1
|
Chen S, Hong J, Yang H, Yang J. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2013; 126:253-258. [PMID: 24090965 DOI: 10.1016/j.jenvrad.2013.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
Graphene oxide(GO)-activated carbon felt(ACF)(GO-ACF) composite was prepared by an electrophoretic deposition and subsequent thermal annealing. The structures of GO and GO-ACF were characterized by FT-IR, Raman spectra and XPS. The adsorption capacities for U(VI) from aqueous solution of ACF and GO-ACF were compared. The essential factors affected U(VI) adsorption such as initial pH, contact time and temperature were investigated. The adsorption is highly dependent on the solution pH. In addition, the adsorption isotherm and thermodynamics were investigated. The adsorptions of U(VI) from aqueous solution on GO-ACF were fitted to the Langmuir and, Freundlich adsorption isotherms. The adsorption of U(VI) could be well-described by Langmuir. The adsorption of U(VI) on ACF is remarkably improved by GO covalently bonding with ACF. The maximum sorption capacity of GO-ACF for U(VI) was evaluated to be 298 mg/g at pH 5.5, much higher than that of ACF (173 mg/g), suggesting the carboxyl functional groups of GO-ACF playing important roles in the sorption. Thermodynamic parameters further show that the sorption is an endothermic and spontaneous process. GO-ACF is a powerful promising sorbent for the efficient removal of U(VI) from aqueous solutions.
Collapse
|
|
12 |
102 |
2
|
Liu L, Ye X, Wu K, Han R, Zhou Z, Cui T. Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. SENSORS 2009; 9:1714-21. [PMID: 22573982 PMCID: PMC3345853 DOI: 10.3390/s90301714] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 12/03/2022]
Abstract
This paper presents an investigation on the humidity sensitivity of deposited multi-walled carbon nanotube (MWCNT) networks using ac dielectrophoresis (DEP) between interdigitated electrodes (IDEs). MWCNTs dispersed in ethanol were trapped and enriched between IDEs on a Si/SiO2 substrate under a positive DEP force. After the DEP process, the ethanol was evaporated and the MWCNT network on a substrate with IDEs was put into a furnace for repeated thermal annealing. It was found that the resistance stability of the network was effectively improved through thermal annealing. The humidity sensitivity was obtained by measuring the resistance of the MWCNT network with different relative humidity at room temperature. The experimental results show the resistance increases linearly with increasing the relative humidity from 25% to 95% RH with a sensitivity of 0.5%/%RH. The MWCNT networks have a reversible humidity sensing capacity with response time and recovery time of about 3 s and 25 s, respectively. The resistance is dependent on temperature with a negative coefficient of about −0.33%/K in a temperature range from 293 K to 393 K.
Collapse
|
Journal Article |
16 |
40 |
3
|
Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Hamdi Abd Shukor M, Kamarul T. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110304. [PMID: 31761210 DOI: 10.1016/j.msec.2019.110304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Surgical site infection associated with surgical instruments has always been a factor in delaying post-operative recovery of patients. The evolution in surface modification of surgical instruments can be a potential choice to overcome the nosocomial infection mainly caused by bacterial populations such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A study was, therefore, conducted characterising the morphology, hydrophobicity, adhesion strength, phase, Nano-hardness, surface chemistry, antimicrobial and biocompatibility of SS 316L steel deposited with a Nano-composite layer of Silver (Ag) and Tantalum oxide (Ta2O5) using physical vapour deposition magnetron sputtering. The adhesion strength of Ag/AgTa2O5 coating on SS 316L and treated at 250-850 °C of thermal treatment was evaluated using micro-scratch. The Ag/Ag-Ta2O5-400 °C was shown a 154% improvement in adhesion strength on SS 316L when compared with as-sputtered layer or Ag/Ag-Ta2O5-250, 550, 700 and 850 °C. The FESEM, XPS, and XRD indicated the segregation of Ag on the surface of SS 316L after the crystallization. Wettability and Nano-indentation tests demonstrated an increase in hydrophobicity (77.3 ± 0.3°) and Nano-hardness (1.12 ± 0.43 GPa) when compared with as-sputtered layer, after the 400 °C of thermal treatment. The antibacterial performance on Ag/Ag-Ta2O5-400 °C indicated a significant zone of inhibition to Staphylococcus aureus (A-axis: 16.33 ± 0.58 mm; B-axis: 25.67 ± 0.58 mm, p < 0.01) and Escherichia coli (A-axis: 16.33 ± 1.15 mm; B-axis: 26.00 ± 0.00 mm, p < 0.01) when compared with SS 316L or Ag/Ag-Ta2O5-700 °C, which showed no inhibition. The biocompatibility tests on Ag/Ag-Ta2O5-400 °C demonstrated an excellent in cell attachment, F-actin protein expression and proliferation/viability of bone marrow derived mesenchymal stromal on day 14 when compared with uncoated or Ag/Ag-Ta2O5-700 °C. This study shows that the Ag segregation process, hydrophobicity, adhesion strength, crystallization, and hardness progressively improved after the annealing up to 400 °C.
