1
|
Müller L, Di Benedetto S, Pawelec G. The Immune System and Its Dysregulation with Aging. Subcell Biochem 2019; 91:21-43. [PMID: 30888648 DOI: 10.1007/978-981-13-3681-2_2] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging leads to numerous changes that affect all physiological systems of the body including the immune system, causing greater susceptibility to infectious disease and contributing to the cardiovascular, metabolic, autoimmune, and neurodegenerative diseases of aging. The immune system is itself also influenced by age-associated changes occurring in such physiological systems as the endocrine, nervous, digestive, cardio-vascular and muscle-skeletal systems. This chapter describes the multidimensional effects of aging on the most important components of the immune system. It considers the age-related changes in immune cells and molecules of innate and adaptive immunity and consequent impairments in their ability to communicate with each other and with their aged environment. The contribution of age-related dysregulation of hematopoiesis, required for continuous replenishment of immune cells throughout life, is discussed in this context, as is the developmentally-programmed phenomenon of thymic involution that limits the output of naïve T cells and markedly contributes to differences between younger and older people in the distribution of peripheral blood T-cell types. How all these changes may contribute to low-grade inflammation, sometimes dubbed "inflammaging", is considered. Due to findings implicating elevated inflammatory immuno-mediators in age-associated chronic autoimmune and neurodegenerative processes, evidence for their possible contribution to neuroinflammation is reviewed.
Collapse
|
Review |
6 |
146 |
2
|
Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. Development 2014; 141:1627-37. [PMID: 24715454 PMCID: PMC3978836 DOI: 10.1242/dev.103614] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thymic involution is central to the decline in immune system function that occurs with age. By regenerating the thymus, it may therefore be possible to improve the ability of the aged immune system to respond to novel antigens. Recently, diminished expression of the thymic epithelial cell (TEC)-specific transcription factor Forkhead box N1 (FOXN1) has been implicated as a component of the mechanism regulating age-related involution. The effects of upregulating FOXN1 function in the aged thymus are, however, unknown. Here, we show that forced, TEC-specific upregulation of FOXN1 in the fully involuted thymus of aged mice results in robust thymus regeneration characterized by increased thymopoiesis and increased naive T cell output. We demonstrate that the regenerated organ closely resembles the juvenile thymus in terms of architecture and gene expression profile, and further show that this FOXN1-mediated regeneration stems from an enlarged TEC compartment, rebuilt from progenitor TECs. Collectively, our data establish that upregulation of a single transcription factor can substantially reverse age-related thymic involution, identifying FOXN1 as a specific target for improving thymus function and, thus, immune competence in patients. More widely, they demonstrate that organ regeneration in an aged mammal can be directed by manipulation of a single transcription factor, providing a provocative paradigm that may be of broad impact for regenerative biology.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
137 |
3
|
Yanes RE, Gustafson CE, Weyand CM, Goronzy JJ. Lymphocyte generation and population homeostasis throughout life. Semin Hematol 2016; 54:33-38. [PMID: 28088985 DOI: 10.1053/j.seminhematol.2016.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/13/2016] [Indexed: 11/11/2022]
Abstract
Immune aging is a multi-faceted process that manifests as reduced competence to fight infections and malignant cells, as well as diminished tissue repair, unprovoked inflammation, and increased autoreactivity. The aging adaptive immune system, with its high complexity in functional cell subpopulations and diversity of B- and T-cell receptors, has to cope with the challenge of maintaining homeostasis while responding to exogenous stimuli and compensating for reduced generative capacity. With thymic involution, naïve T cells begin to function as quasi-stem cells and maintain the compartment through peripheral homeostatic proliferation that shapes the T-cell repertoire through peripheral selection and the activation of differentiation pathways. Similarly, reduced generation of early B-cell progenitors alters the composition of the peripheral B-cell compartment with the emergence of a unique, auto-inflammatory B-cell subset, termed age-associated B cells (ABCs). These changes in T- and B-cell composition and function are core manifestations of immune aging.
