1
|
Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, Qian X, Wu M, Ji K, Zhao Y, Wang Y, Liu H, Xing X. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med 2016; 5:1425-1439. [PMID: 27388239 DOI: 10.5966/sctm.2015-0367] [Citation(s) in RCA: 434] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
: Excessive scar formation caused by myofibroblast aggregations is of great clinical importance during skin wound healing. Studies have shown that mesenchymal stem cells (MSCs) can promote skin regeneration, but whether MSCs contribute to scar formation remains undefined. We found that umbilical cord-derived MSCs (uMSCs) reduced scar formation and myofibroblast accumulation in a skin-defect mouse model. We found that these functions were mainly dependent on uMSC-derived exosomes (uMSC-Exos) and especially exosomal microRNAs. Through high-throughput RNA sequencing and functional analysis, we demonstrated that a group of uMSC-Exos enriched in specific microRNAs (miR-21, -23a, -125b, and -145) played key roles in suppressing myofibroblast formation by inhibiting the transforming growth factor-β2/SMAD2 pathway. Finally, using the strategy we established to block miRNAs inside the exosomes, we showed that these specific exosomal miRNAs were essential for the myofibroblast-suppressing and anti-scarring functions of uMSCs both in vitro and in vivo. Our study revealed a novel role of exosomal miRNAs in uMSC-mediated therapy, suggesting that the clinical application of uMSC-derived exosomes might represent a strategy to prevent scar formation during wound healing. SIGNIFICANCE Exosomes have been identified as a new type of major paracrine factor released by umbilical cord-derived mesenchymal stem cells (uMSCs). They have been reported to be an important mediator of cell-to-cell communication. However, it is still unclear precisely which molecule or group of molecules carried within MSC-derived exosomes can mediate myofibroblast functions, especially in the process of wound repair. The present study explored the functional roles of uMSC-exosomal microRNAs in the process of myofibroblast formation, which can cause excessive scarring. This is an unreported function of uMSC exosomes. Also, for the first time, the uMSC-exosomal microRNAs were examined by high-throughput sequencing, with a group of specific microRNAs (miR-21, miR-23a, miR-125b, and miR-145) found to play key roles in suppressing myofibroblast formation by inhibiting excess α-smooth muscle actin and collagen deposition associated with activity of the transforming growth factor-β/SMAD2 signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
434 |
2
|
Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis 2016; 1863:298-309. [PMID: 27825850 DOI: 10.1016/j.bbadis.2016.11.006] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/09/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Cardiac myofibroblasts play an important role in myocardial remodeling. Although α-smooth muscle actin (α-SMA) expression is the hallmark of mature myofibroblasts, its role in regulating fibroblast function remains poorly understood. We explore the effects of the matrix environment in modulating cardiac fibroblast phenotype, and we investigate the role of α-SMA in fibroblast function using loss- and gain-of-function approaches. In murine myocardial infarction, infiltration of the infarct border zone with abundant α-SMA-positive myofibroblasts was associated with scar contraction. Isolated cardiac fibroblasts cultured in plates showed high α-SMA expression localized in stress fibers, exhibited activation of focal adhesion kinase (FAK), and synthesized large amounts of extracellular matrix proteins. In contrast, when these cells were cultured in collagen lattices, they exhibited marked reduction of α-SMA expression, negligible FAK activation, attenuated collagen synthesis, and increased transcription of genes associated with matrix metabolism. Transforming Growth Factor-β1-mediated contraction of fibroblast-populated collagen pads was associated with accentuated α-SMA synthesis. In contrast, serum- and basic Fibroblast Growth Factor-induced collagen pad contraction was associated with reduced α-SMA expression. α-SMA siRNA knockdown attenuated contraction of collagen pads populated with serum-stimulated cells. Surprisingly, α-SMA overexpression also reduced collagen pad contraction, suggesting that α-SMA is not sufficient to promote contraction of the matrix. Reduced contraction by α-SMA-overexpressing cells was associated with attenuated proliferative activity, in the absence of any effects on apoptosis. α-SMA may be implicated in contraction and remodeling of the extracellular matrix, but is not sufficient to induce contraction. α-SMA expression may modulate cellular functions, beyond its effects on contractility.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
396 |
3
