1
|
Woudenberg J, Seidl M, Groenewald J, de Vries M, Stielow J, Thomma B, Crous P. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud Mycol 2015; 82:1-21. [PMID: 26951037 PMCID: PMC4774270 DOI: 10.1016/j.simyco.2015.07.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cosmopolitan fungal genus Alternaria consists of multiple saprophytic and pathogenic species. Based on phylogenetic and morphological studies, the genus is currently divided into 26 sections. Alternaria sect. Alternaria contains most of the small-spored Alternaria species with concatenated conidia, including important plant, human and postharvest pathogens. Species within sect. Alternaria have been mostly described based on morphology and / or host-specificity, yet molecular variation between them is minimal. To investigate whether the described morphospecies within sect. Alternaria are supported by molecular data, whole-genome sequencing of nine Alternaria morphospecies supplemented with transcriptome sequencing of 12 Alternaria morphospecies as well as multi-gene sequencing of 168 Alternaria isolates was performed. The assembled genomes ranged in size from 33.3-35.2 Mb within sect. Alternaria and from 32.0-39.1 Mb for all Alternaria genomes. The number of repetitive sequences differed significantly between the different Alternaria genomes; ranging from 1.4-16.5 %. The repeat content within sect. Alternaria was relatively low with only 1.4-2.7 % of repeats. Whole-genome alignments revealed 96.7-98.2 % genome identity between sect. Alternaria isolates, compared to 85.1-89.3 % genome identity for isolates from other sections to the A. alternata reference genome. Similarly, 1.4-2.8 % and 0.8-1.8 % single nucleotide polymorphisms (SNPs) were observed in genomic and transcriptomic sequences, respectively, between isolates from sect. Alternaria, while the percentage of SNPs found in isolates from different sections compared to the A. alternata reference genome was considerably higher; 8.0-10.3 % and 6.1-8.5 %. The topology of a phylogenetic tree based on the whole-genome and transcriptome reads was congruent with multi-gene phylogenies based on commonly used gene regions. Based on the genome and transcriptome data, a set of core proteins was extracted, and primers were designed on two gene regions with a relatively low degree of conservation within sect. Alternaria (96.8 and 97.3 % conservation). Their potential discriminatory power within sect. Alternaria was tested next to nine commonly used gene regions in sect. Alternaria, namely the SSU, LSU, ITS, gapdh, rpb2, tef1, Alt a 1, endoPG and OPA10-2 gene regions. The phylogenies from the two gene regions with a relatively low conservation, KOG1058 and KOG1077, could not distinguish the described morphospecies within sect. Alternaria more effectively than the phylogenies based on the commonly used gene regions for Alternaria. Based on genome and transcriptome comparisons and molecular phylogenies, Alternaria sect. Alternaria consists of only 11 phylogenetic species and one species complex. Thirty-five morphospecies, which cannot be distinguished based on the multi-gene phylogeny, are synonymised under A. alternata. By providing guidelines for the naming and identification of phylogenetic species in Alternaria sect. Alternaria, this manuscript provides a clear and stable species classification in this section.
Collapse
|
research-article |
10 |
250 |
2
|
Miao R, Luo H, Zhou H, Li G, Bu D, Yang X, Zhao X, Zhang H, Liu S, Zhong Y, Zou Z, Zhao Y, Yu K, He L, Sang X, Zhong S, Huang J, Wu Y, Miksad RA, Robson SC, Jiang C, Zhao Y, Zhao H. Identification of prognostic biomarkers in hepatitis B virus-related hepatocellular carcinoma and stratification by integrative multi-omics analysis. J Hepatol 2014; 61:840-9. [PMID: 24859455 DOI: 10.1016/j.jhep.2014.05.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS The differentiation of distinct multifocal hepatocellular carcinoma (HCC): multicentric disease vs. intrahepatic metastases, in which the management and prognosis varies substantively, remains problematic. We aim to stratify multifocal HCC and identify novel diagnostic and prognostic biomarkers by performing whole genome and transcriptome sequencing, as part of a multi-omics strategy. METHODS A complete collection of tumour and somatic specimens (intrahepatic HCC lesions, matched non-cancerous liver tissue and blood) were obtained from representative patients with multifocal HCC exhibiting two distinct postsurgical courses. Whole-genome and transcriptome sequencing with genotyping were performed for each tissue specimen to contrast genomic alterations, including hepatitis B virus integrations, somatic mutations, copy number variations, and structural variations. We then constructed a phylogenetic tree to visualise individual tumour evolution and performed functional enrichment analyses on select differentially expressed genes to elucidate biological processes involved in multifocal HCC development. Multi-omics data were integrated with detailed clinicopathological information to identify HCC biomarkers, which were further validated using a large cohort of HCC patients (n = 174). RESULTS The multi-omics profiling and tumour biomarkers could successfully distinguish the two multifocal HCC types, while accurately predicting clonality and aggressiveness. The dual-specificity protein kinase TTK, which is a key mitotic checkpoint regulator with links to p53 signaling, was further shown to be a promising overall prognostic marker for HCC in the large patient cohort. CONCLUSIONS Comprehensive multi-omics characterisation of multifocal tumour evolution may improve clinical decision-making, facilitate personalised medicine, and expedite identification of novel biomarkers and therapeutic targets in HCC.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
98 |
3
|
Sun L, Ling Y, Jiang J, Wang D, Wang J, Li J, Wang X, Wang H. Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq. CHEMOSPHERE 2020; 251:126318. [PMID: 32143076 DOI: 10.1016/j.chemosphere.2020.126318] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 05/23/2023]
Abstract