Collapse
|
Review |
9 |
65 |
4
|
Moro-García MA, Alonso-Arias R, López-Larrea C. Molecular mechanisms involved in the aging of the T-cell immune response. Curr Genomics 2013; 13:589-602. [PMID: 23730199 PMCID: PMC3492799 DOI: 10.2174/138920212803759749] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/24/2022] Open
Abstract
T-lymphocytes play a central role in the effector and regulatory mechanisms of the adaptive immune response. Upon exiting the thymus they begin to undergo a series of phenotypic and functional changes that continue throughout the lifetime and being most pronounced in the elderly. The reason postulated for this is that the dynamic processes of repeated interaction with cognate antigens lead to multiple division cycles involving a high degree of cell differentiation, senescence, restriction of the T-cell receptor (TCR) repertoire, and cell cycle arrest. This cell cycle arrest is associated with the loss of telomere sequences from the ends of chromosomes. Telomere length is reduced at each cell cycle, and critically short telomeres recruit components of the DNA repair machinery and trigger replicative senescence or apoptosis. Repetitively stimulated T-cells become refractory to telomerase induction, suffer telomere erosion and enter replicative senescence. The latter is characterized by the accumulation of highly differentiated T-cells with new acquired functional capabilities, which can be caused by aberrant expression of genes normally suppressed by epigenetic mechanisms in CD4+ or CD8+ T-cells. Age-dependent demethylation and overexpression of genes normally suppressed by DNA methylation have been demonstrated in senescent subsets of T-lymphocytes. Thus, T-cells, principally CD4+CD28null T-cells, aberrantly express genes, including those of the KIR gene family and cytotoxic proteins such as perforin, and overexpress CD70, IFN-γ, LFA-1 and others. In summary, owing to a lifetime of exposure to and proliferation against a variety of pathogens, highly differentiated T-cells suffer molecular modifications that alter their cellular homeostasis mechanisms.
Collapse
|
Journal Article |
12 |
63 |
5
|
Müller L, Pawelec G. As we age: Does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev 2015; 23:116-23. [PMID: 25676139 DOI: 10.1016/j.arr.2015.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/22/2022]
Abstract
The vertebrate adaptive immune system is remarkable for its possession of a very broad range of antigen receptors imbuing the system with exquisite specificity, in addition to the phagocytic and inflammatory cells of the innate system shared with invertebrates. This system requires strict control both at the level of the generation the cells carrying these receptors and at the level of their activation and effector function mediation in order to avoid autoimmunity and mitigate immune pathology. Thus, quality control checkpoints are built into the system at multiple nodes in the response, relying on clonal selection and regulatory networks to maximize pathogen-directed effects and minimize collateral tissue damage. However, these checkpoints are compromised with age, resulting in poorer immune control manifesting as tissue-damaging autoimmune and inflammatory phenomena which can cause widespread systemic disease, paradoxically compounding the problems associated with increased susceptibility to infectious disease and possibly cancer in the elderly. Better understanding the reasons for slippage of immune control will pave the way for developing rational strategies for interventions to maintain appropriate immunity while reducing immunopathology.
Collapse
|
Review |
10 |
36 |
6
|
Barbouti A, Evangelou K, Pateras IS, Papoudou-Bai A, Patereli A, Stefanaki K, Rontogianni D, Muñoz-Espín D, Kanavaros P, Gorgoulis VG. In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mech Ageing Dev 2019; 177:88-90. [PMID: 29490231 DOI: 10.1016/j.mad.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/02/2023]
Abstract
Cellular senescence, an age-related process in response to damage and stress, also occurs during normal development and adult life. The thymus is a central lymphoepithelial organ of the immune system that exhibits age-related changes termed thymic involution. Since the mechanisms regulating thymic involution are still not well elucidated, we questioned whether cellular senescence is implicated in this process. We demonstrate, for the first time in situ, that cellular senescence occurs during human thymic involution using SenTraGor™, a novel chemical compound that is applicable in archival tissue material, providing thus further insights in thymus histophysiology.