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018; 101:670-681. [PMID: 29518614 DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) has emerged as a major cause of morbidity and mortality worldwide. Interstitial fibrosis, glomerulosclerosis and inflammation play the central role in the pathogenesis and progression of CKD to end stage renal disease (ESRD). Transforming growth factor-β1 (TGF-β1) is the central mediator of renal fibrosis and numerous studies have focused on inhibition of TGF-β1 and its downstream targets for treatment of kidney disease. However, blockade of TGF-β1 has not been effective in the treatment of CKD patients. This may be, in part due to anti-inflammatory effect of TGF-β1. The Smad signaling system plays a central role in regulation of TGF-β1 and TGF-β/Smad pathway plays a key role in progressive renal injury and inflammation. This review provides an overview of the role of TGF-β/Smad signaling pathway in the pathogenesis of renal fibrosis and inflammation and an effective target of anti-fibrotic therapies. Under pathological conditions, Smad2 and Smad3 expression are upregulated, while Smad7 is downregulated. In addition to TGF-β1, other pathogenic mediators such as angiotensin II and lipopolysaccharide activate Smad signaling through both TGF-β-dependent and independent pathways. Smads also interact with other pathways including nuclear factor kappa B (NF-κB) to regulate renal inflammation and fibrosis. In the context of renal fibrosis and inflammation, Smad3 exerts profibrotic effect, whereas Smad2 and Smad7 play renal protective roles. Smad4 performs its dual functions by transcriptionally promoting Smad3-dependent renal fibrosis but simultaneously suppressing NF-κB-mediated renal inflammation via Smad7-dependent mechanism. Furthermore, TGF-β1 induces Smad3 expression to regulate microRNAs and Smad ubiquitination regulatory factor (Smurf) to exert its pro-fibrotic effect. In conclusion, TGF-β/Smad signaling is an important pathway that mediates renal fibrosis and inflammation. Thus, an effective anti-fibrotic therapy via inhibition of Smad3 and upregulation of Smad7 signaling constitutes an attractive approach for treatment of CKD.
Collapse
|
Review |
7 |
264 |
4
|
Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses. Redox Biol 2014; 2:267-72. [PMID: 24494202 PMCID: PMC3909817 DOI: 10.1016/j.redox.2014.01.012] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/01/2023] Open
Abstract
Uncontrolled fibrosis in organs like heart, kidney, liver and lung is detrimental and may lead to end-stage organ failure. Currently there is no effective treatment for fibrotic disorders. Transforming growth factor (TGF)-β has a fundamental role in orchestrating the process of fibrogenesis; however, interventions directly targeting TGF-β would have undesired systemic side effects due to the multiple physiological functions of TGF-β. Further characterization of the downstream signaling pathway(s) involved in TGF-β-mediated fibrosis may lead to discovery of novel treatment strategies for fibrotic disorders. Accumulating evidence suggests that Nox4 NADPH oxidase may be an important downstream effector in mediating TGF-β-induced fibrosis, while NADPH oxidase-dependent redox signaling may in turn regulate TGF-β/Smad signaling in a feed-forward manner. It is proposed that pharmacological inhibition of the Nox4 function may represent a novel approach in treatment of fibrotic disorders.
Collapse
|
Review |
11 |
213 |
5
|
Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cell Signal 2013; 25:2017-24. [PMID: 23770288 DOI: 10.1016/j.cellsig.2013.06.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-β (TGF-β) is a secreted homodimeric protein that plays an important role in regulating various cellular responses including cell proliferation and differentiation, extracellular matrix production, embryonic development and apoptosis. Disruption of the TGF-β signalling pathway is associated with diverse disease states including cancer, renal and cardiac fibrosis and atherosclerosis. At the cell surface TGF-β complex consists of two type I and two type II transmembrane receptors (TβRI and TβRII respectively) which have serine/threonine kinase activity. Upon TGF-β engagement TβRII phosphorylates TβRI which in turn phosphorylates Smad2/3 on two serine residues at their C-terminus which enables binding to Smad4 to form heteromeric Smad complexes that enter the nucleus to initiate gene transcription including for extracellular matrix proteins. TGF-β signalling is also known to activate other serine/threonine kinase signalling that results in the phosphorylation of the linker region of Smad2. The Smad linker region is defined as the domain which lies between the MH1 and MH2 domains of a Smad protein. Serine/threonine kinases that are known to phosphorylate the Smad linker region include mitogen-activated protein kinases, extracellular-signal regulated kinase, Jun N-terminal kinase and p38 kinase, the tyrosine kinase Src, phosphatidylinositol 3'-kinase, cyclin-dependent kinases, rho-associated protein kinase, calcium calmodulin-dependent kinase and glycogen synthase kinase-3. This review will cover the role of Smad linker region phosphorylation downstream of TGF-β signalling in vascular cells. Key factors including the identification of the kinases that phosphorylate individual Smad residues, the upstream agents that activate these kinases, the cellular location of the phosphorylation event and the importance of the linker region in regulation and expression of genes induced by TGF-β are covered.