Collapse
|
Journal Article |
6 |
14 |
4
|
Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering. Int J Biol Macromol 2022; 218:9-21. [PMID: 35835309 DOI: 10.1016/j.ijbiomac.2022.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Poly (L-lactic acid) (PLLA)-based biocomposites have been used in tissue engineering applications because of their reasonable biocompatibility and mechanical properties. However, the imperfect bioactive and mechanical properties of the composite make it difficult to be used in the region of bone defects that require high load-bearing. Therefore, this study introduced two fabricating strategies to induce mechanically and biologically enhanced hydroxyapatite (HA)/PLLA biocomposites. By introducing an in situ plasma treatment, which was simultaneously applied during the 3D-printing process, followed by the thermal annealing process, the flexural modulus of the composite was increased by 2.1-fold compared to the normal HA/PLLA composite. Furthermore, using the combinational process, efficient coating of bioactive material [decellularized extracellular matrix (dECM) derived from porcine bones] was possible. The fabricated biocomposite scaffold was assessed for various in vitro cellular activities such as cell proliferation and osteogenic activity. Based on the mechanical and biological studies, the HA/PLLA/dECM biocomposite scaffold is one of the promising scaffolds that can be applied in bone tissue regeneration.
Collapse
|
|
3 |
14 |
5
|
Liu J, Li J, Wu J, Sun J. Structure and Dielectric Property of High-k ZrO 2 Films Grown by Atomic Layer Deposition Using Tetrakis(Dimethylamido)Zirconium and Ozone. NANOSCALE RESEARCH LETTERS 2019; 14:154. [PMID: 31065821 PMCID: PMC6505036 DOI: 10.1186/s11671-019-2989-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
High-k metal oxide films are vital for the future development of microelectronics technology. In this work, ZrO2 films were grown on silicon by atomic layer deposition (ALD) using tetrakis(dimethylamido)zirconium and ozone as precursors. The relatively constant deposition rate of 0.125 nm/cycle is obtained within the ALD temperature window of 200-250 °C. The film thickness can be precisely controlled by regulating the number of ALD cycle. The ZrO2 films formed at 200-250 °C have an O/Zr atomic ratio of 1.85-1.9 and a low content of carbon impurity. ZrO2 film begins to crystallize in ALD process above 210 °C, and the crystal structure is changed from cubic and orthorhombic phases to monoclinic and orthorhombic phases with increasing the deposition temperature to 350 °C. Moreover, the effect of annealing temperature on dielectric properties of ZrO2 film was studied utilizing ZrO2-based MIS device. The growth of the interface layer between ZrO2 and Si substrate leads to the decrease in the capacitance and the leakage current of dielectric layer in the MIS device after 1000 °C annealing. ZrO2 film exhibits the relatively high dielectric constant of 32.57 at 100 kHz and the low leakage current density of 3.3 × 10-6 A cm-2 at 1 MV/cm.
Collapse
|
brief-report |
6 |
10 |
6
|
Li Q, Zhang G, Wu Y, Wang Y, Liang Y, Yang X, Qi W, Su R, He Z. Control of peptide hydrogel formation and stability via heating treatment. J Colloid Interface Sci 2021; 583:234-242. [PMID: 33002695 DOI: 10.1016/j.jcis.2020.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Heating treatment is widely used in the preparation of metallic materials with controlled phase behavior and mechanical properties. However, for the soft materials assembled by short peptides, especially simple dipeptides, the detailed influences of heating treatment on the structures and functions of the materials remain largely unexplored. Here we showed that by thermal annealing or quenching of aromatic peptide solutions under kinetic control, we are able to control the self-assembly of peptide into materials with distinct phase behavior and macroscopic properties. The thermal annealing of the heated peptide solutions will lead to the formation of large nanobelts or bundles in solution, and no gels will be formed. However, by quenching the heated peptide solution, a self-supporting hydrogel will be formed quickly. Structure analysis revealed that the peptides preferred to self-assembled into much thinner and flexible nanohelices during quenching treatment. Moreover, the stability of the gels further increased with the repeated heating and quenching cycling of the peptide solutions. The results demonstrated that the heat treatment can be used to control the structure and function of self-assembled materials in a way similar to that of the conventional metallic or alloy materials.
