1
|
Dong Y, Fan G, Deng M, Xu E, Zhao Z. Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought. Genomics 2014; 104:295-305. [PMID: 25192670 DOI: 10.1016/j.ygeno.2014.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/09/2023]
Abstract
Paulownia tomentosa is an important foundation forest tree species in semiarid areas. The lack of genetic information hinders research into the mechanisms involved in its response to abiotic stresses. Here, short-read sequencing technology (Illumina) was used to de novo assemble the transcriptome on P. tomentosa. A total of 99,218 unigenes with a mean length of 949 nucleotides were assembled. 68,295 unigenes were selected and the functions of their products were predicted using Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes annotations. Afterwards, hundreds of genes involved in drought response were identified. Twelve putative drought response genes were analyzed by quantitative real-time polymerase chain reaction. This study provides a dataset of genes and inherent biochemical pathways, which will help in understanding the mechanisms of the water-deficit response in P. tomentosa. To our knowledge, this is the first study to highlight the genetic makeup of P. tomentosa.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
18 |
2
|
Javadian N, Karimzadeh G, Sharifi M, Moieni A, Behmanesh M. In vitro polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae). PLANTA 2017; 245:1165-1178. [PMID: 28293732 DOI: 10.1007/s00425-017-2671-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/04/2017] [Indexed: 05/22/2023]
Abstract
Induction of tetraploidy was performed and podophyllotoxin production increased by upregulating the expression level and enzyme activity of genes related to its biosynthesis in tetraploid compared to diploid Linum album. Linum album is a valuable medicinal plant that produces antiviral and anticancer compounds including podophyllotoxin (PTOX). To achieve homogeneous materials, in vitro diploid clones were established, and their nodal segments were exposed to different concentrations and durations of colchicine. This resulted in successful tetraploidy induction, confirmed by flow cytometry, and is being reported for the first time. The highest efficiency of tetraploid induction (22%) was achieved after 72 h exposure to 2.5-mM colchicine treatment. The stable tetraploids were produced after being subcultured three times, and their ploidy stability was confirmed after each subculture. The effects of autopolyploidy were measured on the morphological and phytochemical characteristics, as well as enzyme activity and the expression levels of some key genes involved in the PTOX biosynthetic pathway, including phenylalanine ammonia-lyase (PAL), cinnamoyl-Coa reductase (CCR), cinnamyl-alcohol dehydrogenase (CAD), and pinoresinol-lariciresinol reductase (PLR). The tetraploid plants had larger leaves and stomata (length and width) and lower density stomata. Increasing the ploidy level from diploid to tetraploid resulted in 1.39- and 1.23-fold enhancement of PTOX production, respectively, in the leaves and stem. The increase in PTOX content was associated with upregulated activities of some enzymes studied related to its biosynthetic pathway and the expression of the corresponding genes. The expression of the PAL gene and PLR enzymatic activity had the most positive correlation with the ploidy level in both leaf and stem tissues. Our results verified that autotetraploid induction is a useful breeding method, remarkably increasing the PTOX content in the leaves and stem of L. album.
Collapse
|
|
8 |
14 |
3
|
Pfeiffer MJ, Esteves TC, Balbach ST, Araúzo-Bravo MJ, Stehling M, Jauch A, Houghton FD, Schwarzer C, Boiani M. Reprogramming of two somatic nuclei in the same ooplasm leads to pluripotent embryonic stem cells. Stem Cells 2014; 31:2343-53. [PMID: 23922292 DOI: 10.1002/stem.1497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/24/2013] [Accepted: 07/07/2013] [Indexed: 11/10/2022]
Abstract
The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
10 |
4
|
Senovilla L, Demont Y, Humeau J, Bloy N, Kroemer G. Image Cytofluorometry for the Quantification of Ploidy and Endoplasmic Reticulum Stress in Cancer Cells. Methods Mol Biol 2017; 1524:53-64. [PMID: 27815895 DOI: 10.1007/978-1-4939-6603-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the mechanisms of cancer-associated genomic instability involves a transient phase of polyploidization, in most cases tetraploidization, followed by asymmetric divisions and chromosome loss. Increases in ploidy are consistently accompanied by the activation of an endoplasmic reticulum (ER) stress response, resulting in the translocation of calreticulin to the outer surface of the plasma membrane where it stimulates anticancer immune responses. Conversely, immunoselection leads to a coordinated reduction in ploidy, ER stress, and calreticulin exposure. To simultaneously investigate the ER stress and ploidy, we developed an image cytofluorometric method that allows to measure DNA content, ER stress-associated phosphorylation of eIF2α, and calreticulin exposure at the cell surface. Here, we specify this methodology, which is useful for investigating the correlation between ploidy and ER stress at the single cell level.