Collapse
|
|
6 |
33 |
7
|
Hamazaki Y. Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: Models and mechanisms for TEC development and maintenance. Eur J Immunol 2015; 45:2985-93. [PMID: 26362014 DOI: 10.1002/eji.201545844] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
Abstract
The thymus is the primary lymphoid organ for generating self-restricted and self-tolerant functional T cells. Its two distinct anatomical regions, the cortex and the medulla, are involved in positive and negative selection, respectively. Thymic epithelial cells (TECs) constitute the framework of this tissue and function as major stromal components. Extensive studies for more than a decade have revealed how TECs are generated during organogenesis; progenitors specific for medullary TECs (mTECs) and cortical TECs (cTECs) as well as bipotent progenitors for both lineages have been identified, and the signaling pathways required for the development and maturation of mTECs have been elucidated. However, little is known about the initial commitment of mTECs and cTECs during ontogeny, and how regeneration of both lineages is sustained in the postnatal/adult thymus. Recently, stem cell activities in TECs have been demonstrated, and TEC progenitors have been identified in the postnatal thymus. In this review, recent advances in studying the development and maintenance of TECs are summarized, and the possible mechanisms of thymic regeneration and involution are discussed.
Collapse
|
Review |
10 |
31 |
8
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
|
Review |
8 |
30 |
9
|
van Nieuwenhuijze A, Dooley J, Humblet-Baron S, Sreenivasan J, Koenders M, Schlenner SM, Linterman M, Liston A. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci 2017; 74:2095-2106. [PMID: 28124096 PMCID: PMC11107729 DOI: 10.1007/s00018-017-2456-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 02/03/2023]
Abstract
MicroRNA (miR) are short non-coding RNA sequences of 19-24 nucleotides that regulate gene expression by binding to mRNA target sequences. The miR-29 family of miR (miR-29a, b-1, b-2 and c) is a key player in T-cell differentiation and effector function, with deficiency causing thymic involution and a more inflammatory T-cell profile. However, the relative roles of different miR-29 family members in these processes have not been dissected. We studied the immunological role of the individual members of the miR-29 family using mice deficient for miR-29a/b-1 or miR-29b-2/c in homeostasis and during collagen-induced arthritis. We found a definitive hierarchy of immunological function, with the strong phenotype of miR-29a-deficiency in thymic involution and T-cell activation being reduced or absent in miR-29c-deficient mice. Strikingly, despite elevating the Th1 and Th17 responses, loss of miR-29a conferred near-complete protection from collagen-induced arthritis (CIA), with profound defects in B-cell proliferation and antibody production. Our results identify the hierarchical structure of the miR-29 family in T-cell biology, and identify miR-29a in B cells as a potential therapeutic target in arthritis.
Collapse
|
research-article |
8 |
24 |
10
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
|
Review |
2 |
9 |
11
|
Kato A, Takaori-Kondo A, Minato N, Hamazaki Y. CXCR3 high CD8 + T cells with naïve phenotype and high capacity for IFN-γ production are generated during homeostatic T-cell proliferation. Eur J Immunol 2018; 48:1663-1678. [PMID: 30058200 DOI: 10.1002/eji.201747431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Naïve phenotype (NP) T cells spontaneously initiate homeostatic proliferation (HP) as T-cell output is reduced because of physiologic thymic involution with age. However, the effects of sustained HP on overall immune function are poorly understood. We demonstrated that the NP CD8+ T cell population in adult thymectomized mice showing accelerated HP has an increased capacity for TCR-mediated interferon-γ and tumor necrosis factor α production, which is attributed to an increase in CXCR3+ cells in the NP CD8+ T cell population. The CXCR3+ NP CD8+ T cells developed during persistent HP with a slow cell division rate, but rarely during robust antigen-driven proliferation with a fast cell division rate. In ontogeny, the proportions of CXCR3+ cells in the NP CD8+ T cell population showed a biphasic profile, which was high at the newborn and aged stages. Upon transfer, CXCR3+ NP CD8+ T cells, but not CXCR3- NP CD8+ T cells, potently enhanced Th17-mediated inflammatory tissue reactions in vivo. Furthermore, CXCR3high NP CD8+ T cells with similar features were also detected at variable levels in healthy human blood. These results suggest that CXCR3+ NP CD8+ T cells generated during physiological HP significantly impact overall immunity at the immunologically vulnerable neonatal and aged stages.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