Collapse
|
|
4 |
8 |
7
|
Vázquez-Valerdi DE, Luna-López JA, Carrillo-López J, García-Salgado G, Benítez-Lara A, Espinosa-Torres ND. Compositional and optical properties of SiO x films and (SiO x /SiO y ) junctions deposited by HFCVD. NANOSCALE RESEARCH LETTERS 2014; 9:422. [PMID: 25342935 PMCID: PMC4207100 DOI: 10.1186/1556-276x-9-422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/21/2014] [Indexed: 06/04/2023]
Abstract
UNLABELLED In this work, non-stoichiometric silicon oxide (SiO x ) films and (SiO x /SiO y ) junctions, as-grown and after further annealing, are characterized by different techniques. The SiO x films and (SiO x /SiO y ) junctions are obtained by hot filament chemical vapor deposition technique in the range of temperatures from 900°C to 1,150°C. Transmittance spectra of the SiO x films showed a wavelength shift of the absorption edge thus indicating an increase in the optical energy band gap, when the growth temperature decreases; a similar behavior is observed in the (SiO x /SiO y ) structures, which in turn indicates a decrease in the Si excess, as Fourier transform infrared spectroscopy (FTIR) reveals, so that, the film and junction composition changes with the growth temperature. The analysis of the photoluminescence (PL) results using the quantum confinement model suggests the presence of silicon nanocrystal (Si-nc) embedded in a SiO x matrix. For the case of the as-grown SiO x films, the absorption and emission properties are correlated with quantum effects in Si-nc and defects. For the case of the as-grown (SiO x /SiO y ) junctions, only the emission mechanism related to some kinds of defects was considered, but silicon nanocrystal embedded in a SiO x matrix is present. After thermal annealing, a phase separation into Si and SiO2 occurs, as the FTIR spectra illustrates, which has repercussions in the absorption and emission properties of the films and junctions, as shown by the change in the A and B band positions on the PL spectra. These results lead to good possibilities for proposed novel applications in optoelectronic devices. PACS 61.05.-a; 68.37.Og; 61.05.cp; 78.55.-m; 68.37.Ps; 81.15.Gh.
Collapse
|
research-article |
11 |
7 |
8
|
Okada M, Taketa H, Hara ES, Torii Y, Irie M, Matsumoto T. Improvement of mechanical properties of Y-TZP by thermal annealing with monoclinic zirconia nanoparticle coating. Dent Mater 2019; 35:970-978. [PMID: 31006551 DOI: 10.1016/j.dental.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/27/2019] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess whether a thermal annealing with a monoclinic zirconia (mZrO2) nanoparticle coating can improve the reliability of sandblasted yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and maintain its mechanical strength. METHODS Commercially available Y-TZP (Lava Frame, 3M Dental Products) disks were sintered and surface-treated as follows: AS (as sintered, with no treatment); SB (sandblasting); SB-TA (sandblasting followed by thermal annealing at 1000 °C); and SB-mZr-TA (sandblasting followed by thermal annealing at 1000 °C with the mZrO2 nanoparticle coating). The mZrO2 nanoparticles of 21 nm in size were prepared by a hydrothermal method, and coated onto Y-TZP sintered disks as a 5 g/L ethanol dispersion. Biaxial flexural strength (S) was measured using the piston-on-three-ball test, and reliability was evaluated by the Weibull modulus (m). RESULTS Biaxial flexural tests showed a significant increase in the strength of Group SB (SSB = 1445 ± 191 MPa) compared with Group AS (SAS = 1071 ± 112 MPa). The thermal annealing improved the reliabilities of the sandblasted Y-TZP (mSB-TA = 20.14 and mSB-mZr-TA = 21.33), as compared with Group SB (mSB = 7.77). However, the conventional thermal annealing without the mZrO2 coating caused a significant decrease in the strength of sandblasted Y-TZP (SSB-TA = 1273 ± 65 MPa). Importantly, the mZrO2 coating prevented the decrease in the strength caused by conventional thermal annealing (SSB-mZr-TA = 1379 ± 65 MPa). SIGNIFICANCE The thermal annealing with the mZrO2 nanoparticle coating can improve the reliability of sandblasted Y-TZP and maintain its mechanical strength, which would otherwise be decreased by the conventional annealing process.