Collapse
|
|
8 |
7 |
5
|
Siah A, McKenna P, Berthe FCJ, Afonso LOB, Danger JM. Transcriptome analysis of neoplastic hemocytes in soft-shell clams Mya arenaria: Focus on cell cycle molecular mechanism. RESULTS IN IMMUNOLOGY 2013; 3:95-103. [PMID: 24600564 DOI: 10.1016/j.rinim.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022]
Abstract
In North America, a high mortality of soft-shell clams Mya arenaria was found to be related to the disease known as disseminated neoplasia (DN). Disseminated neoplasia is commonly recognized as a tetraploid disorder related to a disruption of the cell cycle. However, the molecular mechanisms by which hemocytes of clams are transformed in the course of DN remain by far unknown. This study aims at identifying the transcripts related to DN in soft shell clams' hemocytes using next generation of sequencing (Illumina HiSeq2000). This study mainly focuses on transcripts and molecular mechanisms involved in cell cycle. Using Illumina next generation of sequencing, more than 95,399,159 reads count with an average length of 45 bp was generated from three groups of hemocytes: (1) a healthy group with less than 10% of tetraploid cells; (2) an intermediate group with tetraploid hemocytes ranging between 10% and 50% and (3) a diseased group with more than 50% of tetraploid cells. After the reads were cleaned by removing the adapters, de novo assembly was performed on the sequences and more than 73,696 contigs were generated with a mean contig length estimated at 585 bp ranging from 189 bp to 14,773 bp. Once a Blastx search against NCBI Non Redundant database was performed and the duplicates removed, 18,378 annotated sequences matched known sequences, 3078 were hypothetical and 9002 were uncharacterized sequences. Fifty percent and 41% of known sequences match sequences from Mollusca and Gastropoda respectively. Among the bivalvia, 33%, 17%, 17% and 15% of the contigs match sequences from Ostreoida, Veneroida, Pectinoida and Mytiloida respectively. Gene ontology analysis showed that metabolic, cellular, transport, cell communication and cell cycle represent 33%, 15%, 9%, 8.5% and 7% respectively of the total biological process. Approximately 70% of the component process is related to intracellular process and 15% is linked to protein and ribonucleoprotein complex. Catalytic activities and binding molecular processes represent 39% and 33% of the total molecular functions. Interestingly, nucleic acid binding represents more than 18% of the total protein class. Transcripts involved in the molecular mechanisms of cell cycle are discussed providing new avenues for future investigations.
Collapse
|
Journal Article |
12 |
7 |
6
|
Zahedi AA, Hosseini B, Fattahi M, Dehghan E, Parastar H, Madani H. Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. BOTANICAL STUDIES 2014; 55:22. [PMID: 28510927 PMCID: PMC5430325 DOI: 10.1186/1999-3110-55-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/08/2014] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ploidy manipulation is considered an efficient method to increase production potential of medicinally important compounds. Dracocephalum kotschyi Boiss. is an endangered medicinal plant of Iran. Various concentrations of colchicine (0.05, 0.10, 0.20, and 0.50% w/v) were applied to shoot apical meristems of D. kotschyi seedlings in two and four-leaf stages to induce tetraploidy. RESULTS According to the results, 0.5% (w/v) of colchicine can be effective for polyploidy induction in D. kotschyi. Putative tetraploids were selected by morphological and microscopic characteristics and their ploidy level was confirmed by flow cytometry analysis and chromosome counting. The chromosome number of original diploid plant was confirmed to be 2n = 2× = 20 whereas that of the tetraploid plant was 2n = 4× = 40. Tetraploid and mixoploid plants showed different morphological, physiological and microscopic characteristics from those of diploid counterparts. The total content of flavonoids was increased from 1583.28 in diploids to 1890.07 (μg/g DW) in stable tetraploids. CONCLUSION High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) confirmed over accumulation of methoxylated hydroxyflavones in solid tetraploid plants of D. kotschyi.
Collapse
|
research-article |
11 |
7 |
7
|
Dehghan E, Reed DW, Covello PS, Hasanpour Z, Palazon J, Oksman-Caldentey KM, Ahmadi FS. Genetically engineered hairy root cultures of Hyoscyamus senecionis and H. muticus: ploidy as a promising parameter in the metabolic engineering of tropane alkaloids. PLANT CELL REPORTS 2017; 36:1615-1626. [PMID: 28707113 DOI: 10.1007/s00299-017-2178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Tetraploidy improves overexpression of h6h and scopolamine production of H. muticus, while in H. senecionis, pmt overexpression and elicitation can be used as effective methods for increasing tropane alkaloids. The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.