Exposure of endocrine disrupting chemicals (EDCs) is closely related to induction of obesity, nonalcoholic fatty liver disease (NAFLD) and other lipid-metabolism diseases. Herein, we compared the effects of three EDCs exposure (triclosan, bisphenol A and fluorene-9-bisphenol) on lipid metabolism in zebrfish (Danio rerio). The differential lipid-metabolism disorders were analyzed in depth through RNA-Seq and qRT-PCR, as well as assessment of the relationship between lipid disorder and RNA methylation. Histopathological observation along with varying physiological and biochemical indexes all identified that triclosan and bisphenol A induced liver fat accumulation in acute and chronic exposure. RNA-Seq analysis showed that triclosan exposure disrupted multiple physiological processes including drug metabolism, sucrose metabolism, fat metabolism and bile secretion. The dysregulation of lipid-metabolism related genes indicated that liver steatosis in triclosan and BPA-exposed zebrafish resulted from increased fatty acid synthetase, and uptake and suppression of β-oxidation. Besides, the dysregulation of pro-inflammatory genes and endoplasmic reticulum stress showed that triclosan and bisphenol A exposure not only induced occurrence of NAFLD, but also promoted progression of hepatic inflammation. However, no significant effect on lipid metabolism was observed in fluorene-9-bisphenol-exposed treatment although the larval phenotypic malformation was found compared to the control group. Moreover, EDCs exposure led to decreased global m6A level and abnormal expression of m6A modulators in larvae. Especially, the expression of demethylase FTO (fat mass and obesity-associated protein) was significantly increased in triclosan-exposure treatment. These findings are conductive for us to deeply understand the underlying molecular mechanisms regarding the obesity and NAFLD from EDCs exposure.
Collapse
|
|
5 |
92 |
4
|
Kuo RI, Tseng E, Eory L, Paton IR, Archibald AL, Burt DW. Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. BMC Genomics 2017; 18:323. [PMID: 28438136 PMCID: PMC5404281 DOI: 10.1186/s12864-017-3691-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/06/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5'-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences. RESULTS We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5' cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these, more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events revealed striking similarities between the chicken and human transcriptomes while also providing explanations for previously observed genomic differences. CONCLUSIONS Our results indicate that the chicken transcriptome is similar in complexity compared to human, and provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to rapidly expand our knowledge of transcriptomics.
Collapse
|
research-article |
8 |
79 |
5
|
He L, Zhang A, Pei Y, Chu P, Li Y, Huang R, Liao L, Zhu Z, Wang Y. Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing. BMC Genomics 2017; 18:452. [PMID: 28595568 PMCID: PMC5465539 DOI: 10.1186/s12864-017-3824-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/28/2017] [Indexed: 11/28/2022] Open
Abstract
Background Grass carp is an important farmed fish in China that is affected by serious disease, especially hemorrhagic disease caused by grass carp reovirus (GCRV). The mechanism underlying the hemorrhagic symptoms in infected fish remains to be elucidated. Although GCRV can be divided into three distinct subtypes, differences in the pathogenesis and host immune responses to the different subtypes are still unclear. The aim of this study was to provide a comprehensive insight into the grass carp response to different GCRV subtypes and to elucidate the mechanism underlying the hemorrhagic symptoms. Results Following infection of grass carp, GCRV-I was associated with a long latent period and low mortality (42.5%), while GCRV-II was associated with a short latent period and high mortality (81.4%). The relative copy number of GCRV-I remained consistent or decreased slightly throughout the first 7 days post-infection, whereas a marked increase in GCRV-II high copy number was detected at 5 days post-infection. Transcriptome sequencing revealed 211 differentially expressed genes (DEGs) in Group I (66 up-regulated, 145 down-regulated) and 670 (386 up-regulated, 284 down-regulated) in Group II. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed significant enrichment in the terms or pathways involved in immune responses and correlating with blood or platelets. Most of the DEGs in Group I were also present in Group II, although the expression profiles differed, with most DEGs showing mild changes in Group I, while marked changes were observed in Group II, especially the interferon-related genes. Many of the genes involved in the complement pathway and coagulation cascades were significantly up-regulated at 7 days post-infection in Group II, suggesting activation of these pathways. Conclusion GCRV-I is associated with low virulence and a long latent period prior to the induction of a mild host immune response, whereas GCRV-II is associated with high virulence, a short latent period and stimulates a strong and extensive host immune response. The complement and coagulation pathways are significantly activated at 7 days post-infection, leading to the endothelial cell and blood cell damage that result in hemorrhagic symptoms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3824-1) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
55 |
6
|
Wen X, Wang HG, Zhang MN, Zhang MH, Wang H, Yang XZ. Fecal microbiota transplantation ameliorates experimental colitis via gut microbiota and T-cell modulation. World J Gastroenterol 2021; 27:2834-2849. [PMID: 34135557 PMCID: PMC8173381 DOI: 10.3748/wjg.v27.i21.2834] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence has demonstrated that fecal microbiota transplantation (FMT) has a promising therapeutic effect on mice with experimental colitis and patients with ulcerative colitis (UC), although the mechanism of FMT is unclear.
AIM To evaluate the protective effect of FMT on UC and clarify its potential dependence on the gut microbiota, through association analysis of gut microbiota with colon transcriptome in mice.