Collapse
|
Review |
12 |
210 |
6
|
Ihara S, Hirata Y, Koike K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota. J Gastroenterol 2017; 52:777-787. [PMID: 28534191 DOI: 10.1007/s00535-017-1350-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/07/2017] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease (IBD) is defined as chronic intestinal inflammation, and includes ulcerative colitis and Crohn's disease. Multiple factors are involved in the pathogenesis of IBD, and the condition is characterized by aberrant mucosal immune reactions to intestinal microbes in genetically susceptible hosts. Transforming growth factor-β (TGF-β) is an immune-suppressive cytokine produced by many cell types and activated by integrins. Active TGF-β binds to its receptor and regulates mucosal immune reactions through the TGF-β signaling pathway. Dysregulated TGF-β signaling is observed in the intestines of IBD patients. TGF-β signal impairment in specific cell types, such as T-cells and dendritic cells, results in spontaneous colitis in mouse models. In addition, specific intestinal microbes contribute to immune homeostasis by modulating TGF-β production. In this review, we describe the role of TGF-β in intestinal immunity, focusing on immune cells, epithelium, and intestinal microbes. In addition, we present potential therapeutic strategies for IBD that target TGF-β.
Collapse
|
Review |
8 |
208 |
7
|
Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018; 129:295-307. [PMID: 29288033 DOI: 10.1016/j.addr.2017.12.019] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is the common outcome of many chronic kidney diseases (CKD) independent of the underlying etiology. Despite a host of promising experimental data, currently available strategies only ameliorate or delay the progression of CKD but do not reverse fibrosis. One of the major impediments of translating novel antifibrotic strategies from bench to bedside is due to the intricacies of the drug delivery process. In this review, we briefly describe mechanisms of renal fibrosis and methods of drug transfer into the kidney. Various tools used in gene therapy to administer nucleic acids in vivo are discussed. Furthermore, we review the modes of action of protein- or peptide-based drugs with target-specific antibodies and cytokines incorporated in hydrogels. Additionally, we assess an intriguing new method to deliver drugs specifically to tubular epithelial cells via conjugation with ligands binding to the megalin receptor. Finally, plant-derived compounds with antifibrotic properties are also summarized.
Collapse
|
Review |
7 |
207 |
8
|
Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z. Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects. Stem Cells Transl Med 2016; 5:1447-1460. [PMID: 27400789 PMCID: PMC5070500 DOI: 10.5966/sctm.2015-0311] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Using short-term exposure of embryoid bodies to transforming growth factor-β, the authors directed induced pluripotent stem cells (iPSCs) toward mesenchymal stem cell (MSC) differentiation. Two types of iPSC-derived MSCs were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. Both types differentiated in vitro in response to osteogenic or adipogenic supplements; aiMSCs demonstrated higher osteogenic potential than tiMSCs. Upon orthotopic injection into radial defects, both types regenerated bone and contributed to defect repair. Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration; however, their availability and capability of self-renewal are limited. Recent discoveries of somatic cell reprogramming may be used to overcome these challenges. We hypothesized that induced pluripotent stem cells (iPSCs) that were differentiated into MSCs could be used for bone regeneration. Short-term exposure of embryoid bodies to transforming growth factor-β was used to direct iPSCs toward MSC differentiation. During this process, two types of iPSC-derived MSCs (iMSCs) were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. The transition of iPSCs toward MSCs was documented using MSC marker flow cytometry. Both types of iMSCs differentiated in vitro in response to osteogenic or adipogenic supplements. The results of quantitative assays showed that both cell types retained their multidifferentiation potential, although aiMSCs demonstrated higher osteogenic potential than tiMSCs and bone marrow-derived MSCs (BM-MSCs). Ectopic injections of BMP6-overexpressing tiMSCs