Collapse
|
|
8 |
6 |
8
|
Siah A, McKenna P, Danger JM, Johnson G, Berthe FCJ. Expression of RAS-like family members, c-jun and c-myc mRNA levels in neoplastic hemocytes of soft-shell clams Mya arenaria using microsphere-based 8-plex branched DNA assay. RESULTS IN IMMUNOLOGY 2012; 2:83-7. [PMID: 24371570 DOI: 10.1016/j.rinim.2012.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/20/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
The molecular mechanisms by which disseminated neoplasia (DN) is developed in soft shell clams Mya arenaria remain largely unknown. This study aims at quantifying Rho-like GTPase, RAS-Rho, RAS-related C3 botulinum (RAS C3), c-jun as well as c-myc transcript levels in clams sampled at North River (Charlottetown, Prince Edward Island, Canada). The transcripts were quantified using multiplex gene analysis (Quantigene(®) 2 Plex, Affymetrix) in 3 groups of clams: (1) Group C (healthy clams considered as control) with a low percentage of tetraploid hemocytes (<10%); (2) Group D (disease in development): individuals presenting a percentage of tetraploid cells ranging between 10% and 50%; (3) Group E (established disease): clams with a high percentage of tetraploid hemocytes (>50%). Data showed a down-regulation of Rho-like GTPase, Rho-like subfamily, RAS C3, c-jun and an up-regulation of c-myc gene expression. It is believed that a deregulation of the expression of these genes could partly unravel the molecular mechanisms involved in the development of DN in soft shell clams Mya arenaria. Further investigations should be pursued to determine the role of these gene products in clams' hemocytes.
Collapse
|
Journal Article |
13 |
5 |
9
|
Hasegawa R, Miura T, Kaneko N, Kizaki R, Oishi G, Tanaka H, Sato M, Shimizu M. Production of two recombinant insulin-like growth factor binding protein-1 subtypes specific to salmonids. Gen Comp Endocrinol 2020; 299:113606. [PMID: 32890480 DOI: 10.1016/j.ygcen.2020.113606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Salmonids have four subtypes of insulin-like growth factor binding protein (IGFBP)-1, termed -1a1, -1a2, -1b1 and 1b2, owing to teleost- and a lineage-specific whole-genome duplications. We have previously produced recombinant proteins of masu salmon IGFBP-1a1 and -1b2 and conducted functional analysis. To further characterize salmonid-specific IGFBP-1s, we cloned cDNAs encoding mature proteins of IGFBP-1a2 and -1b1 from the liver of masu salmon (Oncorhynchus masou). IGFBP-1a2 and -1b1 shared a 56% amino acid sequence homology whereas their homologies with their counterparts (i.e. -1a1 and -1b2) were 77% and 82%, respectively. We next expressed recombinant masu salmon (rs) IGFBP-1a2 and -1b1 with fusion partners thioredoxin (Trx) and a His-tag using the pET-32a(+) vector system in Escherichia coli. Trx.His.rsIGFBP-1s were detected in the insoluble faction, solubilized in a buffer containing urea, and isolated by Ni-affinity chromatography. They were refolded by dialysis and cleaved from the fusion partners by enterokinase. rsIGFBP-1a2 and -1b1 were purified by reversed-phase high performance liquid chromatography. Purified rsIGFBP-1a2 and -1b1 had the ability to bind digoxigenin-labeled human IGF-I on ligand blotting. We then examined the effects of rsIGFBP-1a1, -1a2, -1b1 and -1b2 in combination with human IGF-I on growth hormone (GH) release from cultured pituitary cells of masu salmon. IGF-I alone reduced GH release while the addition of rsIGFBP-1a1, -1b1 or -1b2, but not rsIGFBP-1a2, diminished the suppressive effect of IGF-I. Addition of rsIGFBP-1s without IGF-I had no effect on GH release. These results show that rsIGFBP-1b1, along with rsIGFBP-1a1 and -1b2, inhibits IGF-I action on the pituitary in masu salmon. The lack of the effect by rsIGFBP-1a2 suggests that salmon IGFBP-1 subtypes underwent subfunction partitioning and have different degrees of IGF-inhibitory action.