METHODS Dextran sodium sulfate (DSS)-induced experimental colitis was established and fecal microbiota was transplanted by gavage. Severity of colon inflammation was measured by body weight, disease activity index, colon length and histological score. Gut microbiota alteration was analyzed through 16S ribosomal ribonucleic acid sequencing. The differentially expressed genes (DEGs) in the colon were obtained by transcriptome sequencing. The activation status of colonic T lymphocytes in the lamina propria was evaluated by flow cytometry.
RESULTS Compared with the DSS group, the weight loss, colon length shortening and inflammation were significantly alleviated in the FMT group. The scores of disease activity index and colon histology decreased obviously after FMT. FMT restored the balance of gut microbiota, especially by upregulating the relative abundance of Lactobacillus and downregulating the relative abundance of Clostridium_sensu_stricto_1 and Turicibacter. In the transcriptomic analysis, 128 DEGs intersected after DSS treatment and FMT. Functional annotation analysis suggested that these DEGs were mainly involved in T-lymphocyte activation. In the DSS group, there was an increase in colonic T helper CD4+ and T cytotoxic CD8+ cells by flow cytometry. FMT selectively downregulated the ratio of colonic CD4+ and CD8+ T cells to maintain intestinal homeostasis. Furthermore, Clostri dium_sensu_stricto_1 was significantly related to inflammation-related genes including REG3G, CCL8 and IDO1.
CONCLUSION FMT ameliorated DSS-induced colitis in mice via regulating the gut microbiota and T-cell modulation.
Collapse
|
Basic Study |
4 |
53 |
7
|
Jain R, Ramaswamy S, Harilal D, Uddin M, Loney T, Nowotny N, Alsuwaidi H, Varghese R, Deesi Z, Alkhajeh A, Khansaheb H, Alsheikh-Ali A, Abou Tayoun A. Host transcriptomic profiling of COVID-19 patients with mild, moderate, and severe clinical outcomes. Comput Struct Biotechnol J 2020; 19:153-160. [PMID: 33425248 PMCID: PMC7773686 DOI: 10.1016/j.csbj.2020.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Characterizing key molecular and cellular pathways involved in COVID-19 is essential for disease prognosis and management. We perform shotgun transcriptome sequencing of human RNA obtained from nasopharyngeal swabs of patients with COVID-19, and identify a molecular signature associated with disease severity. Specifically, we identify globally dysregulated immune related pathways, such as cytokine-cytokine receptor signaling, complement and coagulation cascades, JAK-STAT, and TGF- β signaling pathways in all, though to a higher extent in patients with severe symptoms. The excessive release of cytokines and chemokines such as CCL2, CCL22, CXCL9 and CXCL12 and certain interferons and interleukins related genes like IFIH1, IFI44, IFIT1 and IL10 were significantly higher in patients with severe clinical presentation compared to mild and moderate presentations. Differential gene expression analysis identified a small set of regulatory genes that might act as strong predictors of patient outcome. Our data suggest that rapid transcriptome analysis of nasopharyngeal swabs can be a powerful approach to quantify host molecular response and may provide valuable insights into COVID-19 pathophysiology.
Collapse
|
research-article |
5 |
52 |
8
|
Shun-Mei E, Zeng JM, Yuan H, Lu Y, Cai RX, Chen C. Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb Pathog 2017; 114:57-62. [PMID: 29174700 DOI: 10.1016/j.micpath.2017.11.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023]
Abstract
Bacteria are subjected to sub-minimal inhibitory concentrations (sub-MIC) of antibiotics in various niches where the low-dosage treatment plays a key role in antibiotic resistance selection. However, the mechanism of sub-MIC of antibiotics on the resistant gene transfer is largely unknown. Here, we used Escherichia coli SM10λpir in which the RP4 plasmid was chromosomally-integrated as the donor strain, to investigate the effects of sub-MIC of Ciprofloxacin(Cip) or Levofloxacin(Lev) on conjugational transfer of mobilisable plasmid-pUCP24T from SM10λpir to Pseudomonas aeruginosa. The results showed that the transfer frequency was significantly increased by treating E. coli with sub-MIC of Cip or Lev. To investigate the molecular mechanisms, complete transcriptome sequencing was performed. We found that the sub-MIC of Cip or Lev enhanced the expression of several genes on the RP4 plasmid, which was consistent with the conjugation efficiency. Moreover, the expression of genes associated with SOS response in donor SM10λpir was increased, but had no correlation with conjugation efficiency. These findings suggested that sub-MIC of Cip or Lev may promote conjugational transfer by up-regulating the expression of conjugation associated genes via an SOS-independent mechanism.
Collapse
|
Journal Article |
8 |
50 |
9
|
Pauchet Y, Kirsch R, Giraud S, Vogel H, Heckel DG. Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 49:1-13. [PMID: 24657889 DOI: 10.1016/j.ibmb.2014.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 05/26/2023]
Abstract
Xylophagous insects have evolved to thrive in a highly challenging environment. For example, wood-boring beetles from the family Cerambycidae feed exclusively on woody tissues, and to efficiently access the nutrients present in this sub-optimal environment, they have to cope with the lignocellulose barrier. Whereas microbes of the insect's gut flora were hypothesized to be responsible for the degradation of lignin, the beetle itself depends heavily on the secretion of a range of enzymes, known as plant cell wall degrading enzymes (PCWDEs), to efficiently digest both hemicellulose and cellulose networks. Here we sequenced the larval gut transcriptome of the Mulberry longhorn beetle, Apriona japonica (Cerambycidae, Lamiinae), in order to investigate the arsenal of putative PCWDEs secreted by this species. We combined our transcriptome with all available sequencing data derived from other cerambycid beetles in order to analyze and get insight into the evolutionary history of the corresponding gene families. Finally, we heterologously expressed and functionally characterized the A. japonica PCWDEs we identified from the transcriptome. Together with a range of endo-β-1,4-glucanases, we describe here for the first time the presence in a species of Cerambycidae of (i) a xylanase member of the subfamily 2 of glycoside hydrolase family 5 (GH5 subfamily 2), as well as (ii) an exopolygalacturonase from family GH28. Our analyses greatly contribute to a better understanding of the digestion physiology of this important group of insects, many of which are major pests of forestry worldwide.