9 |
12
|
Ullewar MP, Umathe SN. A possible role of endogenous central corticotrophin releasing factor in lipopolysaccharide induced thymic involution and cell apoptosis: effect of peripheral injection of corticotrophin releasing factor. J Neuroimmunol 2015; 280:58-65. [PMID: 25773157 DOI: 10.1016/j.jneuroim.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
The aim of the study was to investigate the role of endogenous peripheral and central corticotrophin-releasing factor (CRF) following lipopolysaccharide (LPS) challenge on thymic involution and apoptosis. Administration of LPS (100 μg/mouse, ip) led to thymic involution, to a decrease of CD4+CD8+ thymocyte subset, and to fragmentation of thymic DNA. Pretreatment of LPS challenged mice with intracerebroventricular α-helical CRF (a CRF antagonist) attenuated the effect of LPS however, intraventricular administered α-helical CRF failed to affect LPS response on thymus. Moreover, the effects of LPS on thymus, examined on 1, 7 and 14 days were wholly abrogated by prior administration of intraventricular CRF (10 μg/animal). The plasma corticosterone levels were found to be decreased with single dose of peripheral CRF in LPS challenged mice. These findings indicate that central endogenous CRF involved in LPS induced thymic atrophy. However, peripheral CRF offers protective effect on LPS induced thymic involution and cell apoptosis.
Collapse
|
Journal Article |
10 |
8 |
13
|
Li B, Li W, Liu W, Xing J, Wu Y, Ma Y, Xu D, Li Y. Comprehensive analysis of lncRNAs, miRNAs and mRNAs related to thymic development and involution in goose. Genomics 2020; 113:1176-1188. [PMID: 33276006 DOI: 10.1016/j.ygeno.2020.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Thymic involution is a sign of immunosenescence, but little is known about it in goose. miRNAs and lncRNAs are critical factors regulating organ growth and development. In this study, we comprehensively analyzed the profiles of lncRNAs, miRNAs and mRNAs during the development and involution of the thymus in Magang goose. The results showed that 2436 genes, 16 miRNAs and 417 lncRNAs were differentially co-expressed between the developmental (20-embryo age, 3-day post-hatch and 3-month age) and degenerative (6-month age) stages. The functional analysis showed that these differentially expressed genes were significantly enriched in cell proliferation, cell adhesion, apoptotic signaling pathway, and Notch signaling pathway. In addition, we established a gene-gene network through the STRING database and identified 50 key genes. Finally, we constructed a miRNA-mRNA network followed by a lncRNA-miRNA-mRNA network. These results suggest that lncRNAs and miRNAs may be involved in the regulation of thymic development and involution in goose.
Collapse
|
Journal Article |
5 |
6 |
14
|
de Boer RJ, Tesselaar K, Borghans JAM. Better safe than sorry: Naive T-cell dynamics in healthy ageing. Semin Immunol 2023; 70:101839. [PMID: 37716048 DOI: 10.1016/j.smim.2023.101839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
It is well-known that the functioning of the immune system gradually deteriorates with age, and we are increasingly confronted with its consequences as the life expectancy of the human population increases. Changes in the T-cell pool are among the most prominent features of the changing immune system during healthy ageing, and changes in the naive T-cell pool in particular are generally held responsible for its gradual deterioration. These changes in the naive T-cell pool are thought to be due to involution of the thymus. It is commonly believed that the gradual loss of thymic output induces compensatory mechanisms to maintain the number of naive T cells at a relatively constant level, and induces a loss of diversity in the T-cell repertoire. Here we review the studies that support or challenge this widely-held view of immune ageing and discuss the implications for vaccination strategies.
