteins shield telomeres from induction of DNA damage response to overcome end protection problem. A specialized ribonucleic protein, telomerase, maintains telomere homeostasis through repeat addition to counter intrinsic shortcomings of DNA replication that leads to gradual sequence shortening in successive mitoses. The biogenesis and recruitment of telomerase composed of telomerase reverse transcriptase (TERT) subunit and an RNA component, takes place through the intricate machinery that involves an elaborate number of molecules. The synthesis of telomeres remains a controlled and limited process. Inherited mutations in the molecules involved in the process directly or indirectly cause telomeropathies. Telomerase, while present in stem cells, is deactivated due to epigenetic silencing of the rate-limiting TERT upon differentiation in most of somatic cells with a few exceptions. However, in most of the cancer cells telomerase reactivation remains a ubiquitous process and constitutes one of the major hallmarks. Discovery of mutations within the core promoter of the TERT gene that create de novo binding sites for E-twenty-six (ETS) transcription factors provided a mechanism for cancer-specific telomerase reactivation. The TERT promoter mutations occur mainly in tumors from tissues with low rates of self-renewal. In melanoma, glioma, hepatocellular carcinoma, urothelial carcinoma and others, the promoter mutations have been shown to define subsets of patients with adverse disease outcomes, associate with increased transcription of TERT, telomerase reactivation and affect telomere length; in stem cells the mutations inhibit TERT silencing following differentiation into adult cells. The TERT promoter mutations cause an epigenetic switch on the mutant allele along with recruitment of pol II following the binding of GABPA/B1 complex that leads to mono-allelic expression. Thus, the TERT promoter mutations hold potential as biomarkers as well as future therapeutic targets.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
136 |
10
|
Abstract
Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.
Collapse
|
Review |
7 |
134 |
11
|
Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci 2020; 77:61-79. [PMID: 31728577 PMCID: PMC6986361 DOI: 10.1007/s00018-019-03369-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023]
Abstract
Telomeres are protein-DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein-DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein-protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein-protein interfaces within shelterin reveals a series of "domain-peptide" interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.
Collapse
|
Review |
5 |
129 |
12
|
Angelier F, Costantini D, Blévin P, Chastel O. Do glucocorticoids mediate the link between environmental conditions and telomere dynamics in wild vertebrates? A review. Gen Comp Endocrinol 2018; 256:99-111. [PMID: 28705731 DOI: 10.1016/j.ygcen.2017.07.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
Following the discoveries of telomeres and of their implications in terms of health and ageing, there has been a growing interest into the study of telomere dynamics in wild vertebrates. Telomeres are repeated sequences of non-coding DNA located at the terminal ends of chromosomes and they play a major role in maintaining chromosome stability. Importantly, telomeres shorten over time and shorter telomeres seem to be related with lower survival in vertebrates. Because of this potential link with longevity, it is crucial to understand not only the ecological determinants of telomere dynamics but also the regulatory endocrine mechanisms that may mediate the effect of the environment on telomeres. In this paper, we review the relationships that link environmental conditions, glucocorticoids (GC, the main hormonal mediator of allostasis) and telomere length in vertebrates. First, we review current knowledge about the determinants of inter-individual variations in telomere length. We emphasize the potential strong impact of environmental stressors and predictable life-history events on telomere dynamics. Despite recent progress, we still lack crucial basic data to fully understand the costs of several life-history stages and biotic and abiotic factors on telomere length. Second, we review the link that exists between GCs, oxidative stress and telomere dynamics in vertebrates. Although circulating GC levels may be closely and functionally linked with telomere dynamics, data are still scarce and somewhat contradictory. Further laboratory and field studies are therefore needed not only to better assess the proximate link between GC levels and telomere dynamics, but also to ultimately understand to what extent GCs and telomere length could be informative to measure the fitness costs of specific life-history stages and environmental conditions. Finally, we highlight the importance of exploring the functional links that may exist between coping styles, the GC stress response, and telomere dynamics in a life-history framework. To conclude, we raise new hypotheses regarding the potential of the GC stress response to drive the trade-off between immediate survival and telomere protection.
Collapse
|
Review |
7 |
111 |
13
|
A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology 2014; 42:45-8. [PMID: 24636500 DOI: 10.1016/j.psyneuen.2013.12.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 01/22/2023]
Abstract
The enzyme telomerase, through its influence on telomere length, is associated with health and mortality. Four pioneering randomized control trials, including a total of 190 participants, provided information on the effect of mindfulness meditation on telomerase. A meta-analytic effect size of d=0.46 indicated that mindfulness meditation leads to increased telomerase activity in peripheral blood mononuclear cells. These results suggest the need for further large-scale trials investigating optimal implementation of mindfulness meditation to facilitate telomerase functioning.