produced no or limited bone formation, whereas similar injections of BMP6-overexpressing aiMSCs resulted in substantial bone formation. Upon orthotopic injection into radial defects, all three cell types regenerated bone and contributed to defect repair. In conclusion, MSCs can be derived from iPSCs and exhibit self-renewal without tumorigenic ability. Compared with BM-MSCs, aiMSCs acquire more of a stem cell phenotype, whereas tiMSCs acquire more of a differentiated osteoblast phenotype, which aids bone regeneration but does not allow the cells to induce ectopic bone formation (even when triggered by bone morphogenetic proteins), unless in an orthotopic site of bone fracture. Significance Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration of various skeletal conditions; however, availability of autologous MSCs is very limited. This study demonstrates a new method to differentiate human fibroblast-derived induced pluripotent stem cells (iPSCs) to cells with MSC properties, which we comprehensively characterized including differentiation potential and transcriptomic analysis. We showed that these iPS-derived MSCs are able to regenerate nonunion bone defects in mice more efficiently than bone marrow-derived human MSCs when overexpressing BMP6 using a nonviral transfection method.
Collapse
|
Journal Article |
9 |
105 |
9
|
Sebastian S, Hernández V, Myrelid P, Kariv R, Tsianos E, Toruner M, Marti-Gallostra M, Spinelli A, van der Meulen-de Jong AE, Yuksel ES, Gasche C, Ardizzone S, Danese S. Colorectal cancer in inflammatory bowel disease: results of the 3rd ECCO pathogenesis scientific workshop (I). J Crohns Colitis 2014; 8:5-18. [PMID: 23664897 DOI: 10.1016/j.crohns.2013.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/05/2013] [Indexed: 02/08/2023]
Abstract
Epidemiological studies demonstrate an increased risk of colorectal cancer in patients with inflammatory bowel disease (IBD). A detailed literature review was conducted on epidemiology, risk factors, pathophysiology, chemoprevention and outcomes of colorectal cancer (CRC) in IBD as part of the 3rd ECCO scientific pathogenesis workshop.
Collapse
|
Review |
11 |
99 |
10
|
TGF-β in pancreatic cancer initiation and progression: two sides of the same coin. Cell Biosci 2017; 7:39. [PMID: 28794854 PMCID: PMC5545849 DOI: 10.1186/s13578-017-0168-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is highly lethal malignant tumor with characterised rapid progression, invasiveness and resistance to radiochemotherapy. Transforming growth factor-β (TGF-β) signaling plays a dual role in both pro-tumorigenic and tumor suppressive of pancreatic cancer, depending on tumor stage and microenvironment. TGF-β signaling components alteration are common in pancreatic cancer, and its leading role in tumor formation and metastases has received increased attention. Many therapies have investigated to target TGF-β signaling in the preclinical and clinical setting. In this review, we highlight the dual roles of TGF-β and touch upon the perspectives on therapeutic target of TGF-β signaling in pancreatic cancer.
Collapse
|
Review |
8 |
98 |
11
|
Chen S, Liu S, Ma K, Zhao L, Lin H, Shao Z. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage 2019; 27:1109-1117. [PMID: 31132405 DOI: 10.1016/j.joca.2019.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This paper aims to provide a comprehensive review of the changing role of transforming growth factor-β (TGF-β) signaling in intervertebral disc (IVD) health and disease. METHODS A comprehensive literature search was performed using PubMed terms 'TGF-β' and 'IVD'. RESULTS TGF-β signaling is necessary for the development and growth of IVD, and can play a protective role in the restoration of IVD tissues by stimulating matrix synthesis, inhibiting matrix catabolism, inflammatory response and cell loss. However, excessive activation of TGF-β signaling is detrimental to the IVD, and inhibition of the aberrant TGF-β signaling can delay IVD degeneration. CONCLUSIONS Activation of TGF-β signaling has a promising treatment prospect for IVD degeneration, while excessive activation of TGF-β signaling may contribute to the progression of IVD degeneration. Studies aimed at elucidating the changing role of TGF-β signaling in IVD at different pathophysiological stages and its specific molecular mechanisms are needed, and these studies will contribute to safe and effective TGF-β signaling-based treatments for IVD degeneration.