Collapse
|
Review |
2 |
4 |
15
|
Tan J, Wang Y, Wang S, Wu S, Yuan Z, Zhu X. Label-free quantitative proteomics identifies transforming growth factor β1 (TGF-β1) as an inhibitor of adipogenic transformation in OP9-DL1 cells and primary thymic stromal cells. Cell Biosci 2019; 9:48. [PMID: 31249661 PMCID: PMC6570845 DOI: 10.1186/s13578-019-0311-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/08/2019] [Indexed: 11/21/2022] Open
Abstract
Background Adipocyte accumulation is a predominant feature of age-related thymic involution, but the mechanisms responsible for thymic adipogenesis remain to be elucidated. The aim of this study was to identify key regulators in thymic adipogenesis. We used rosiglitazone, a potent peroxisome proliferator-activated receptor γ (PPARγ) agonist, to induce adipogenic differentiation of OP9-DL1 cells, and investigated the differentially expressed proteins during adipogenic differentiation by using label-free quantitative proteomics. Furthermore, the effects of transforming growth factor β1 (TGF-β1) on rosiglitazone-induced adipogenic differentiation of OP9-DL1 cells as well as the underlying mechanisms were also investigated. Results Proteomic analysis identified 139 proteins differed significantly in rosiglitazone-treated cells compared with dimethyl sulphoxide (DMSO)-treated cells. Rosiglitazone-induced adipogenic differentiation was inhibited by TGF-β1 treatment in OP9-DL1 cells and primary thymic stromal cells. Real-time PCR analysis showed significant increases in PPARγ and fatty acid binding protein 4 mRNA levels in rosiglitazone-treated cells, which were inhibited by TGF-β1 treatment. TGF-β1 down-regulated PPARγ expression at both mRNA and protein levels in OP9-DL1 cells. Chromatin immunoprecipitation analysis demonstrated that TGF-β1 enhanced the binding of Smad2/3 and histone deacetylase 1, but reduced the binding of H3K14ac to the promoter of PPARγ gene. TGF-β1 partially reversed the inhibitory effects of rosiglitazone on the expression of Axin2 and β-catenin protein levels. TGF-β1 inhibited rosiglitazone-induced adipogenic transformation in OP9-DL1 cells by down-regulation of PPARγ and activation of the canonical Wnt/β-catenin signaling pathway. Conclusion Taken together, activation of TGF-β pathway may serve as a useful strategy to prevent thymic adiposity in age-related thymic involution. Electronic supplementary material The online version of this article (10.1186/s13578-019-0311-1) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
6 |
4 |
16
|
Holder A, Jones G, Soutter F, Palmer DB, Aspinall R, Catchpole B. Polymorphisms in the canine IL7R 3'UTR are associated with thymic output in Labrador retriever dogs and influence post-transcriptional regulation by microRNA 185. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:244-251. [PMID: 29247721 DOI: 10.1016/j.dci.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-7 (IL-7) and its receptor (IL-7R) are essential for T cell development in the thymus, and changes in the IL-7/IL-7R pathway have been implicated in age-associated thymic involution which results in a reduction of naïve T cell output. The aim of this study was to investigate the relationship between IL7 and IL7R genetic variation and thymic output in dogs. No single nucleotide polymorphisms (SNPs) were identified in the canine IL7 gene, but a number were present in the canine IL7R gene. Polymorphisms in the IL7R exon 8 and 3'UTR were found to be associated with signal joint T cell receptor excision circle (sj-TREC) values (a biomarker of thymic output) in young and geriatric Labrador retrievers. Additionally, one of the SNPs in the IL7R 3'UTR (SNP 14 c.1371 + 446 A > C) was found to cause a change in the seed-binding site for microRNA 185 which, a luciferase reporter assay demonstrated, caused changes in post-transcriptional regulation, and therefore might be capable of influencing IL-7R expression. The research findings suggest a genetic link between IL7R genotype and thymic output in dogs, which might impact on immune function as these animals age and provide further evidence of the involvement of IL-7/IL-7R pathway in age-associated thymic involution.