Collapse
|
Meta-Analysis |
11 |
104 |
14
|
Telomere-associated aging disorders. Ageing Res Rev 2017; 33:52-66. [PMID: 27215853 PMCID: PMC9926533 DOI: 10.1016/j.arr.2016.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/25/2023]
Abstract
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Several monogenic inherited diseases that display features of human premature aging correlate with shortened telomeres, and are referred to collectively as telomeropathies. These disorders have overlapping symptoms and a common underlying mechanism of telomere dysfunction, but also exhibit variable symptoms and age of onset, suggesting they fall along a spectrum of disorders. Primary telomeropathies are caused by defects in the telomere maintenance machinery, whereas secondary telomeropathies have some overlapping symptoms with primary telomeropathies, but are generally caused by mutations in DNA repair proteins that contribute to telomere preservation. Here we review both the primary and secondary telomeropathies, discuss potential mechanisms for tissue specificity and age of onset, and highlight outstanding questions in the field and future directions toward elucidating disease etiology and developing therapeutic strategies.
Collapse
|
research-article |
8 |
99 |
15
|
Petrara MR, Giunco S, Serraino D, Dolcetti R, De Rossi A. Post-transplant lymphoproliferative disorders: from epidemiology to pathogenesis-driven treatment. Cancer Lett 2015; 369:37-44. [PMID: 26279520 DOI: 10.1016/j.canlet.2015.08.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) represent the most severe complication of both solid organ and hematopoietic stem cell transplantation. The Epstein-Barr Virus (EBV) is the main driver of PTLD, particularly those occurring early after transplantation. EBV-driven malignancies are associated with selective expression of latent viral proteins, but uncontrolled lytic replication may favor early phases of cell transformation. Besides immunodepression, persistent immune activation and chronic inflammation play an important role in both virus reactivation and expansion of EBV-infected B cells. EBV-induced immortalization requires the expression of telomerase. TERT, the rate-limiting component of the telomerase complex, is central in the switch from the lytic to the latent viral program, and TERT inhibition induces the EBV lytic cycle and cell death. Immunotherapy and combination of EBV lytic cycle inducers with antiviral drugs are promising strategies to improve the treatment of PTLD patients. This review is aimed at providing an update on the intriguing association between EBV and PTLD, mainly focusing on cases arising after kidney and liver transplantation, which account for the vast majority of transplants.
Collapse
|
Review |
10 |
97 |
16
|
Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of Age-Induced MicroRNA-195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase. Stem Cells 2015; 34:148-59. [PMID: 26390028 DOI: 10.1002/stem.2211] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022]
Abstract
Previously, we reported that a novel subpopulation of young mesenchymal stem cells (YMSCs) existed in old bone marrow, which possessed high antiaging properties as well as excellent efficacy for cardiac repair. MicroRNAs (miRNAs) have emerged as key regulators in post-transcriptional gene expression programs, and however, it is unknown whether miRNAs directly control stem cell senescence. Here we present the first evidence that miR-195 overexpressed in old MSCs (OMSCs) induces stem cell senescence deteriorating their regenerative ability by directly deactivating telomerase reverse transcriptase (Tert), and abrogation of miR-195 can reverse stem cell aging. MiRNAs profiling analysis in YMSCs and OMSCs by microarray showed that miR-140, miR-146a/b, and miR-195 were significantly upregulated in OMSCs, which led us to hypothesize that these are age-induced miRNAs involved in stem cell senescence. Of these miRNAs, we found miR-195 directly targeted 3'-untranslated region of Tert gene by computational target prediction analysis and luciferase assay, and knockdown of miR-195 significantly increased Tert expression in OMSCs. Strikingly, miR-195 inhibition significantly induced telomere relengthening in OMSCs along with reduced expression of senescence-associated β-galactosidase. Moreover, silencing miR-195 in OMSCs by transfection of miR-195 inhibitor significantly restored antiaging factors expression including Tert and Sirt1 as well as phosphorylation of Akt and FOXO1. Notably, abrogation of miR-195 markedly restored proliferative abilities in OMSCs. Transplantation of OMSCs with knocked out miR-195 reduced infarction size and improved LV function. In conclusion, rejuvenation of aged stem cells by miR-195 inhibition would be a promising autologous therapeutic strategy for cardiac repair in the elderly patients.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
89 |
17
|
Boccardi V, Pelini L, Ercolani S, Ruggiero C, Mecocci P. From cellular senescence to Alzheimer's disease: The role of telomere shortening. Ageing Res Rev 2015; 22:1-8. [PMID: 25896211 DOI: 10.1016/j.arr.2015.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022]
Abstract
The old age population is increasing worldwide as well as age related diseases, including neurodegenerative disorders, such as Alzheimer's disease (AD), which negatively impacts on the health care systems. Aging represents per se a risk factor for AD. Thus, the study and identification of pathways within the biology of aging represent an important end point for the development of novel and effective disease-modifying drugs to treat, delay, or prevent AD. Cellular senescence and telomere shortening represent suitable and promising targets. Several studies show that cellular senescence is tightly interconnected to aging and AD, while the role of telomere dynamic and stability in AD pathogenesis is still unclear. This review will focus on the linking mechanisms between cellular senescence, telomere shortening, and AD.