Collapse
|
|
6 |
6 |
9
|
Pierlot AP, Woodhead AL, Church JS. Thermal annealing effects on multi-walled carbon nanotube yarns probed by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:598-603. [PMID: 24103230 DOI: 10.1016/j.saa.2013.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/30/2013] [Accepted: 09/07/2013] [Indexed: 06/02/2023]
Abstract
The realized mechanical properties of CNT macrostructures such as webs and yarns remain significantly lower than those of the individual CNTs. Structural changes induced by thermal annealing under inert atmosphere were assessed using Raman spectroscopy. Annealing above 1000 °C resulted in a marked decrease in the D/G ratio which can be attributed to an increase in the crystallite size or the distance between defects. The band component parameters obtained by spectral deconvolution reveal that the D band peak maximum shifts to slightly higher energy with increased annealing temperature. In contrast, the energy of the G band did not change. The full widths at half height (FWHH) of the D and G bands are seen to decrease with increasing annealing temperature. The tensile properties of the yarns have been investigated and it was found that the yarn tenacity did not improve with these structural changes. The effect of impurities in the annealing system such as oxygen, adsorbed water or organic surface contamination was also investigated.
Collapse
|
|
11 |
6 |
10
|
D'Acierno F, Ohashi R, Hamad WY, Michal CA, MacLachlan MJ. Thermal annealing of iridescent cellulose nanocrystal films. Carbohydr Polym 2021; 272:118468. [PMID: 34420727 DOI: 10.1016/j.carbpol.2021.118468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/20/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
The properties of chiral nematic and iridescent cellulose nanocrystal films with different monovalent cations (CNC-X) obtained through evaporation-induced self-assembly (EISA) can be modified by a variety of external stimuli. Here, we study the transformations of their optical and structural properties when the films are thermally annealed at 200 °C and 240 °C for up to 2 days. The chiral nematic structure of the most thermally stable films is not destroyed even after extensive heating due to the thermochemical stability of the cellulose backbone and the presence of surface alkali counterions, which suppress catalysis of early stage degradation. Despite the resilience of the cholesteric structure and the overall integrity of heated CNC-X films, thermal annealing is often accompanied by reduction of iridescence, birefringence, and transparency, as well as formation of degradation products. The versatility, sustainability, and stability of CNC-X films highlight their potential as temperature indicators and photonic devices.
Collapse
|
|
4 |
5 |
11
|
Sun D, Yamahara H, Nakane R, Matsui H, Tabata H. Hydroxyl radical and thermal annealing on amorphous InGaZnO4 films for DNA immobilizations. Colloids Surf B Biointerfaces 2015; 130:119-25. [PMID: 25935561 DOI: 10.1016/j.colsurfb.2015.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/20/2015] [Accepted: 04/09/2015] [Indexed: 11/17/2022]
Abstract
The effect of hydroxyl radicals (OH) and thermal annealing on an amorphous InGaZnO4 (aIGZO) film surface was investigated for manipulation of DNA immobilization. X-ray photoemission and fluorescence measurements were conducted to reveal the status of surface OH coverage and DNA immobilization, respectively. Systematic examinations concerning OH termination on the film surface suggested that the surface coverage of OH leveling DNA immobilization was related to the local surface potential. Furthermore, OH affinity on the aIGZO film surface was sensitive to thermal annealing. A remarkable change in surface OH coverage was observed for the film surface annealed at high temperature. This behavior was framed by a structural change from amorphous to crystalline state, which regulated DNA immobilization. These results indicate that the OH affinity on aIGZO films is dependent on structural properties such as defects. This study suggests that an amorphous structure is critical for obtaining a high OH surface coverage governing DNA immobilization, and is hence more suitable for biosensing.
Collapse
|
|
10 |
3 |
12
|
Bose RJ, Sreedharan RS, Krishnan RR, Reddy VR, Gupta M, Ganesan V, Sudheer SK, Pillai VPM. Effect of thermal annealing on the phase evolution of silver tungstate in Ag/WO₃ films. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:239-244. [PMID: 25791880 DOI: 10.1016/j.saa.2015.01.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/16/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Silver/tungsten oxide multi-layer films are deposited over quartz substrates by RF magnetron sputtering technique and the films are annealed at temperatures 200, 400 and 600°C. The effect of thermal annealing on the phase evolution of silver tungstate phase in Ag/WO3 films is studied extensively using techniques like X-ray diffraction, micro-Raman analysis, atomic force microscopy and photoluminescence studies. The XRD pattern of the as-deposited film shows only the peaks of cubic phase of silver. The film annealed at 200°C shows the presence of XRD peaks corresponding to orthorhombic phase of Ag2WO4 and peaks corresponding to cubic phase of silver with reduced intensity. It is found that, as annealing temperature increases, the volume fraction of Ag decreases and that of Ag2WO4 phase increases and becomes highest at a temperature of 400°C. When the temperature increases beyond 400°C, the volume fraction of Ag2WO4 decreases, due to its decomposition into silver and oxygen deficient phase Ag2W4O13. The micro-Raman spectra of the annealed films show the characteristic bands of tungstate phase which is in agreement with XRD analysis. The surface morphology of the films studied by atomic force microscopy reveals that the particle size and r.m.s roughness are highest for the sample annealed at 400°C. In the photoluminescence study, the films with silver tungstate phase show an emission peak in blue region centered around the wavelength 441 nm (excitation wavelength 256 nm).