Collapse
|
|
7 |
3 |
17
|
Flomenbaum MA, Warner RC. Morphologic Markers of Acute and Chronic Stress in Child Abuse. Am J Clin Pathol 2022; 157:823-835. [PMID: 34919642 PMCID: PMC9171574 DOI: 10.1093/ajcp/aqab204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES To elucidate pathologic markers of acute and chronic stress found but rarely reported in chronic child abuse. METHODS Autopsies of 3 cases of fatal child abuse with well-documented chronic maltreatment are reported, with an emphasis on the nontraumatic findings of acute and chronic stress. RESULTS Besides the overwhelming physical injuries, all 3 children and 1 additional case obtained for consultation had telogen effluvium, a form of alopecia well known to be associated with stress in adults and some children but never reported in chronic abuse. All 3 had the microscopic findings of markedly involuted thymus, a well-known marker of physiologic stress in children but only occasionally referred to in child abuse. All 3 also had microscopic findings of myocardial necrosis associated with supraphysiologic levels of catecholamine, a well-documented finding associated with stress but rarely reported in fatalities associated with child abuse. Two of the 3 children also had Anitschkow-like nuclear changes in cardiac tissue, markers associated with prior, nonischemic myocardial pathologies that may be associated with prior episodes of acute stress. CONCLUSIONS Pathologists are urged to explore these markers as supportive evidence in their own investigations of possible child abuse fatalities, especially when associated with stress.
Collapse
|
research-article |
3 |
2 |
18
|
Abe S, Hasegawa I, Vogel H, Heinemann A, Suzuki K, Püschel K. Evaluation of thymic volume by postmortem computed tomography. Leg Med (Tokyo) 2015; 17:251-4. [PMID: 25769907 DOI: 10.1016/j.legalmed.2015.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/16/2022]
Abstract
The thymus is exceedingly sensitive to stress and undergoes abrupt involution as a result of exposure to strong stress in early childhood. Therefore, thymic involution is often utilized to assess the presence of a stressful environment, such as an environment involving child abuse, in forensic medicine. In recent years, computed tomography (CT) has been commonly used in the daily practice of forensic medicine. We have focused on the thymic volume in postmortem CT images to evaluate the presence of a stressful antemortem environment. We calculated the thymus volume from postmortem CT images of children under six years old and demonstrated that the volume showed a positive correlation with the real weight obtained from an autopsy. The evaluation of thymic volume by CT may make it possible for us to identify child maltreatment. The most useful feature of this application of CT is to be able to demonstrate thymic involution less invasively in a surviving victim.
Collapse
|
|
10 |
2 |
19
|
Arsenović-Ranin N, Perišic M, Bufan B, Stojić-Vukanić Z, Pilipović I, Kosec D, Leposavić G. Ovarian hormone withdrawal in prepubertal developmental stage does not prevent thymic involution in rats. Exp Biol Med (Maywood) 2013; 238:641-57. [PMID: 23918876 DOI: 10.1177/1535370213489475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study was undertaken to assess the effects of ovarian hormone withdrawal in prepubertal age on thymopoiesis in 2- (young) and 11-month-old (middle-aged) rats. In ovariectomized (Ox) rats, irrespective of age, thymic weight and cellularity were greater than in age-matched controls, but the values of both parameters exhibited the age-related decline. In addition, although thymopoietic efficiency was increased in both groups of Ox rats when compared with age-matched controls, thymopoiesis exhibited the age-related decline mirrored in the lower numbers of both CD4+ and CD8+ recent thymic emigrants in peripheral blood. This reflected the prethymic changes affecting bone marrow progenitor generation/entry and the thymic alterations encompassing the impaired progenitor progression through early pre-T-cell receptor developmental stages (defined by CD45RC/CD2 expression) and, possibly, a more pronounced decrease in the proliferation of the most mature thymocytes. Apart from the changes at thymocyte level, in Ox rats the age-related alterations in thymic stroma (substantiated in a prominent loss of thymic epithelial cells) were registered. Ovariectomy-induced changes in thymic lymphoid and epithelial component, most probably, influenced each other leading to the increase in thymic expression of interleukin-6 and interleukin-7 mRNAs along with time after ovariectomy. Collectively, the study showed that the withdrawal of ovarian hormones in prepubertal age increases the efficiency of thymopoiesis in young adult rats, but does not prevent decline in thymopoiesis occurring with age.