Collapse
|
Review |
10 |
88 |
18
|
Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed Pharmacother 2017; 89:573-577. [PMID: 28258039 DOI: 10.1016/j.biopha.2017.02.061] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/02/2017] [Indexed: 01/03/2023] Open
Abstract
Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer.
Collapse
|
Journal Article |
8 |
80 |
19
|
Carneiro MC, de Castro IP, Ferreira MG. Telomeres in aging and disease: lessons from zebrafish. Dis Model Mech 2017; 9:737-48. [PMID: 27482813 PMCID: PMC4958310 DOI: 10.1242/dmm.025130] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Age is the highest risk factor for some of the most prevalent human diseases, including cancer. Telomere shortening is thought to play a central role in the aging process in humans. The link between telomeres and aging is highlighted by the fact that genetic diseases causing telomerase deficiency are associated with premature aging and increased risk of cancer. For the last two decades, this link has been mostly investigated using mice that have long telomeres. However, zebrafish has recently emerged as a powerful and complementary model system to study telomere biology. Zebrafish possess human-like short telomeres that progressively decline with age, reaching lengths in old age that are observed when telomerase is mutated. The extensive characterization of its well-conserved molecular and cellular physiology makes this vertebrate an excellent model to unravel the underlying relationship between telomere shortening, tissue regeneration, aging and disease. In this Review, we explore the advantages of using zebrafish in telomere research and discuss the primary discoveries made in this model that have contributed to expanding our knowledge of how telomere attrition contributes to cellular senescence, organ dysfunction and disease. Summary: In this Review, the authors explore the advantages of using zebrafish in telomere research and discuss the primary discoveries made in this model that have contributed to expanding our knowledge of how telomere attrition contributes to cellular senescence, organ dysfunction and disease.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
74 |
20
|
A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: a pediatric brain tumor consortium study. J Neurooncol 2016; 129:443-451. [PMID: 27350411 DOI: 10.1007/s11060-016-2189-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
Abstract
Telomerase activation is critical in many cancers including central nervous system (CNS) tumors. Imetelstat is an oligonucleotide that binds to the template region of the RNA component of telomerase, inhibiting its enzymatic activity. We conducted an investigator-sponsored molecular biology (MB) and phase II study to estimate inhibition of tumor telomerase activity and sustained responses by imetelstat in children with recurrent CNS malignancies. In the MB study, patients with recurrent medulloblastoma, high-grade glioma (HGG) or ependymoma undergoing resection received one dose of imetelstat as a 2-h intravenous infusion at 285 mg/m(2), 12-24 h before surgery. Telomerase activity was evaluated in fresh tumor from surgery. Post-surgery and in the phase II study, patients received imetelstat IV (days 1 and 8 q21-days) at 285 mg/m(2). Imetelstat pharmacokinetic and pharmacodynamic studies were performed. Of two evaluable patients on the MB trial, intratumoral telomerase activity was inhibited by 95 % compared to baseline archival tissue in one patient and was inevaluable in one patient. Forty-two patients (40 evaluable for toxicity) were enrolled: 9 medulloblastomas, 18 HGG, 4 ependymomas, 9 diffuse intrinsic pontine gliomas. Most common grade 3/4 toxicities included thrombocytopenia (32.5 %), lymphopenia (17.5 %), neutropenia (12.5 %), ALT (7.5 %) and AST (5 %) elevation. Two patients died of intratumoral hemorrhage secondary to thrombocytopenia leading to premature study closure. No objective responses were observed. Telomerase inhibition was observed in peripheral blood mononuclear cells (PBMCs) for at least 8 days. Imetelstat demonstrated intratumoral and PBMC target inhibition; the regimen proved too toxic in children with recurrent CNS tumors.