Collapse
|
Review |
6 |
96 |
12
|
Yu Y, Luo W, Yang ZJ, Chi JR, Li YR, Ding Y, Ge J, Wang X, Cao XC. miR-190 suppresses breast cancer metastasis by regulation of TGF-β-induced epithelial-mesenchymal transition. Mol Cancer 2018; 17:70. [PMID: 29510731 PMCID: PMC5838994 DOI: 10.1186/s12943-018-0818-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 01/23/2023] Open
Abstract
Background Breast cancer is the most common cancer among women worldwide and metastasis is the leading cause of death among patients with breast cancer. The transforming growth factor-β (TGF-β) pathway plays critical roles during breast cancer epithelial–mesenchymal transition (EMT) and metastasis. SMAD2, a positive regulator of TGF-β signaling, promotes breast cancer metastasis through induction of EMT. Methods The expression of miR-190 and SMAD2 in breast cancer tissues, adjacent normal breast tissues and cell lines were determined by RT-qPCR. The protein expression levels and localization were analyzed by western blotting and immunofluorescence. ChIP and dual-luciferase report assays were used to validate the regulation of ZEB1-miR-190-SMAD2 axis. The effect of miR-190 on breast cancer progression was investigated both in vitro and in vivo. Results miR-190 down-regulation is required for TGF-β-induced EMT. miR-190 suppresses breast cancer metastasis both in vitro and in vivo by targeting SMAD2. miR-190 expression is down-regulated and inversely correlates with SMAD2 in breast cancer samples, and its expression level was associated with outcome in patients with breast cancer. Furthermore, miR-190 is transcriptionally regulated by ZEB1. Conclusions Our data uncover the ZEB1-miR-190-SMAD2 axis and provide a mechanism to explain the TGF-β network in breast cancer metastasis. Electronic supplementary material The online version of this article (10.1186/s12943-018-0818-9) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
96 |
13
|
Shrestha N, Chand L, Han MK, Lee SO, Kim CY, Jeong YJ. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol 2016; 93:129-37. [PMID: 27137983 DOI: 10.1016/j.fct.2016.04.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis.
Collapse
|
Journal Article |
9 |
78 |
14
|
Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J Hepatol 2014; 61:98-106. [PMID: 24657401 DOI: 10.1016/j.jhep.2014.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/22/2014] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes the conversion of free cholesterol (FC) to cholesterol ester, which prevents excess accumulation of FC. We recently found that FC accumulation in hepatic stellate cells (HSCs) plays a role in progression of liver fibrosis, but the effect of ACAT1 on liver fibrosis has not been clarified. In this study, we aimed to define the role of ACAT1 in the pathogenesis of liver fibrosis. METHODS ACAT1-deficient and wild-type mice, or Toll-like receptor 4 (TLR4)(-/-)ACAT1(+/+) and TLR4(-/-)ACAT1(-/-) mice were subjected to bile duct ligation (BDL) for 3 weeks or were given carbon tetrachloride (CCl4) for 4 weeks to induce liver fibrosis. RESULTS ACAT1 was the major isozyme in mice and human primary HSCs, and ACAT2 was the major isozyme in mouse primary hepatocytes and Kupffer cells. ACAT1 deficiency significantly exaggerated liver fibrosis in the mouse models of liver fibrosis, without affecting the degree of hepatocellular injury or liver inflammation, including hepatocyte apoptosis or Kupffer cell activation. ACAT1 deficiency significantly increased FC levels in HSCs, augmenting TLR4 protein and downregulating expression of transforming growth factor-β (TGFβ) pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor), leading to sensitization of HSCs to TGFβ activation. Exacerbation of liver fibrosis by ACAT1 deficiency was dependent on FC accumulation-induced enhancement of TLR4 signaling. CONCLUSIONS ACAT1 deficiency exaggerates liver fibrosis mainly through enhanced FC accumulation in HSCs. Regulation of ACAT1 activities in HSCs could be a target for treatment of liver fibrosis.