Collapse
|
|
10 |
2 |
13
|
Agustin-Salazar S, Ricciulli M, Ambrogi V, Cerruti P, Scarinzi G. Effect of thermal annealing and filler ball-milling on the properties of highly filled polylactic acid/pecan nutshell biocomposites. Int J Biol Macromol 2022; 200:350-361. [PMID: 34998889 DOI: 10.1016/j.ijbiomac.2021.12.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Biodegradable polymer composites reinforced with agri-food lignocellulosic biowaste represent cost-effective and sustainable materials potentially able to replace traditional composites for structural, household, and packaging applications. Herein, the preparation of polylactic acid (PLA)/pecan (Carya illinoinensis) nutshell (PNS) biocomposites at high filler loading (50 wt%) is reported, alongside the effect of two environmentally friendly physical treatments, namely ball-milling of the filler and thermal annealing on biocomposites. PNS enhanced the thermal stability, the viscoelastic response, and the crystallinity of the polymer. Furthermore, filler ball-milling also increased the melt fluidity of the biocomposites, potentially improving melt processing. Finally, the presence of PNS remarkably enhanced the effect of thermal annealing in the compounds. In particular, heat deflection temperature of the biocomposites dramatically increased, up to 60 °C with respect to the non-annealed samples. Overall, these results emphasize the potential of combining natural fillers and environmentally benign physical treatments to tailor the properties of PLA biocomposites, especially for those applications which require a stiff and lightweight material with low deformability.
Collapse
|
|
3 |
1 |
14
|
Zhang B, Wei Z, Wang X, Fang X, Wang D, Gao X, Fang D, Wang X, Chen R. Effect of Post Thermal Annealing on the Optical Properties of InP/ZnS Quantum Dot Films. NANOSCALE RESEARCH LETTERS 2018; 13:369. [PMID: 30460420 PMCID: PMC6246751 DOI: 10.1186/s11671-018-2784-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The enhancement of optical properties via thermal annealing on InP/ZnS core/shell quantum dot (QD) film was investigated in this work. The increase of emission intensities of the QD films was observed after thermal annealing at 180 °C for 5 min. Through temperature dependence photoluminescence (TDPL) and power dependence photoluminescence (PL) measurement, the peak located at the low-energy shoulder was confirmed to be localized state emission and the high energy one comes from free-carrier emission. Moreover, from the TDPL spectra of the sample annealed at 180 °C for 5 min, the full width at half maximum (FWHM) of localization state emission was nearly the same before which is 250 K and then decreased with increasing temperature. However, the FWHM was decreased significantly when temperature increased in the untreated sample. We conclude that the escape of localization states with increasing temperature contributes to this anomaly phenomenon. Our studies have significance on the application of QDs in electroluminescence devices and down-conversion light-emitting devices.
Collapse
|
brief-report |
7 |
1 |
15
|
Wu J, Mizuno Y, Nakamura K. Enhancement in mechanical quality factors of poly phenylene sulfide under high-amplitude ultrasonic vibration through thermal annealing. ULTRASONICS 2019; 91:52-61. [PMID: 30071453 DOI: 10.1016/j.ultras.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/03/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Our previous study shows that poly phenylene sulfide (PPS) provides relatively high mechanical quality factors (Q factors) at ultrasonic frequency compared to other commonly-used functional polymers, and has potential as the vibrating body of a functional ultrasonic transducer. Since PPS has semicrystalline frameworks, its Q factors may be enhanced through thermal annealing. Prior to examining this feasibility, we developed a method for estimating Q factors under high-amplitude longitudinal vibration. Q factor is originally defined as the ratio of the reactive energy to the dissipated energy, both of which are calculated from the vibration velocities on the outer surface of a cylindrical specimen. Using this method, we experimentally investigated how annealing temperatures and times affect Q factors of PPS. The results demonstrate that thermal annealing is an effective way to enhance Q factors of PPS at the heating temperatures of 100 °C and 150 °C, relatively high compared to the glass transition temperature of PPS (90-95 °C). The Q factors at several tens of kilohertz are almost doubled after annealing owing to the enhancements in degrees of crystallinity. As the annealing time increases, the Q factors initially become higher, and gradually approach their saturated values at a sufficiently long time. Besides, annealing temperatures affect the change rates in Q factors, but have no observable effect on the saturated Q factors.