Collapse
|
Journal Article |
9 |
72 |
21
|
Moradzadeh M, Hosseini A, Erfanian S, Rezaei H. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacol Rep 2017. [PMID: 28646740 DOI: 10.1016/j.pharep.2017.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Green tea has antioxidant, anti-tumor and anti-bacterial properties. Epigallocatechin-3-gallate (EGCG) in green tea is highly active as a cancer chemopreventive agent. In this study, we designed a series of experiments to examine the effects of EGCG on proliferation and apoptosis of estrogen receptor α-positive breast cancer (T47D) cells. METHODS Cells were treated with EGCG (0-80μM) and tamoxifen (0-20μM), as the positive control, up to 72h. Cell viability was determined by MTT assay. Apoptosis investigated by real time PCR of apoptosis and survival (Bax, Bcl-2, p21, p53, PTEN, PI3K, AKT, caspase3 and caspase9 and hTERT) genes and by western blot of Bax/Bcl-2 proteins expressions. RESULTS The results showed that EGCG decreased cell viability as concentration- and time-dependently. IC50 values were 14.17μM for T47D and 193.10μM for HFF cells, as compared with 3.39μM and 32.75μM for tamoxifen after 72h treatment, respectively. Also, EGCG (80μM) significantly increased the genes of PTEN, CASP3, CASP9 and decreased AKT approximately equal to tamoxifen. In gene expression, EGCG (80μM) significantly increased Bax/Bcl-2 ratio to 8-fold vise 15-fold in tamoxifen (20μM)-treated T47D cells during 72h. In protein expression of Bax/Bcl-2, EGCG significantly increased 6-fold while this ratio augmented 10-fold in tamoxifen group. EGCG significantly decreased 0.8, 0.4 and 0.3 gene expression of hTERT in 24, 48 and 72h, respectively. CONCLUSIONS This study suggests that EGCG may be a useful adjuvant therapeutic agent for the treatment of breast cancer.
Collapse
|
Journal Article |
8 |
68 |
22
|
Abstract
Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.
Collapse
|
Review |
11 |
68 |
23
|
Kasbek C, Wang F, Price CM. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J Biol Chem 2013; 288:30139-30150. [PMID: 24025336 DOI: 10.1074/jbc.m113.493478] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TEN1 is a component of the mammalian CTC1-STN1-TEN1 complex. CTC1 and/or STN1 functions in telomere duplex replication, C-strand fill-in, and genome-wide restart of replication following fork stalling. Here we examine the role of human TEN1 and ask whether it also functions as a specialized replication factor. TEN1 depletion causes an increase in multitelomere fluorescent in situ hybridization (FISH) signals similar to that observed after CTC1 or STN1 depletion. However, TEN1 depletion also results in increased telomere loss. This loss is not accompanied by increased telomere deprotection, recombination, or T-circle release. Thus, it appears that both the multiple telomere signals and telomere loss stem from problems in telomere duplex replication. TEN1 depletion can also affect telomere length, but whether telomeres lengthen or shorten is cell line-dependent. Like CTC1 and STN1, TEN1 is needed for G-overhang processing. Depletion of TEN1 does not effect overhang elongation in mid-S phase, but it delays overhang shortening in late S/G2. These results indicate a role for TEN1 in C-strand fill-in but do not support a direct role in telomerase regulation. Finally, TEN1 depletion causes a decrease in genome-wide replication restart following fork stalling similar to that observed after STN1 depletion. However, anaphase bridge formation is more severe than with CTC1 or STN1 depletion. Our findings indicate that TEN1 likely functions in conjunction with CTC1 and STN1 at the telomere and elsewhere in the genome. They also raise the possibility that TEN1 has additional roles and indicate that TEN1/CTC1-STN1-TEN1 helps solve a wide range of challenges to the replication machinery.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
66 |
24
|
Akıncılar SC, Low KC, Liu CY, Yan TD, Oji A, Ikawa M, Li S, Tergaonkar V. Quantitative assessment of telomerase components in cancer cell lines. FEBS Lett 2015; 589:974-84. [PMID: 25749370 DOI: 10.1016/j.febslet.2015.02.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Besides its canonical function of catalyzing the formation of telomeric repeats, many groups have recently reported non-canonical functions of hTERT in particular, and telomerase in general. Regulating transcription is the central basis of non-canonical functions of telomerase. However, unlike reverse transcriptase activity of telomerase that requires only a few molecules of enzymatically active hTERT, non-canonical functions of hTERT or other telomerase components theoretically require several hundred copies. Here, we provide the first direct quantification of all the telomerase components in human cancer cell lines. We demonstrate that telomerase components do not exist in a 1:1 stoichiometric ratio, and there are several hundred copies of hTERT in cells. This provides the molecular basis of hTERT to function in other signaling cascades, including transcription.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
65 |
25
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
Review |
6 |
62 |