Collapse
|
|
12 |
2 |
20
|
Stressors increase leptin receptor-expressing thymic epithelial cells in the infant/child thymus. Int J Legal Med 2018; 132:1665-1670. [PMID: 29460108 DOI: 10.1007/s00414-018-1793-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/09/2018] [Indexed: 01/30/2023]
Abstract
The thymus, the organ that is the most sensitive to stress, presents acute involution as a result of exposure to strong stress in childhood. Thymic involution is thus often considered evidence of child abuse/neglect in forensic autopsies. A portion of the thymic epithelial cells express leptin receptor, and leptin showed a thymo-protective function against stress-induced thymic involution in an animal model. Leptin receptor-expressing thymic epithelial cells (LR-TECs) may play a key role in the thymic remodeling provoked by a stressful environment. Here, we sought to clarify the changes of histopathological findings and human LR-TECs in stressful environment. We examined human thymus specimens obtained from 40 forensic autopsy cases (26 male, 14 female; age 21 to 3221 days). We divided the cases into stressor-positive (SP, n = 29) and stressor-negative (SN, n = 11) groups. Cases were classified according to the histological classification of thymic involution and investigated by leptin receptor immunostaining. The results revealed that (1) the SP group showed obvious histological thymic involution (p < 0.01) and (2) the LR-TECs/TECs ratio in the cortex was markedly and significantly increased in the SP group compared to the SN group (p < 0.01). The increase in the cortical LR-TECs/TECs ratio in the SP group may be part of the stress response mechanism in the human thymus. We thus speculate that the quantification of LR-TECs in the thymic cortex is a valuable stress marker for forensic autopsy cases.
Collapse
|
Journal Article |
7 |
1 |
21
|
Shen H, Yin C, Gao YN, Pei XY, Sun XY, Ge Q, Wang W, Zhang Y. Recirculating Th2 cells induce severe thymic dysfunction via IL-4/STAT6 signaling pathway. Biochem Biophys Res Commun 2018; 501:320-327. [PMID: 29738764 DOI: 10.1016/j.bbrc.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023]
Abstract
Thymic involution happened early in life, but a certain ratio of activated CD4+ T cells will persistently recirculate into the thymus from the periphery and it have been suggested to be able to inhibit the development of embryonic thymocytes. Our present study was aimed to elucidate the specific mechanism how activated CD4+ T cells could influence upon developing thymocytes by using fetal thymic organ culture (FTOC) and kidney capsule transplantation. Our results demonstrated that Th2 cells were found to play a fundamental role in the inhibition of embryonic thymocyte development since a very low concentration of Th2 cells could obviously reduce the total number of thymocytes. And this effect was not tenable in other Th cell type. Notably, IL-4, the major cytokine secreted by Th2 cells, was suggested the key factor playing the inhibition role. In addition to reduced cell population, the proportion of double positive (DP) T cells was also heavily decreased. Furthermore, we demonstrated that it was the downstream effector signal transducer and activator of transcription 6 (STAT6) of IL-4 partially manipulate this inhibition. Together, these findings reveal a novel influence of Th2 cells re-entering the thymus on thymic involution.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
1 |
22
|
Aw D, Palmer DB. The origin and implication of thymic involution. Aging Dis 2011; 2:437-443. [PMID: 22396892 PMCID: PMC3295077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 05/31/2023] Open
Abstract
Age-related regression of the thymus is associated with a decline in naïve T cell output which is thought to contribute to the reduction in T cell diversity in older individuals that is partially responsible for an increase in susceptibility and severity of infections, cancers and autoimmune diseases. Thymic involution is one of the most dramatic and ubiquitous changes in the ageing immune system, but the precise regulators remain anonymous. However, a picture is emerging, implicating extrinsic and intrinsic factors that may contribute towards age-associated thymic involution. In this review we assess the role of the thymic microenvironment as a possible target of thymic involution, question whether thymocyte development in the aged thymus is functional and explore why the thymus involutes.