Collapse
|
|
6 |
1 |
16
|
Jäppinen L, Jalkanen T, Sieber B, Addad A, Heinonen M, Kukk E, Radevici I, Paturi P, Peurla M, Shahbazi MA, Santos HA, Boukherroub R, Santos H, Lastusaari M, Salonen J. Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods. NANOSCALE RESEARCH LETTERS 2016; 11:413. [PMID: 27644239 PMCID: PMC5028353 DOI: 10.1186/s11671-016-1627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.
Collapse
|
research-article |
9 |
|
17
|
Wu SJ, Chowdhury A, Soe MT, Ling A. Repeated γ irradiation and thermal annealing via built-in thermo-electric coolers of Si avalanche photodiodes. Sci Rep 2024; 14:23331. [PMID: 39375354 PMCID: PMC11458804 DOI: 10.1038/s41598-024-72535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
When operating in space, on-board Silicon Geiger-Mode Avalanche Photodiodes (GM-APDs) are exposed to radiation damage that result in an increase in dark count rates. Thermal annealing has been found to mitigate the damage, although prior studies have largely focused on annealing following a single session of proton irradiation. This work reports that thermal annealing can be performed simply with the built-in thermo-electric coolers of the GM-APDs. Annealing was also done in 10 min intervals for a clearer view of the recovery curve. Mitigation of damage from repeated γ radiation was observed from the: (1) halving of the increase in dark count rates on average and (2) outperformance of room temperature annealing ( 25 ∘ C) by 33 % . Additionally, we show that heavy doses of γ radiation (21 krad) have a probability of causing Random Telegraph Signals in GM-APDs that can be suppressed by lowering the operating temperature.
Collapse
|
research-article |
1 |
|
18
|
Silva WS, Silva WF, Rocha U, Medeiros DM, Motta RJB, Astrath NGC, Dantas NO, Silva ACA, Jacinto C. (Invited) Influence of Nd 3⁺ Doping and Thermal Annealing on Luminescent Properties and Thermal Sensing of Na₂Ti₆O₁₃ Nanocrystals. Chem Asian J 2025:e202401699. [PMID: 40326614 DOI: 10.1002/asia.202401699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/03/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
This study investigates the effects of Nd3⁺ doping and thermal annealing (at 250, 500, 650, and 800 °C) on the structural and luminescent properties of Nd3⁺-doped Na₂Ti₆O₁₃ nanocrystals (NCs), with a focus on their potential for thermal sensing applications. The optimal doping concentration was found to be 0.5 wt% Nd3⁺, where luminescence intensity decreases with higher concentrations due to concentration quenching. Thermal annealing significantly enhances both the crystallinity and luminescence intensity of the NCs, with the most notable improvements observed up to 500 °C. However, heating beyond 650 °C induces a phase transition from Na₂Ti₆O₁₃ to TiO₂, which impacts the NCs' structural and luminescent properties. Thermal sensing performance was evaluated using the fluorescence intensity ratio (FIR) between emissions at 1060 nm and 1340 nm across a temperature range of 300-343K, revealing the highest relative thermal sensitivity (Sr) of 3.28% K⁻¹ in the sample annealed at 250 °C. For applications requiring high emission intensity, the 0.5 wt% Nd3⁺-doped Na₂Ti₆O₁₃ NCs annealed at 800 °C exhibited the highest figure of merit, combining high luminescence intensity at 1060 nm with excellent Sr, making them ideal for nanothermometry. Notably, the excitation (808 nm) and emission wavelengths (900, 1060, and 1340 nm) fall within the biological tissue windows, suggesting significant potential for biological nanothermometry applications. This study underscores the critical role of optimizing both doping concentration and thermal annealing conditions to enhance the properties of NCs, offering new insights into their use for advanced thermal sensing applications in biological and medical fields.