Collapse
|
|
5 |
4 |
10
|
Ferragut Cardoso AP, Nail AN, Banerjee M, Wise SS, States JC. miR-186 induces tetraploidy in arsenic exposed human keratinocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114823. [PMID: 36989553 DOI: 10.1016/j.ecoenv.2023.114823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting >225 million people. Skin is a major target organ for iAs. miRNA dysregulation and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. CIN is a cancer hallmark and tetraploid cells can better tolerate increase in chromosome number and aberration, contributing to the evolution of CIN. miR-186 is overexpressed in iAs-induced squamous cell carcinoma relative to iAs-induced hyperkeratosis. Bioinformatic analysis indicated that miR-186 targets mRNAs of important cell cycle regulators including mitotic checkpoint serine/threonine kinase B (BUB1) and cell division cycle 27 (CDC27). We hypothesized that miR-186 overexpression contributes to iAs-induced transformation of keratinocytes by targeting mitotic regulators leading to induction of CIN. Ker-CT cells, a near diploid human keratinocyte cell line, were transduced with miR-186 overexpressing or scrambled control lentivirus. Stable clones were isolated after puromycin selection. Clones transduced with lentivirus expressing either a scrambled control miRNA or miR-186 were maintained with 0 or 100 nM iAs for 4 weeks. Unexposed scrambled control clones were considered as passage matched controls. Chronic iAs exposure increased miR-186 expression in miR-186 clones. miR-186 overexpression significantly reduced CDC27 levels irrespective of iAs exposure. The percentage of tetraploid or aneuploid cells was increased in iAs exposed miR-186 clones. Aneuploidy can arise from a tetraploid intermediate. Suppression of CDC27 by miR-186 may lead to impairment of mitotic checkpoint complex formation and its ability to maintain cell cycle arrest leading to chromosome misalignment. As a result, cells overexpressing miR-186 and chronically exposed to iAs may have incorrect chromosome segregation and CIN. These data suggest that dysregulation of miRNA by iAs mediates tetraploidy, aneuploidy and chromosomal instability contributing to iAs-induced carcinogenesis.
Collapse
|
|
2 |
4 |
11
|
Bernhard SV, Seget-Trzensiok K, Kuffer C, Krastev DB, Stautmeister LM, Theis M, Keuper K, Boekenkamp JE, Kschischo M, Buchholz F, Storchova Z. Loss of USP28 and SPINT2 expression promotes cancer cell survival after whole genome doubling. Cell Oncol (Dordr) 2021; 45:103-119. [PMID: 34962618 PMCID: PMC8881269 DOI: 10.1007/s13402-021-00654-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background Whole genome doubling is a frequent event during cancer evolution and shapes the cancer genome due to the occurrence of chromosomal instability. Yet, erroneously arising human tetraploid cells usually do not proliferate due to p53 activation that leads to CDKN1A expression, cell cycle arrest, senescence and/or apoptosis. Methods To uncover the barriers that block the proliferation of tetraploids, we performed a RNAi mediated genome-wide screen in a human colorectal cancer cell line (HCT116). Results We identified 140 genes whose depletion improved the survival of tetraploid cells and characterized in depth two of them: SPINT2 and USP28. We found that SPINT2 is a general regulator of CDKN1A transcription via histone acetylation. Using mass spectrometry and immunoprecipitation, we found that USP28 interacts with NuMA1 and affects centrosome clustering. Tetraploid cells accumulate DNA damage and loss of USP28 reduces checkpoint activation, thus facilitating their proliferation. Conclusions Our results indicate three aspects that contribute to the survival of tetraploid cells: (i) increased mitogenic signaling and reduced expression of cell cycle inhibitors, (ii) the ability to establish functional bipolar spindles and (iii) reduced DNA damage signaling. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-021-00654-5.
Collapse
|
|
4 |
2 |
12
|
Synchronization and Desynchronization of Cells by Interventions on the Spindle Assembly Checkpoint. Methods Mol Biol 2017; 1524:77-95. [PMID: 27815897 DOI: 10.1007/978-1-4939-6603-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell cycle checkpoints are surveillance mechanisms that sequentially and continuously monitor cell cycle progression thereby contributing to the preservation of genetic stability. Among them, the spindle assembly checkpoint (SAC) prevents the occurrence of abnormal divisions by halting the metaphase to anaphase transition following the detection of erroneous microtubules-kinetochore attachment(s). Most synchronization strategies are based on the activation of cell cycle checkpoints to enrich the population of cells in a specific phase of the cell cycle. Here, we develop a two-step protocol of sequential cell synchronization and desynchronization employing antimitotic SAC-inducing agents (i.e., nocodazole or paclitaxel) in combination with the depletion of the SAC kinase MPS1. We describe cytofluorometric and time-lapse videomicroscopy methods to detect cell cycle progression, including the assessment of cell cycle distribution, quantification of mitotic cell fraction, and analysis of single cell fate profile of living cells. We applied these methods to validate the synchronization-desynchronization protocol and to qualitatively and quantitatively determine the impact of SAC inactivation on the activity of antimitotic agents.