Collapse
|
review-article |
14 |
|
23
|
Zhou X, Liang W, Hong L, Gong S, Liu Z, Li W, Cao N, Tian Y, Xu D, Li B. Transcriptome analysis reveals the alleviating effect of Polysaccharide of Atractylodes macrocephala Koidz on thymic involution in Magang geese. Poult Sci 2025; 104:105155. [PMID: 40245540 PMCID: PMC12032336 DOI: 10.1016/j.psj.2025.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Thymic involution is one of the important causes of decreased immunity in the body. Noncoding RNAs (miRNAs and lncRNAs) play crucial roles in regulating organ growth and development. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) is widely acknowledged for its anti-oxidant, anti-aging, and immune-enhancing effects. However, its potential application in preventing the age-related thymic involution of Magang geese has not been previously reported. In this study, 54 4-month-old Magang geese were randomly divided into 3 groups, the thymus and serum of 18 geese were collected aseptically after 3 days of prefeeding period, and the remaining geese were randomly divided into control and PAMK groups (3 replicates per group and 6 Magang geese per replicate). Geese in the control group were fed a basal diet, and geese in the PAMK group were fed a basal diet supplemented with 400 mg/kg PAMK. The thymus and serum were collected 1 month later. The results of thymus index measurement showed that PAMK could alleviate thymus index. Furthermore, compared with the M5-Control group, HE staining showed that PAMK made the proportion of thymus medulla increased, and the boundary between cortex and medulla was clearer. Antioxidant function and cytokine content detection showed that, compared with the M5-Control group, PAMK increased T-AOC and GSH-Px levels in thymus, increased T-AOC level and SOD activity in serum, decreased MDA content in thymus and serum, and decreased IL-1β, IL-6 and TNF-α levels. To further explore the mechanism, 3 samples from the control and PAMK groups were selected for RNA-Seq. Through transcriptome analysis and prediction, a triple regulatory ceRNA network of 9 mRNAs, 11 miRNAs and 32 lncRNAs associated with alleviating thymic involution was constructed. Moreover, these genes were respectively enriched in the PPAR, Cytokine-cytokine receptor interaction, WNT, Apelin and MAPK signaling pathways. In summary, PAMK may alleviate age-related thymic involution in Magang geese by alleviating the thymus index, increasing the antioxidant level and regulating the cytokine content, potentially via the PPAR, Cytokine-cytokine receptor interaction, WNT, Apelin, and MAPK signaling pathways.
Collapse
|
research-article |
1 |
|
24
|
Li Y, Li B, Liu F, Yang L, Wu Q, Wu Y, Ma Y, Xu D, Li Y. Characterization of circular RNA expression profiles in the age-related thymic involution of Magang goose. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104581. [PMID: 36283574 DOI: 10.1016/j.dci.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The thymus is a vital immune organ, but its function gradually declines with age. Circular RNAs (circRNAs) are related to the development of tissues and organs. In this study, bioinformatics analysis showed that 1329, 755, and 417 circRNAs were differentially expressed between the comparison groups of 6-month age (M6) and 20-embryo age (E20), 3-day post-hatch (P3), and 3-month age (M3) Magang geese, respectively. Among them, 167 circRNAs were differentially co-expressed between thymic development (E20, P3, and M3) and involution (M6). Functional analysis showed significant enrichment of phosphorylation and positive regulation of GTPase activity. Furthermore, pathway analysis has shown that glycerolipid metabolism and the Wnt signaling pathway are critical pathways in the thymic involution process. Finally, we constructed the competitive endogenous RNA (ceRNA) network. The results of this study suggest that circRNAs may be involved in the age-related thymic involution of the Magang goose.
Collapse
|
|
2 |
|