Collapse
|
|
11 |
48 |
10
|
Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Funct Integr Genomics 2015; 15:741-52. [PMID: 26233577 DOI: 10.1007/s10142-015-0457-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/11/2015] [Accepted: 07/17/2015] [Indexed: 01/01/2023]
Abstract
Tea plant (Camellia sinensis) is an important natural resource for the global supply of non-alcoholic beverage production. The extension of tea plant cultivation is challenged by biotic and abiotic stresses. Transcription factors (TFs) of the APETALA 2 (AP2)/ethylene-responsive factor (ERF) family are involved in growth and anti-stresses through multifaceted transcriptional regulation in plants. This study comprehensively analyzed AP2/ERF family TFs from C. sinensis on the basis of the transcriptome sequencing data of four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. A total of 89 putative AP2/ERF transcription factors with full-length AP2 domain were identified from C. sinensis and classified into five subfamilies, namely, AP2, dehydration-responsive-element-binding (DREB), ERF, related to ABI3/VP (RAV), and Soloist. All identified CsAP2/ERF genes presented relatively stable expression levels in the four tea plant cultivars. Many groups also showed cultivar specificity. Five CsAP2/ERF genes from each AP2/ERF subfamily (DREB, ERF, AP2, and RAV) were related to temperature stresses; these results indicated that AP2/ERF TFs may play important roles in abnormal temperature stress response in C. sinensis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
45 |
11
|
Beiki H, Liu H, Huang J, Manchanda N, Nonneman D, Smith TPL, Reecy JM, Tuggle CK. Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics 2019; 20:344. [PMID: 31064321 PMCID: PMC6505119 DOI: 10.1186/s12864-019-5709-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Our understanding of the pig transcriptome is limited. RNA transcript diversity among nine tissues was assessed using poly(A) selected single-molecule long-read isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) from a single White cross-bred pig. RESULTS Across tissues, a total of 67,746 unique transcripts were observed, including 60.5% predicted protein-coding, 36.2% long non-coding RNA and 3.3% nonsense-mediated decay transcripts. On average, 90% of the splice junctions were supported by RNA-seq within tissue. A large proportion (80%) represented novel transcripts, mostly produced by known protein-coding genes (70%), while 17% corresponded to novel genes. On average, four transcripts per known gene (tpg) were identified; an increase over current EBI (1.9 tpg) and NCBI (2.9 tpg) annotations and closer to the number reported in human genome (4.2 tpg). Our new pig genome annotation extended more than 6000 known gene borders (5' end extension, 3' end extension, or both) compared to EBI or NCBI annotations. We validated a large proportion of these extensions by independent pig poly(A) selected 3'-RNA-seq data, or human FANTOM5 Cap Analysis of Gene Expression data. Further, we detected 10,465 novel genes (81% non-coding) not reported in current pig genome annotations. More than 80% of these novel genes had transcripts detected in > 1 tissue. In addition, more than 80% of novel intergenic genes with at least one transcript detected in liver tissue had H3K4me3 or H3K36me3 peaks mapping to their promoter and gene body, respectively, in independent liver chromatin immunoprecipitation data. CONCLUSIONS These validated results show significant improvement over current pig genome annotations.
Collapse
|
Journal Article |
6 |
42 |
12
|
Dheilly NM, Adema C, Raftos DA, Gourbal B, Grunau C, Du Pasquier L. No more non-model species: the promise of next generation sequencing for comparative immunology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:56-66. [PMID: 24508980 PMCID: PMC4096995 DOI: 10.1016/j.dci.2014.01.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/21/2023]
Abstract
Next generation sequencing (NGS) allows for the rapid, comprehensive and cost effective analysis of entire genomes and transcriptomes. NGS provides approaches for immune response gene discovery, profiling gene expression over the course of parasitosis, studying mechanisms of diversification of immune receptors and investigating the role of epigenetic mechanisms in regulating immune gene expression and/or diversification. NGS will allow meaningful comparisons to be made between organisms from different taxa in an effort to understand the selection of diverse strategies for host defence under different environmental pathogen pressures. At the same time, it will reveal the shared and unique components of the immunological toolkit and basic functional aspects that are essential for immune defence throughout the living world. In this review, we argue that NGS will revolutionize our understanding of immune responses throughout the animal kingdom because the depth of information it provides will circumvent the need to concentrate on a few "model" species.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
42 |
13
|