Collapse
|
|
11 |
75 |
15
|
Chang SH, Yeh YH, Lee JL, Hsu YJ, Kuo CT, Chen WJ. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res Cardiol 2017; 112:58. [PMID: 28871329 DOI: 10.1007/s00395-017-0647-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
70 |
16
|
Hernández-Aquino E, Zarco N, Casas-Grajales S, Ramos-Tovar E, Flores-Beltrán RE, Arauz J, Shibayama M, Favari L, Tsutsumi V, Segovia J, Muriel P. Naringenin prevents experimental liver fibrosis by blocking TGFβ-Smad3 and JNK-Smad3 pathways. World J Gastroenterol 2017; 23:4354-4368. [PMID: 28706418 PMCID: PMC5487499 DOI: 10.3748/wjg.v23.i24.4354] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/22/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the molecular mechanisms involved in the hepatoprotective effects of naringenin (NAR) on carbon tetrachloride (CCl4)-induced liver fibrosis.
METHODS Thirty-two male Wistar rats (120-150 g) were randomly divided into four groups: (1) a control group (n = 8) that received 0.7% carboxy methyl-cellulose (NAR vehicle) 1 mL/daily p.o.; (2) a CCl4 group (n = 8) that received 400 mg of CCl4/kg body weight i.p. 3 times a week for 8 wk; (3) a CCl4 + NAR (n = 8) group that received 400 mg of CCl4/kg body weight i.p. 3 times a week for 8 wk and 100 mg of NAR/kg body weight daily for 8 wk p.o.; and (4) an NAR group (n = 8) that received 100 mg of NAR/kg body weight daily for 8 wk p.o. After the experimental period, animals were sacrificed under ketamine and xylazine anesthesia. Liver damage markers such as alanine aminotransferase (ALT), alkaline phosphatase (AP), γ-glutamyl transpeptidase (γ-GTP), reduced glutathione (GSH), glycogen content, lipid peroxidation (LPO) and collagen content were measured. The enzymatic activity of glutathione peroxidase (GPx) was assessed. Liver histopathology was performed utilizing Masson’s trichrome and hematoxylin-eosin stains. Zymography assays for MMP-9 and MMP-2 were carried out. Hepatic TGF-β, α-SMA, CTGF, Col-I, MMP-13, NF-κB, IL-1, IL-10, Smad7, Smad3, pSmad3 and pJNK proteins were detected via western blot.
RESULTS NAR administration prevented increases in ALT, AP, γ-GTP, and GPx enzymatic activity; depletion of GSH and glycogen; and increases in LPO and collagen produced by chronic CCl4 intoxication (P < 0.05). Liver histopathology showed a decrease in collagen deposition when rats received NAR in addition to CCl4. Although zymography assays showed that CCl4 produced an increase in MMP-9 and MMP-2 gelatinase activity; interestingly, NAR administration was associated with normal MMP-9 and MMP-2 activity (P < 0.05). The anti-inflammatory, antinecrotic and antifibrotic effects of NAR may be attributed to its ability to prevent NF-κB activation and the subsequent production of IL-1 and IL-10 (P < 0.05). NAR completely prevented the increase in TGF-β, α-SMA, CTGF, Col-1, and MMP-13 proteins compared with the CCl4-treated group (P < 0.05). NAR prevented Smad3 phosphorylation in the linker region by JNK since this flavonoid blocked this kinase (P < 0.05).
CONCLUSION NAR prevents CCl4 induced liver inflammation, necrosis and fibrosis, due to its antioxidant capacity as a free radical inhibitor and by inhibiting the NF-κB, TGF-β-Smad3 and JNK-Smad3 pathways.