Collapse
|
|
1 |
|
19
|
Cheng YC, Wang HC, Feng SW, Li TP, Fung SK, Yuan KY, Chen MJ. Co-dosing Ozone and Deionized Water as Oxidant Precursors of ZnO Thin Film Growth by Atomic Layer Deposition. NANOSCALE RESEARCH LETTERS 2020; 15:154. [PMID: 32728964 PMCID: PMC7391459 DOI: 10.1186/s11671-020-03382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Characteristics of atomic layer deposition (ALD)-grown ZnO thin films on sapphire substrates with and without three-pulsed ozone (O3) as oxidant precursor and post-deposition thermal annealing (TA) are investigated. Deposition temperature and thickness of ZnO epilayers are 180 °C and 85 nm, respectively. Post-deposition thermal annealing is conducted at 300 °C in the ambience of oxygen (O2) for 1 h. With strong oxidizing agent O3 and post-deposition TA in growing ZnO, intrinsic strain and stress are reduced to 0.49% and 2.22 GPa, respectively, with extremely low background electron concentration (9.4 × 1015 cm-3). This is originated from a lower density of thermally activated defects in the analyses of thermal quenching of the integrated intensity of photoluminescence (PL) spectra. TA further facilitates recrystallization forming more defect-free grains and then reduces strain and stress state causing a remarkable decrease of electron concentration and melioration of surface roughness.
Collapse
|
brief-report |
5 |
|
20
|
Wang Y, Gao J, Yang H, Wang X, Shen Z. Compensating the Degradation of Near-Infrared Absorption of Black Silicon Caused by Thermal Annealing. NANOSCALE RESEARCH LETTERS 2016; 11:56. [PMID: 26831694 PMCID: PMC4735042 DOI: 10.1186/s11671-016-1281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
We propose the use of thin Ag film deposition to remedy the degradation of near-infrared (NIR) absorption of black Si caused by high-temperature thermal annealing. A large amount of random and irregular Ag nanoparticles are formed on the microstructural surface of black Si after Ag film deposition, which compensates the degradation of NIR absorption of black Si caused by thermal annealing. The formation of Ag nanoparticles and their contributions to NIR absorption of black Si are discussed in detail.
Collapse
|
research-article |
9 |
|
21
|
Jin Y, Bond CW, Leonard RL, Liu Y, Johnson JA, Petford-Long AK. The effect of annealing on optical transmittance and structure of ZLANI fluorozirconate glass thin films. Micron 2020; 140:102977. [PMID: 33207295 DOI: 10.1016/j.micron.2020.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
We report the effect of thermal annealing on structure, composition, optical transmittance and thickness of a novel fluorozirconate glass (ZLANI) containing Zr, La, Al, Na and In fluorides. In this work, pulsed laser deposition was used to grow thin films of ZLANI, and thermal annealing at different temperatures was performed on the films. Annealing did not change the composition, but a clear structural evolution of the ZLANI glass was observed by transmission electron microscopy (TEM), showing that we can control microstructure independent of composition. An increase in transmittance after the film was subject to a 100 °C thermal anneal was ascribed to the removal of defects and structural relaxation in the amorphous state. Following an anneal of 200 °C, the transmittance decreases due to heterogeneous formation of crystalline nuclei and changes in the local bonding. After the final annealing at 300 °C, a wider-scale crystallization occurred, with some major crystal phases formed as Zr2F8(H2O)6 and ZrO2, which alters the shape of the transmittance curve. The crystalline content of the crystal phases that form in the annealed films was quantified using hollow cone dark field TEM imaging. The 100 °C or 200 °C annealing decreases the film thickness by inducing structural relaxation and densification of the amorphous films, while the thickness increase of the 300 °C annealed film resulted from the formed large crystals. These results provide insights for the design of multilayer nanocomposites with a ZLANI glass matrix, which have potential applications as up-/down-conversion luminescent materials and X-ray storage phosphors.
Collapse
|
|
5 |
|
22
|
Lotito V, Zambelli T. Heat: A powerful tool for colloidal particle shaping. Adv Colloid Interface Sci 2024; 331:103240. [PMID: 39024831 DOI: 10.1016/j.cis.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Colloidal particles of spherical shape are important building blocks for nanotechnological applications. Materials with tailored physical properties can be directly synthesized from self-assembled particles, as is the case for colloidal photonic crystals. In addition, colloidal monolayers and multilayers can be exploited as a mask for the fabrication of complex nanostructures via a colloidal lithography process for applications ranging from optoelectronics to sensing. Several techniques have been adopted to modify the shape of both individual colloidal particles and colloidal masks. Thermal treatment of colloidal particles is an effective route to introduce colloidal particle deformation or to manipulate colloidal masks (i.e. to tune the size of the interstices between colloidal particles) by heating them at elevated temperatures above a certain critical temperature for the particle material. In particular, this type of morphological manipulation based on thermal treatments has been extensively applied to polymer particles. Nonetheless, interesting shaping effects have been observed also in inorganic materials, in particular silica particles. Due to their much less complex implementation and distinctive shaping effects in comparison to dry etching or high energy ion beam irradiation, thermal treatments turn out to be a powerful and competitive tool to induce colloidal particle deformation. In this review, we examine the physicochemical principles and mechanisms of heat-induced shaping as well as its experimental implementation. We also explore its applications, going from tailored masks for colloidal lithography to the fabrication of colloidal assemblies directly useful for their intrinsic optical, thermal and mechanical properties (e.g. thermal switches) and even to the synthesis of supraparticles and anisotropic particles, such as doublets.