Collapse
|
|
8 |
2 |
13
|
Xie J, Nachabe A, Hathaway LJ, Farah B, Berbari B, Li Y, Brown TC, Schmid JL, Socola F, Saba NS, Safah H. The prognostic implications of tetraploidy/near-Tetraploidy in acute myeloid leukemia: a case series and systematic review of the literature. Leuk Lymphoma 2021; 62:203-210. [PMID: 32993375 DOI: 10.1080/10428194.2020.1817435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
The prognostic significance and optimal management of tetraploidy/near-tetraploidy acute myeloid leukemia (T/NT AML) remains unclear given its limited data. This is especially true after factoring in additional chromosomal alterations, which carry their own prognostic weight. Here, we analyze 128 cases of T/NT in AML from the literature along with two additional cases, which is the largest review of this subject to date. Based on our retrospective analysis, we found that regardless of the risk status attributed to cytogenetics, the prognosis of tetraploid or near-tetraploid AML is dismal and should be incorporated within the unfavorable risk group. Complete remission is paramount to survival in this population. Specific induction protocols for high-risk AML appear to have higher rates of complete remission in the T/NT AML population. Moreover, longer overall survival can be achieved with chemotherapy followed by allogeneic stem cell transplantation at first complete remission.
Collapse
|
Review |
4 |
1 |
14
|
Shin DH, Lee JE, Eum JH, Chung YG, Lee HT, Lee DR. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells. Dev Reprod 2018; 21:425-434. [PMID: 29359202 PMCID: PMC5769136 DOI: 10.12717/dr.2017.21.4.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 11/17/2022]
Abstract
Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.
Collapse
|
|
7 |
1 |
15
|
Galoyan E, Nazarov R, Altmanová M, Matveevsky S, Kropachev I, Dedukh D, Iryshkov E, Pankin M, Sopilko N, Nikolaev O, Orlov N, Arakelyan M, Klíma J, Solovyeva E, Nguyen T, Kratochvíl L. Natural repeated backcrosses lead to triploidy and tetraploidy in parthenogenetic butterfly lizards (Leiolepis: Agamidae). Sci Rep 2025; 15:3094. [PMID: 39856096 PMCID: PMC11760361 DOI: 10.1038/s41598-024-83300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species. Contrary to previous proposals, we document that parthenogenetic L. guentherpetersi has mitochondrial DNA and two haploid sets from L. guttata and one from L. reevesii, suggesting that it is the result of a backcross of a parthenogenetic L. guttata × L. reevesii hybrid with a L. guttata male increasing ploidy from 2n to 3n. Within the range of L. guentherpetersi, we found an adult tetraploid male with three L. guttata and one L. reevesii haploid genomes. It probably originated from fertilisation of an unreduced triploid L. guentherpetersi egg by a L. guttata sperm. Although its external morphology resembles that of the maternal species, it possessed exceptionally large erythrocytes and was likely sterile. As increased ploidy level above triploidy or tetraploidy appears to be harmful for amniotes, all-female asexual lineages should evolve a strategy to prevent incorporation of other haploid genomes from a sexual species by avoiding fertilisation by sexual males.
Collapse
|
research-article |
1 |
|
16
|
Zhu L, Zha W, Zhuo J, Yu X. A case of T-cell acute lymphoblastic leukemia with co-occurrence of NUP214-ABL1 fusion and tetraploidy: A T-ALL case with NUP214-ABL1 fusion and tetraploidy. Cancer Genet 2025; 292-293:116-119. [PMID: 40009976 DOI: 10.1016/j.cancergen.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Although testing and treatment of blood malignancies have been standardized, additional unidentified genetic abnormalities often complicate the diagnosis and therapeutic outcome. Thus, improvement of contemporary therapy requires further stratification of patients based on detailed genetic information. Here, we describe an extremely rare case of Philadelphia chromosome-like T-cell acute lymphoblastic leukemia (Ph-like T-ALL) with NUP214-ABL1 fusion and presentation of unusually enlarged nuclei in the leukemic cells, which was attributed to tetraploidy. Despite receiving the protocol-guided induction chemotherapy, the patient did not respond favorably. The challenges in treating Ph-like T-ALL with rare genetic abnormalities, highlight the need of further research and personalized medication.