Wang M, Bu X, Luan G, Lin L, Wang Y, Jin J, Zhang L, Wang C. Distinct type 2-high inflammation associated molecular signatures of chronic rhinosinusitis with nasal polyps with comorbid asthma. Clin Transl Allergy 2020; 10:26. [PMID: 32637070 PMCID: PMC7333405 DOI: 10.1186/s13601-020-00332-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and comorbid asthma have more severe disease and are difficult to treat. However, the molecular endotypes associated with CRSwNP with comorbid asthma (CRSwNP + AS) are not clear. This study aimed to investigate the characteristics of type 2 inflammation and the molecular signatures associated with CRSwNP + AS. Methods A total of 195 subjects; including 65 CRSwNP + AS patients, 99 CRSwNP-alone patients, and 31 healthy control subjects; were enrolled in the study. Nasal tissues from patients with CRSwNP + AS, CRSwNP-alone and control subjects were assessed for infiltration of inflammatory cells and concentrations of total IgE. Whole-transcriptome sequencing was performed and differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs) and their associated pathways were analyzed. The correlations between type 2 cytokines and local eosinophils, tissue IgE, and transcriptome signatures were evaluated. Results Significantly higher local eosinophil infiltration and higher levels of total IgE were found in nasal tissues from CRSwNP + AS patients than in nasal tissues from CRSwNP-alone patients. Furthermore, atopy and recurrence were significantly more frequent in patients with CRSwNP + AS than in patients with CRSwNP-alone (62.5% vs 28.6% and 66.7% vs 26.9%, respectively). RNA sequencing analysis identified 1988 common DE-mRNAs, and 176 common DE-lncRNAs shared by CRSwNP + AS versus control and CRSwNP-alone versus control. Weighted gene coexpression network analysis (WGCNA) identified LINC01146 as hub lncRNA dysregulated in both subtypes of CRSwNP. Overall, 968 DE-mRNAs and 312 DE-lncRNAs were identified between CRSwNP + AS and CRSwNP-alone. Both pathway enrichment analysis and WGCNA indicated that the phenotypic traits of CRSwNP + AS were mainly associated with higher activities of arachidonic acid metabolism, type 2 cytokines related pathway and fibrinolysis pathway, and lower activity of IL-17 signalling pathway. Furthermore, the expression of type 2 cytokines; IL5 and IL13, was positively correlated with local eosinophil infiltration, tissue IgE level, and the expression of DE-mRNAs that related to arachidonic acid metabolism. Moreover, WGCNA identified HK3-006 as hub lncRNA in yellow module that most positively correlated with phenotypic traits of CRSwNP + AS. Conclusions Patients with CRSwNP + AS have distinct type 2-high inflammation-associated molecular signatures in nasal tissues compared to patients with CRSwNP-alone.
Collapse
|
Journal Article |
5 |
41 |
14
|
Zeng X, Bai L, Wei Z, Yuan H, Wang Y, Xu Q, Tang Y, Nyima T. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genomics 2016; 17:386. [PMID: 27207260 PMCID: PMC4875595 DOI: 10.1186/s12864-016-2685-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/22/2016] [Indexed: 12/05/2022] Open
Abstract
Background Hulless barley, also called naked barley, is an important cereal crop worldwide, serving as a healthy food both for human consumption and animal feed. Nevertheless, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in barley yields. Therefore, study on molecular mechanism of hulless barley drought-tolerance is very important for increasing barley production. To investigate molecular mechanism of barley drought-resistance, this study examined co-regulated mRNAs that show a change in expression pattern under early well water, later water deficit and finally water recovery treatments, and to identify mRNAs specific to water limiting conditions. Results Total of 853 differentially expressed genes (DEGs) were detected and categorized into nine clusters, in which VI and VIII were apparently up-regulated under low relative soil moisture content (RSMC) level. The majority of genes in these two clusters was relevant to abiotic stress responses in abscisic acid (ABA) dependent and independent signaling pathway, including NCED, PYR/PYL/RCAR, SnRK2, ABF, MYB/MYC, AP2/ERF family, LEA and DHN. In contrast, genes within clusters II and IV were generally down-regulated under water stress; cluster IX genes were up-regulated during water recovery response to both low and high RSMC levels. Genes in implicated in tetrapyrrole binding, photosystem and photosynthetic membrane were the most affected in cluster IX. Conclusion Taken together, our findings indicate that the responses of hulless barley to drought stress shows differences in the pathways and genes activated. Furthermore, all these genes displayed different sensitivities to soil water deficit and might be profitable for future drought tolerance improvement in barley and other crops. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2685-3) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
38 |
15
|
Abstract
Inferring HLA types from genome-wide sequencing data has gained growing attention with the development of new cost-efficient sequencing technologies and the increasing need to integrate HLA types with transcriptomic or other genomic information for insights into immune-mediated diseases, vaccination, and cancer immunotherapy. PHLAT is a computational tool designed for high-resolution (4-digit) typing of the major class I and class II HLA genes using RNAseq or exome sequencing data as input. We illustrate here how PHLAT can be installed, configured, and executed. This document also provides guidance for how to read and interpret the output results. Finally, the best practices of using PHLAT are also discussed.
Collapse
|
|
7 |
36 |
16
|
Holst-Jensen A, Spilsberg B, Arulandhu AJ, Kok E, Shi J, Zel J. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Anal Bioanal Chem 2016; 408:4595-614. [PMID: 27100228 PMCID: PMC4909802 DOI: 10.1007/s00216-016-9549-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.