Collapse
|
Basic Study |
8 |
69 |
17
|
Kao YH, Liou JP, Chung CC, Lien GS, Kuo CC, Chen SA, Chen YJ. Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol 2013; 168:4178-83. [PMID: 23931972 DOI: 10.1016/j.ijcard.2013.07.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs), important epigenetic regulatory enzymes, can reduce cardiac hypertrophy and cardiac fibrosis. However, the mechanisms underlying the antifibrotic activity of HDAC inhibitors remain unclear. The purposes of this study were to evaluate the effects of an HDAC inhibitor on systolic heart failure (HF) and investigate the potential mechanisms. METHODS Echocardiographic, histologic, atrial natriuretic peptide (ANP), and Western blot measurements were performed in HF rats (isoproterenol 100 mg/kg, subcutaneous injection) with and without orally administered (100 mg/kg for 7 consecutive days) MPT0E014 (a novel HDAC inhibitor). Western blot, migration and proliferation assays were carried out on primary isolated cardiac fibroblasts with and without MPT0E014 (0.1 and 1 μM) for 24 h. RESULTS MPT0E014-treated HF rats (n = 6) had better fraction shortening (48 ± 2 vs. 33 ± 4%, p = 0.006) and smaller left ventricular end diastolic diameter (4.6 ± 0.2 vs. 5.6 ± 0.3 mm, p = 0.031) and systolic diameter (2.4 ± 0.2 vs. 3.9 ± 0.3 mm, p = 0.006) than HF (n = 7) rats. MPT0E014-treated HF rats had lower ANP, cardiac fibrosis, and angiotensin II type I receptor (AT1R), transforming growth factor (TGF)-β, and CaMKIIδ protein levels compared to HF rats. MPT0E014 (at 1 μM, but not 0.1 μM) decreased the migration and proliferation of cardiac fibroblasts. MPT0E014 (0.1 and 1 μM) decreased expression of the AT1R and TGF-β. CONCLUSIONS MPT0E014 improved cardiac contractility and attenuated structural remodeling in isoproterenol-induced dilated cardiomyopathy. The direct antifibrotic activity may have contributed to these beneficial effects.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
67 |
18
|
Licini C, Vitale-Brovarone C, Mattioli-Belmonte M. Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev 2019; 49:59-69. [PMID: 31543432 DOI: 10.1016/j.cytogfr.2019.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling.
Collapse
|
Review |
6 |
63 |
19
|
Miao L, Wang Y, Xia H, Yao C, Cai H, Song Y. SPOCK1 is a novel transforming growth factor-β target gene that regulates lung cancer cell epithelial-mesenchymal transition. Biochem Biophys Res Commun 2013; 440:792-7. [PMID: 24134845 DOI: 10.1016/j.bbrc.2013.10.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/06/2023]
Abstract
Lung cancer is the leading cause of cancer related death worldwide and the prognosis is still poor with 5-year survival of approximately 15%. Metastasis is the leading cause of death by cancer. Recent researches have demonstrated that epithelial-to-mesenchymal transition (EMT) plays a key role in the early process of metastasis of cancer cells. Here, we identified that SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 1 (SPOCK1) is a novel transforming growth factor-β1 (TGF-β) target gene that regulates lung cancer cell EMT. TGF-β has been reported as a major inductor of EMT. We observed that the expression of SPOCK1 in lung cancer tumor tissues is significantly higher than matched normal lung tissues. Moreover, the expression of SPOCK1 was also significantly higher in metastasis tumor tissues than non-metastasis tumor tissues. Levels of SPOCK1 mRNA were increased among patients with shorter disease-free survival times, indicating the potential role of SPOCK1 in lung cancer progression and metastasis. Silencing SPOCK1 expression with endoribonuclease-prepared small interfering RNA (esiRNA) in lung cells inhibits lung cancer cell growth, colony formation and invasion in vitro. Interestingly, ectopic expression of SPOCK1 in epithelial lung cancer cells induced EMT with increased expression of the mesenchymal marker Vimentin and decreased expression of epithelial marker E-cadherin. We also found that the expression of SPOCK1 was increased under treatment of TGF-β, indicating that SPOCK1 is a novel downstream target of TGF-β. Taken together, our study showed that SPOCK1 is a novel metastasis related biomarker in lung cancer and may be new diagnostic and therapeutic target for lung cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
59 |
20
|
Decaris ML, Schaub JR, Chen C, Cha J, Lee GG, Rexhepaj M, Ho SS, Rao V, Marlow MM, Kotak P, Budi EH, Hooi L, Wu J, Fridlib M, Martin SP, Huang S, Chen M, Muñoz M, Hom TF, Wolters PJ, Desai TJ, Rock F, Leftheris K, Morgans DJ, Lepist EI, Andre P, Lefebvre EA, Turner SM. Dual inhibition of α vβ 6 and α vβ 1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res 2021; 22:265. [PMID: 34666752 PMCID: PMC8524858 DOI: 10.1186/s12931-021-01863-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022] Open
Abstract
RATIONALE αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. OBJECTIVES We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.