Collapse
|
Case Reports |
1 |
|
17
|
Kirsch-Volders M, Mišík M, Fenech M. Tetraploidy in normal tissues and diseases: mechanisms and consequences. Chromosoma 2025; 134:3. [PMID: 40117022 PMCID: PMC11928420 DOI: 10.1007/s00412-025-00829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Tetraploidisation plays a crucial role in evolution, development, stress adaptation, and disease, but its beneficial or pathological effects in different tissues remain unclear. This study aims to compare physiological and unphysiological tetraploidy in eight steps: 1) mechanisms of diploidy-to-tetraploidy transition, 2) induction and elimination of unphysiological tetraploidy, 3) tetraploid cell characteristics, 4) stress-induced unphysiological tetraploidy, 5) comparison of physiological vs. unphysiological tetraploidy, 6) consequences of unphysiological stress-induced tetraploidy, 7) nutritional or pharmacological prevention strategies of tetraploidisation, and 8) knowledge gaps and future perspectives. Unphysiological tetraploidy is an adaptive stress response at a given threshold, often involving mitotic slippage. If tetraploid cells evade elimination through apoptosis or immune surveillance, they may re-enter the cell cycle, causing genetic instability, micronuclei formation, aneuploidy, modification of the epigenome and the development of diseases. The potential contributions of unphysiological tetraploidy to neurodegenerative, cardiovascular and diabetes related diseases are summarized in schematic figures and contrasted with its role in cancer development. The mechanisms responsible for the transition from physiological to unphysiological tetraploidy and the tolerance to tetraploidisation in unphysiological tetraploidy are not fully understood. Understanding these mechanisms is of critical importance to allow the development of targeted nutritional and pharmacological prevention strategies and therapies.
Collapse
|
Review |
1 |
|
18
|
Zachaki S, Kalomoiraki M, Kouvidi E, Promponas E, Syrkos S, Panopoulou B, Pantou A, Mavrou A, Kanavakis E, Manola KN. Cytogenetic findings of ectopic endometriotic tissue in women with endometriosis and review of the literature. Eur J Obstet Gynecol Reprod Biol 2021; 264:212-218. [PMID: 34332218 DOI: 10.1016/j.ejogrb.2021.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine chromosome and gene alterations in ectopic endometrial (EM) tissue which may be implicated in the clinical course or the progression of endometriosis and to review the literature concerning the cytogenetic findings of women with endometriosis. STUDY DESIGN 15 women who underwent laparoscopic endometriosis surgery at the Athens Genesis Clinic were enrolled in the study. Ectopic endometrial tissue was surgically removed and further analyzed by conventional and molecular cytogenetic techniques. Fluoresent in situ hibridization (FISH) with probes for p53, ATM, MYC, MLL1 and IGH genes, the centromeres of chromosomes 7 and 8 and 7q22/7q31 chromosomal regions was carried out. RESULTS Karyotypic analysis revealed no clonal chromosomal abnormalities. However, an increased frequency of polyploidy (55.6%) and sporadic chromosomal abnormalities (40.0%) concerning chromosomes 9, 11, 17 and X were noticed involving mainly deletions, trisomies or monosomies. FISH analysis showed IGH gene rearrangements in 54% of the EM cases and MLL gene rearrangements in 73% of the examined samples. Normal hybridization patterns were observed for p53, ATM and MYC. The increased frequency of polyploidy shown by conventional karyotyping was also confirmed by FISH. CONCLUSION Polyploidy, sporadic chromosomal abnormalities, as well as IGH and MLL gene rearrangements, may provoke genetic instability and play a potential role in the development of endometriosis. IGH and MLL gene rearrangements indicate a genetic relation between endometriosis and carcinogenesis. Confirmation of the above gene rearrangements in a large series of women may allow the determination of their possible involvement in the pathogenesis of this complex disease and their possible contribution in the early identification of women in danger for malignant transformation.