Collapse
|
Review |
9 |
35 |
17
|
Kim YG, Kim M, Kang JH, Kim HJ, Park JW, Lee JM, Suh JY, Kim JY, Lee JH, Lee Y. Transcriptome sequencing of gingival biopsies from chronic periodontitis patients reveals novel gene expression and splicing patterns. Hum Genomics 2016; 10:28. [PMID: 27531006 PMCID: PMC4988046 DOI: 10.1186/s40246-016-0084-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Periodontitis is the most common chronic inflammatory disease caused by complex interaction between the microbial biofilm and host immune responses. In the present study, high-throughput RNA sequencing was utilized to systemically and precisely identify gene expression profiles and alternative splicing. METHODS The pooled RNAs of 10 gingival tissues from both healthy and periodontitis patients were analyzed by deep sequencing followed by computational annotation and quantification of mRNA structures. RESULTS The differential expression analysis designated 400 up-regulated genes in periodontitis tissues especially in the pathways of defense/immunity protein, receptor, protease, and signaling molecules. The top 10 most up-regulated genes were CSF3, MAFA, CR2, GLDC, SAA1, LBP, MME, MMP3, MME-AS1, and SAA4. The 62 down-regulated genes in periodontitis were mainly cytoskeletal and structural proteins. The top 10 most down-regulated genes were SERPINA12, MT4, H19, KRT2, DSC1, PSORS1C2, KRT27, LCE3C, AQ5, and LCE6A. The differential alternative splicing analysis revealed unique transcription variants in periodontitis tissues. The EDB exon was predominantly included in FN1, while exon 2 was mostly skipped in BCL2A1. CONCLUSIONS These findings using RNA sequencing provide novel insights into the pathogenesis mechanism of periodontitis in terms of gene expression and alternative splicing.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
35 |
18
|
Xu J, Wang C, Jin E, Gu Y, Li S, Li Q. Identification of differentially expressed genes in longissimus dorsi muscle between Wei and Yorkshire pigs using RNA sequencing. Genes Genomics 2017; 40:413-421. [PMID: 29892843 DOI: 10.1007/s13258-017-0643-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Intramuscular fat (IMF) content is an important trait closely related to meat quality, which is highly variable among pig breeds from diverse genetic backgrounds. High-throughput sequencing has become a powerful technique for analyzing the whole transcription profiles of organisms. In order to elucidate the molecular mechanism underlying porcine meat quality, we adopted RNA sequencing to detect transcriptome in the longissimus dorsi muscle of Wei pigs (a Chinese indigenous breed) and Yorkshire pigs (a Western lean-type breed) with different IMF content. For the Wei and Yorkshire pig libraries, over 57 and 64 million clean reads were generated by transcriptome sequencing, respectively. A total of 717 differentially expressed genes (DEGs) were identified in our study (false discovery rate < 0.05 and fold change > 2), with 323 up-regulated and 394 down-regulated genes in Wei pigs compared with Yorkshire pigs. Gene Ontology analysis showed that DEGs significantly related to skeletal muscle cell differentiation, phospholipid catabolic process, and extracellular matrix structural constituent. Pathway analysis revealed that DEGs were involved in fatty acid metabolism, steroid biosynthesis, glycerophospholipid metabolism, and protein digestion and absorption. Quantitative real time PCR confirmed the differential expression of 11 selected DEGs in both pig breeds. The results provide useful information to investigate the transcriptional profiling in skeletal muscle of different pig breeds with divergent phenotypes, and several DEGs can be taken as functional candidate genes related to lipid metabolism (ACSL1, FABP3, UCP3 and PDK4) and skeletal muscle development (ASB2, MSTN, ANKRD1 and ANKRD2).
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
34 |
19
|
Sang Z, Wang K, Shi J, Liu W, Cheng X, Zhu G, Wang Y, Zhao Y, Qiao Z, Wu A, Tan Z. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer's disease. Eur J Med Chem 2020; 192:112180. [PMID: 32131034 DOI: 10.1016/j.ejmech.2020.112180] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/19/2020] [Accepted: 02/21/2020] [Indexed: 01/09/2023]
Abstract
In this work, we have developed a novel series of multi-target-directed ligands to address low levels of acetylcholine (ACh), oxidative stress, metal ion dysregulation, and the misfolded proteins. Novel apigenin-donepezil derivatives, naringenin-donepezil derivatives, genistein-donepezil derivatives and chalcone-donepezil derivatives have been synthesized, in vitro results showed that TM-4 was a reversible and potent huAChE (IC50 = 0.36 μM) and huBChE (IC50 = 15.3 μM) inhibitor, and showed potent antioxidant activity (ORAC = 1.2 eq). TM-4 could significantly inhibit self-induced Aβ1-42 aggregation (IC50 = 3.7 μM). TM-4 was also an ideal neuroprotectant, potential metal chelation agent, and it could inhibit and disaggregate huAChE-induced and Cu2+-induced Aβ aggregation. Moreover, TM-4 could activate UPS degradation pathway in HT22 cells and induce autophagy on U87 cells to clear abnormal proteins associated with AD. More importantly, TM-4 could cross BBB in vitro assay. In addition, in vivo assay revealed that TM-4 exhibited remarkable dyskinesia recovery rate and response efficiency on AlCl3-induced zebrafish AD model, and TM-4 indicated surprising protective effect on Aβ1-40-induced vascular injury. TM-4 presented precognitive effect on scopolamine-induced memory impairment. And the regulation of multi-targets for TM-4 were further conformed through transcriptome sequencing. More interesting, the blood, urine and feces metabolism in rat and rat/human liver microsome metabolism towards TM-4 were also investigated. Overall, TM-4 is a promising multi-function candidate for the development of drugs to Alzheimer's disease.