Collapse
|
Review |
1 |
|
23
|
Aragon FFH, Haeck CM, Morais PC, Variano B. Polymorphism characterization of segesterone acetate: A comprehensive study using XRPD, FT-IR and Raman spectroscopy. Int J Pharm 2021; 596:120234. [PMID: 33484926 DOI: 10.1016/j.ijpharm.2021.120234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022]
Abstract
Segesterone acetate (SA) is a promising and recently approved drug substance used as a contraceptive. SA has two major polymorphic forms, Form I and II. We have shown through indirect analysis that Form I is the more thermodynamically stable polymorphic form at room temperature, however, during the manufacturing process of SA drug products the solid-state stability must be shown to be under control. In the present work, a systematic study has been done using X-ray powder diffraction (XRPD), Fourier Transformed Infrared spectroscopy (FT-IR), and room temperature Raman spectroscopy on both micronized and non-micronized SA powder samples. XRPD showed a crystalline structure in both powder samples with a distinct coexistence of the polymorphic Forms I and II which was confirmed by FT-IR and Raman spectroscopy. The study showed that after thermal annealing a noticeable reduction of the amount of polymorphic Form II was found in both samples. Our results suggest the possibility of reducing the amount of SA Form II by thermal treatment inducing an irreversible solid-state transition to yield the thermodynamically more stable polymorphic Form I. To quantify the ratio of polymorphs I and II we have implemented a method that can be used as a routine analysis step in the manufacturing process of SA.
Collapse
|
|
4 |
|
24
|
Ji J, Li Z. Thermally generated Au-Ag nanostructures with tunable localized surface plasmon resonance as SERS activity substrates. Heliyon 2023; 9:e17749. [PMID: 37449172 PMCID: PMC10336595 DOI: 10.1016/j.heliyon.2023.e17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Various Au-Ag bimetallic alloy nanostructures were obtained as sensitive surface-enhanced Raman scattering (SERS) substrates by changing the thermal annealing sequence. The atomic force microscopy (AFM) and scanning electron microscopy (SEM) results confirm that Au/Ag bimetallic clusters and Ag-Au core-shell like structures can be designed by thermal annealing. The absorption spectra showed that the localized surface plasmon resonance (LSPR) frequency of the annealed Au/Ag bimetallic alloy structure could effectively shift from the near ultraviolet to the visible region. At the same time, the Au/Ag bimetallic alloy films modified by thermal annealing have shown satisfactory performance as SERS substrates. Raman enhancement mechanism of Au-Ag bimetallic alloy films is verified by finite-difference time-domain (FDTD) simulation results.
Collapse
|
research-article |
2 |
|
25
|
Thethwayo C, Mtshali C, Khumalo Z, Segola K, Nsengiyumva S, Mongwaketsi N, Ndlangamandla C, Biyela P. Analysis of structural stability of Ar ion-implanted Pd/Zr/Pd/Ti/Pd multilayer stack in hydrogen annealing environment. Heliyon 2024; 10:e35830. [PMID: 39224249 PMCID: PMC11367274 DOI: 10.1016/j.heliyon.2024.e35830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The influence of 150 keV argon ions at fluences in the range of 1 × 1012-1 × 1016 ions/cm2 on the stability of the multilayer stack Pd/Zr/Pd/Ti/Pd thin films system, deposited on Ti and Ti6Al4V substrates, under thermal annealing in an H2 environment was investigated. For samples deposited on Ti substrate, RBS revealed structural instability that increases with fluence. This is evidenced by a decrease in the intensity of layers accompanied by increased consumption of the Pd layers. This effect led to the initial individual layers becoming one compound layer and the formation of a new Ti-O-Pd layer, indicating a complete intermixing of layers at 1 × 1016 ions/cm2. However, for the samples deposited on Ti6Al4V substrate, the Pd layers could still be identified and resolved, indicating an incomplete intermixing of layers. XRD revealed the structural transformation of layers via an intermixing process resulting in the formation of two new phases, TiH2 and ZrH2, classified as face-centered tetragonal (FCT) crystal structures. ERDA confirmed the presence of hydrides in the system indicating the absorption of H into the system to a maximum H amount of ∼5.2 at.%, at higher fluence, for the same multilayer stack deposited on both substrates.
Collapse
|
research-article |
1 |
|