Collapse
|
Journal Article |
4 |
|
19
|
Weisweiler M, Stich B. Benchmarking of structural variant detection in the tetraploid potato genome using linked-read sequencing. Genomics 2023; 115:110568. [PMID: 36702293 DOI: 10.1016/j.ygeno.2023.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
It has recently been shown that structural variants (SV) can have a higher impact on gene expression variation compared to single nucleotide variants (SNV) in different plant species. Additionally, SV were associated with phenotypic variation in several crops. However, compared to the established SV detection based on short-read sequencing, less approaches were described for linked-read based SV calling. We therefore evaluated the performance of six linked-read SV callers compared to an established short-read SV caller based on simulated linked-reads in tetraploid potato. The objectives of our study were to i) compare the performance of SV callers based on linked-read sequencing to short-read sequencing, ii) examine the influence of SV type, SV length, haplotype incidence (HI), as well as sequencing coverage on the SV calling performance in the tetraploid potato genome, and iii) evaluate the accuracy of detecting insertions by linked-read compared to short-read sequencing. We observed high break point resolutions (BPR) detecting short SV and slightly lower BPR for large SV. Our observations highlighted the importance of short-read signals provided by Manta and LinkedSV to detect short SV. Manta and NAIBR performed well for detecting larger deletions, inversions, and duplications. Detected large SV were weakly influenced by the HI. Furthermore, we illustrated that large insertions can be assembled by Novel-X. Our results suggest the usage of the short-read and linked-read SV callers Manta, NAIBR, LinkedSV, and Novel-X based on at least 90x linked-read sequencing coverage to ensure the detection of a broad range of SV in the tetraploid potato genome.
Collapse
|
|
2 |
|
20
|
Bernhard SV, Gemble S, Basto R, Storchova Z. Experimental Approaches to Generate and Isolate Human Tetraploid Cells. Methods Mol Biol 2023; 2545:391-399. [PMID: 36720824 DOI: 10.1007/978-1-0716-2561-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer cells are frequently affected by large-scale chromosome copy number changes, such as polyploidy or whole chromosome aneuploidy, and thus understanding the consequences of these changes is important for cancer research. In the past, it has been difficult to study the consequences of large-scale genomic changes, especially in pure isogenic populations. Here, we describe two methods to generate tetraploid cells induced either by cytokinesis failure or mitotic slippage. These treatments result in mixed population of diploids and tetraploids that can be analyzed directly. Alternatively, tetraploid populations can be established by single cell clone selection or by fluorescence activated cell sorting. These methods enable to analyze and compare the consequences of whole-genome doubling between the parental cell line, freshly arising tetraploid cells, and post-tetraploid aneuploid clones.
Collapse
|
|
2 |
|
21
|
Kirsch-Volders M, Mišík M, de Gerlache J. Tetraploidy as a metastable state towards malignant cell transformation within a systemic approach of cancer development. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503764. [PMID: 38821671 DOI: 10.1016/j.mrgentox.2024.503764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, may be a natural physiological condition or pathophysiological such as in cancer cells or stress induced tetraploidisation. Its contribution to cancer development is well known. However, among the many models proposed to explain the causes, mechanisms and steps of malignant cell transformation, only few integrate tetraploidization into a systemic multistep approach of carcinogenesis. Therefore, we will i) describe the molecular and cellular characteristics of tetraploidy; ii) assess the contribution of stress-induced tetraploidy in cancer development; iii) situate tetraploidy as a metastable state leading to cancer development in a systemic cell-centered approach; iiii) consider knowledge gaps and future perspectives. The available data shows that stress-induced tetraploidisation/polyploidisation leads to p53 stabilisation, cell cycle arrest, followed by cellular senescence or apoptosis, suppressing the proliferation of tetraploid cells. However, if tetraploid cells escape the G1-tetraploidy checkpoint, it may lead to uncontrolled proliferation of tetraploid cells, micronuclei induction, aneuploidy and deploidisation. In addition, tetraploidization favors 3D-chromatin changes and epigenetic effects. The combined effects of genetic and epigenetic changes allow the expression of oncogenic gene expression and cancer progression. Moreover, since micronuclei are inducing inflammation, which in turn may induce additional tetraploidization, tetraploidy-derived genetic instability leads to a carcinogenic vicious cycle. The concept that polyploid cells are metastable intermediates between diploidy and aneuploidy is not new. Metastability denotes an intermediate energetic state within a dynamic system other than the system's state at least energy. Considering in parallel the genetic/epigenetic changes and the probable entropy levels induced by stress-induced tetraploidisation provides a new systemic approach to describe cancer development.