Collapse
|
Journal Article |
5 |
34 |
20
|
Qi Z, Zhang Q, Wang Z, Ma T, Zhou J, Holland JW, Gao Q. Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): Immune modulation in response to Aeromonas hydrophila infection. Vet Immunol Immunopathol 2015; 169:85-95. [PMID: 26620078 DOI: 10.1016/j.vetimm.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/17/2022]
Abstract
The endangered Chinese giant salamander (Andrias davidianus) is the largest extant amphibian species. Disease outbreaks represent one of the major factors threatening A. davidianus populations in the wild and the viability of artificial breeding programmes. Development of future immune therapies to eliminate infectious disease in A. davidianus is dependent on a thorough understanding of the immune mechanisms elicited by pathogen encounters. To this end we have undertaken, for the first time in amphibians, differential transcriptome analysis of the giant salamander response to Aeromonas hydrophila, one of the most devastating pathogens affecting amphibian populations. Out of 87,204 non-redundant consensus unigenes 19,216 were annotated, 6834 of which were upregulated and 906 down-regulated following bacterial infection. 2058 unigenes were involved with immune system processes, including 287 differentially expressed unigenes indicative of the impact of bacterial infection on several innate and adaptive immune pathways in the giant salamander. Other pathways not directly associated with immune-related activity were differentially expressed, including developmental, structural, molecular and growth processes. Overall, this work provides valuable insights into the underlying immune mechanisms elicited during bacterial infection in amphibians that may aid in the future development of disease control measures in protecting the Chinese giant salamander. With the unique position of amphibians in the transition of tetrapods from aquatic to terrestrial habitats, our study will also be invaluable towards the further understanding of the evolution of tetrapod immunity.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
34 |
21
|
Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y, He J, Peng Y, Li W. Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer 2022; 21:63. [PMID: 35236349 PMCID: PMC8889743 DOI: 10.1186/s12943-022-01546-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) are differentially expressed between normal and cancerous tissues, contributing to tumor initiation and progression. However, comprehensive landscape of dysregulated circRNAs across cancer types remains unclear. Methods In this study, we conducted Ribo-Zero transcriptome sequencing on tumor tissues and their adjacent normal samples including glioblastoma, esophageal squamous cell carcinoma, lung adenocarcinoma, thyroid cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. CIRCexplorer2 was employed to identify circRNAs and dysregulated circRNAs and genes were determined by DESeq2 package. The expression of hsa_circ_0072309 (circLIFR) was measured by reverse transcription and quantitative real-time PCR, and its effect on cell migration was examined by Transwell and wound healing assays. The role of circLIFR in tumor metastasis was evaluated via mouse models of tail-vein injection and spleen injection for lung and liver metastasis, respectively. Results Distinct circRNA expression signatures were identified among seven types of solid tumors, and the dysregulated circRNAs exhibited cancer-specific expression or shared common expression signatures across cancers. Bioinformatics analyses indicated that aberrant expression of host genes and/or RNA-binding proteins contributed to circRNA dysregulation in cancer. Finally, circLIFR was experimentally validated to be downregulated in six solid tumors and to significantly inhibit cell migration in vitro and tumor metastasis in vivo. Conclusions Our results provide a comprehensive landscape of differentially expressed circRNAs in solid tumors and highlight that circRNAs are extensively involved in cancer pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01546-4.
Collapse
|
|
3 |
33 |
22
|
Cheng J, Li K, Zhu Y, Yang W, Zhou J, Cen K. Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO 2. BIORESOURCE TECHNOLOGY 2017; 228:99-105. [PMID: 28061399 DOI: 10.1016/j.biortech.2016.12.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 05/09/2023]
Abstract
Transcriptome sequencing and annotation was performed on Haematococcus pluvialis mutant red cells induced with high light under 15% CO2 to demonstrate why astaxanthin yield of the mutant was 1.7 times higher than that of a wild strain. It was found that 56% of 1947 differentially expressed genes were upregulated in mutant cells. Most significant differences were found in unigenes related to photosynthesis, carotenoid biosynthesis and fatty acid biosynthesis pathways. The pyruvate kinase increased by 3.5-fold in mutant cells. Thus, more pyruvate, which was beneficial to carotenoids and fatty acid biosynthesis, was generated. Phytoene synthase, zeta-carotene desaturase, lycopene beta-cyclase involved in β-carotene biosynthesis in mutant cells were upregulated by 10.4-, 4.4-, and 5.8-fold, respectively. Beta-carotene 3-hydroxylase catalyzing conversion of β-carotene into astaxanthin was upregulated by 18.4-fold. The fatty acid biosynthesis was promoted because of the upregulation of acetyl-CoA synthetase and acetyl-CoA carboxylase, thus increasing astaxanthin esterification and accumulation in mutant cells.
Collapse
|
|
8 |
32 |
23
|
Zhang L, Li Y, Hu C, Chen Y, Chen Z, Chen ZS, Zhang JY, Fang S. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells. Mol Cancer 2022; 21:103. [PMID: 35459184 PMCID: PMC9027122 DOI: 10.1186/s12943-022-01524-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1/P-gp) is a major cause of cancer chemotherapy failure, but the regulation mechanisms are largely unknown. METHODS Based on single gene knockout, we studied the regulation of CDK6-PI3K axis on ABCB1-mediated MDR in human cancer cells. CRISPR/Cas9 technique was performed in KB-C2 cells to knockout cdk6 or cdk4 gene. Western blot, RT-PCR and transcriptome analysis were performed to investigate target gene deletion and expression of critical signaling factors. The effect of cdk4 or cdk6 deficiency on cell apoptosis and the cell cycle was analyzed using flow cytometry. In vivo studies were performed to study the sensitivity of KB-C2 tumors to doxorubicin, tumor growth and metastasis. RESULTS Deficiency of cdk6 led to remarkable downregulation of ABCB1 expression and reversal of ABCB1-mediated MDR. Transcriptomic analysis revealed that CDK6 knockout regulated a series of signaling factors, among them, PI3K 110α and 110β, KRAS and MAPK10 were downregulated, and FOS-promoting cell autophagy and CXCL1-regulating multiple factors were upregulated. Notably, PI3K 110α/110β deficiency in-return downregulated CDK6 and the CDK6-PI3K axis synergizes in regulating ABCB1 expression, which strengthened the regulation of ABCB1 over single regulation by either CDK6 or PI3K 110α/110β. High frequency of alternative splicing (AS) of premature ABCB1 mRNA induced by CDK6, CDK4 or PI3K 110α/110β level change was confirmed to alter the ABCB1 level, among them 10 common skipped exon (SE) events were found. In vivo experiments demonstrated that loss of cdk6 remarkably increased the sensitivity of KB-C2 tumors to doxorubicin by increasing drug accumulation of the tumors, resulting in remarkable inhibition of tumor growth and metastasis, as well as KB-C2 survival in the nude mice. CONCLUSIONS CDK6-PI3K as a new target signaling axis to reverse ABCB1-mediated MDR is reported for the first time in cancers. Pathways leading to inhibition of cancer cell proliferation were revealed to be accompanied by CDK6 deficiency.
Collapse
|
|
3 |
32 |
24
|
Yu C, Zhao X, Qi G, Bai Z, Wang Y, Wang S, Ma Y, Liu Q, Hu R, Zhou G. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:167. [PMID: 28670341 PMCID: PMC5485579 DOI: 10.1186/s13068-017-0851-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/16/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Duckweed is considered a promising source of energy due to its high starch content and rapid growth rate. Starch accumulation in duckweed involves complex processes that depend on the balanced expression of genes controlled by various environmental and endogenous factors. Previous studies showed that nitrogen starvation induces a global stress response and results in the accumulation of starch in duckweed. However, relatively little is known about the mechanisms underlying the regulation of starch accumulation under conditions of nitrogen starvation. RESULTS In this study, we used next-generation sequencing technology to examine the transcriptome responses of Lemna aequinoctialis 6000 at three stages (0, 3, and 7 days) during nitrogen starvation in the presence of exogenously applied sucrose. Overall, 2522, 628, and 1832 differentially expressed unigenes (DEGs) were discovered for the treated and control samples. Clustering and enrichment analysis of DEGs revealed several biological processes occurring under nitrogen starvation. Genes involved in nitrogen metabolism showed the earliest responses to nitrogen starvation, whereas genes involved in carbohydrate biosynthesis were responded subsequently. The expression of genes encoding nitrate reductase, glutamine synthetase, and glutamate synthase was down-regulated under nitrogen starvation. The expression of unigenes encoding enzymes involved in gluconeogenesis was up-regulated, while the majority of unigenes involved in glycolysis were down-regulated. The metabolite results showed that more ADP-Glc was accumulated and lower levels of UDP-Glc were accumulated under nitrogen starvation, the activity of AGPase was significantly increased while the activity of UGPase was dramatically decreased. These changes in metabolite levels under nitrogen starvation are roughly consistent with the gene expression changes in the transcriptome. CONCLUSIONS Based on these results, it can be concluded that the increase of ADP-glucose and starch contents under nitrogen starvation is a consequence of increased output from the gluconeogenesis and TCA pathways, accompanied with the reduction of lipids and pectin biosynthesis. The results provide novel insights into the underlying mechanisms of starch accumulation during nitrogen starvation, which provide a foundation for the improvement of advanced bioethanol production in duckweed.
Collapse
|
research-article |
8 |
30 |
25
|
Liao J, Wang J, Liu Y, Li J, Duan L. Transcriptome sequencing of lncRNA, miRNA, mRNA and interaction network constructing in coronary heart disease. BMC Med Genomics 2019; 12:124. [PMID: 31443660 PMCID: PMC6708182 DOI: 10.1186/s12920-019-0570-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-coding RNA has been shown to participate in numerous biological and pathological processes and has attracted increasing attention in recent years. Recent studies have demonstrated that long non-coding RNA and micro RNA can interact through various mechanisms to regulate mRNA. Yet the gene-gene interaction has not been investigated in coronary heart disease (CHD). METHODS High throughput sequencing were used to identify differentially expressed (DE) lncRNA, miRNA, and mRNA profiles between CHD and healthy control. Gene Oncology (GO), KEGG enrichment analysis were performed. Gene-gene interaction network were constructed and pivotal genes were screened out. Lentivirus-induced shRNA infection and qRT-PCR were performed to validated the gene-gene interactions. RESULTS A total of 62 lncRNAs, 332 miRNAs and 366 mRNAs were differentially expressed between CHD and healthy control. GO and KEGG analysis show that immune related molecular mechanisms and biological processes play a role in CHD. The gene-gene interaction network were constructed and visualized based on Pearson correlation coefficients and starBase database. 6 miRNAs in the network were significantly correlated to left ventricular ejection fraction, total choleterol and homocysteine. 2 lncRNAs (CTA-384D8.35 and CTB-114C7.4 (refseq entry LOC100128059)), 1 miRNA (miR-4497), and 1 mRNA (NR4A1) were the pivotal genes. Lentivirus-induced shRNA infection and qRT-PCR had validated the pivotal gene-gene interactions. CONCLUSIONS These results have shown the potential of lncRNA, miRNA, and mRNA as clinical biomarkers and in elucidating pathological mechanisms of CHD from a transcriptomic perspective.
Collapse
|
research-article |
6 |
29 |