Collapse
|
Review |
1 |
|
22
|
Gergely L, Korbeľ M, Repiská V, Danihel Ľ, Hutník J, McCullough L, Priščáková P. DNA analysis of partial hydatidiform mole revealing triandric monogynic tetraploidy. CESKA GYNEKOLOGIE 2023; 88:446-449. [PMID: 38171918 DOI: 10.48095/cccg2023446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The authors present a case of a partial hydatidiform mole where DNA analysis (STR - short tandem repeat genotyping) showed a triandric monogynic tetraploid genome composition with a XXXY gonosomal complement. This genetic finding clinicopathologically correlates with a partial hydatidiform mole, although it is rare in comparison with the typical, diandric monogynic triploid partial moles. The genetic analysis definitively confirmed the suspected diagnosis of a partial mole. To exclude the possibility that molar pregnancy represented retained products of conception after elective pregnancy termination, STR profiles from molar pregnancy and previous products of conception were compared. Short tandem repeats genotyping is a useful molecular genetic method in the differential diagnosis of partial hydatidiform moles, where clinical-pathological findings are frequently ambiguous.
Collapse
|
Case Reports |
2 |
|
23
|
Holmes RS. Evolution of aldehyde dehydrogenase genes and proteins in diploid and allotetraploid Xenopus frog species. Chem Biol Interact 2021; 351:109671. [PMID: 34599912 DOI: 10.1016/j.cbi.2021.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022]
Abstract
At least 19 human aldehyde dehydrogenase (ALDH) genes and enzymes have been studied among vertebrate organisms. BLAT and BLAST analyses were undertaken of Xenopus tropicalis (western clawed frog) and Xenopus laevis (African clawed frog) genomes which are related diploid (N = 20) and allotetraploid (N = 36) species, respectively. The corresponding ALDH genes and proteins within these Xenopus genomes were identified and studied. Evidence is presented for tetraploid copies of 10 Xenopus laevis ALDH genes, whereas another 7 identified ALDH genes were diploid in nature. Xenopus laevis and Xenopus tropicalis ALDH amino acid sequences were highly homologous with the human enzymes, with the exception of the mitochondrial signal peptide sequences. Amino acids performing catalytic and structural roles were conserved and identified based on previous reports of 3D structures for the corresponding mammalian enzymes.
Collapse
|
|
4 |
|
24
|
Martínez-Aguilar A, Villanueva Sánchez E, Valencia-Díaz S, Estrada-Soto SE, Napsucialy-Mendivil S, Barba-Gonzalez R, Alia-Tejacal I, Arellano-García JDJ, Villegas Torres OG, Cruz Torres KC, Perea-Arango I. Tilianin content and morphological characterization of colchicine-induced autotetraploids in Agastache mexicana. PeerJ 2024; 12:e18545. [PMID: 39588001 PMCID: PMC11587875 DOI: 10.7717/peerj.18545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Background Agastache mexicana Linton & Epling subsp. mexicana (Lamiaceae) is an aromatic medicinal plant, characterized by a high concentration of tilianin, a flavonoid with therapeutic potential in cardiovascular diseases. In this study, we have explored the use of colchicine to obtain autotetraploid lines of A. mexicana and analyze their morphological characteristics. In addition, we aimed to identify polyploid plants with a high content of tilianin. Methods In vitro seedlings at the stage of cotyledon emergence were dipped in colchicine solution at 0.0%, 0.1%, 0.3%, and 0.5% (w/v) for 6, 12, and 24 h. Seedlings were cultured on half-strength basal Murashige and Skoog medium supplemented with 20 g/L sucrose. After 2 months, the shoots from surviving seedlings were excised and grown individually in the same medium to obtain plantlets. The ploidy level of all materials was verified through flow cytometry and chromosome counting before acclimatization and transfer to the greenhouse. The investigated characteristics included length, density and stomatal index, leaf area, chlorophyll content, flower size and color, and tilianin content measured by high-performance liquid chromatography. Results The most efficient production of tetraploid in terms of percentage was achieved with 0.1% colchicine for 6 h resulting in no generation of mixoploids. Tetraploid plants had twice the number of chromosomes (2n = 4x = 36) and nearly twice the total DNA content (2.660 ± 0.236 pg) of diploids. Most tetraploid A. mexicana plants showed variations in flower and leaf characteristics compared to the diploid controls. High-performance liquid chromatography analysis showed that tetraploid plants with small leaves produced the greatest amount of tilianin; up to 32.964 ± 0.004 mg/g dry weight (DW), compared to diploid plants with 6.388 ± 0.005 mg/g DW. Conclusion In vitro polyploidization using colchicine demonstrates potential for enhancing bioactive constituents of A. mexicana. This approach has proven effective in generating elite tetraploid lines with increased tilianin production.
Collapse
|
research-article |
1 |
|