Collapse
|
research-article |
4 |
57 |
21
|
Sutariya B, Saraf M. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:432-443. [PMID: 28111218 DOI: 10.1016/j.jep.2016.12.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/05/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Opuntia elatior Mill are being used traditionally in different disease condition like diabetes, obesity, asthma, inflammatory disorders, and anemia. Betanin, a compound isolated from fruits of Opuntia elatior Mill has potent anti-oxidative and anti-inflammatory activity. Recent study from our lab indicated the protective effect of betanin against high glucose induced rat renal epithelial cell fibrosis and matrix accumulation, major features of diabetic nephropathy (DN). However the molecular mechanism of betanin in DN has not yet been fully elucidated. AIM OF THE STUDY The aim of the present study was to further investigate the anti-fibrotic mechanisms of betanin against streptozotocin (STZ) induced DN. MATERIALS AND METHODS Betanin was isolated from fruits of Opuntia elatior Mill (Cactaceae) and structure was elucidated using spectroscopy (UV, IR, 1H-NMR and mass). STZ was injected intraperitoneally with single dose of 50mg/kg for diabetes induction. In order to develop DN the animals were left in diabetes condition without any treatment during the following 4 weeks. Betanin (25, 50 and 100mg/kg/day) and lisinopril (5mg/kg/day, reference compound) were orally administered for 8 weeks after the induction of DN. Renal function, blood glucose, serum creatinine, blood urea nitrogen (BUN) and antioxidant enzyme activities in the kidney tissue were measured. Kidney tissue samples were used for glomerulosclerosis, tubulointerstitial fibrosis and morphometric studies. The expression of transforming growth factor-beta (TGF-β), type IV collagen, alpha-smooth muscle actin (α-SMA) and E-cadherin in kidney tissue were evaluated using reverse transcription-polymerase chain reaction, and immunohistochemistry. RESULTS Betanin was successfully isolated from fruits of Opuntia elatior Mill (Cactaceae) and purified by column chromatography. The results showed that betanin attenuated diabetic kidney injury by significantly inhibiting proteinuria, blood glucose, serum creatinine and BUN levels and restored antioxidant enzyme activities in kidney tissue. Histological studies exhibited that betanin treatment reduced the glomerular surface area, glomerulosclerosis and tubulointerstitial fibrosis. Furthermore, betanin modulated mRNA and protein expression of TGF-β, type IV collagen, α-SMA and E-cadherin in kidney. CONCLUSIONS The results conclude that betanin can effectively suppress renal fibrosis in DN, and may slow down the progression to end-stage renal disease by regulating TGF-β signal pathway.
Collapse
|
Comparative Study |
8 |
57 |
22
|
Lee HL, Yu B, Deng P, Wang CY, Hong C. Transforming Growth Factor-β-Induced KDM4B Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells 2015; 34:711-9. [PMID: 26485430 DOI: 10.1002/stem.2231] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/21/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023]
Abstract
The high prevalence of cartilage diseases and limited treatment options create a significant biomedical burden. Due to the inability of cartilage to regenerate itself, introducing chondrocyte progenitor cells to the affected site is of significant interest in cartilage regenerative therapies. Tissue engineering approaches using human mesenchymal stem cells (MSCs) are promising due to their chondrogenic potential, but a comprehensive understanding of the mechanisms governing the fate of MSCs is required for precise therapeutic applications in cartilage regeneration. TGF-β is known to induce chondrogenesis by activating SMAD signaling pathway and upregulating chondrogenic genes such as SOX9; however, the epigenetic regulation of TGF-β-mediated chondrogenesis is not understood. In this report, we found that TGF-β dramatically induced the expression of KDM4B in MSCs. When KDM4B was overexpressed, chondrogenic differentiation was significantly enhanced while KDM4B depletion by shRNA led to a significant reduction in chondrogenic potential. Mechanistically, upon TGF-β stimulation, KDM4B was recruited to the SOX9 promoter, removed the silencing H3K9me3 marks, and activated the transcription of SOX9. Furthermore, KDM4B depletion reduced the occupancy of SMAD3 in the SOX9 promoter, suggesting that KDM4B is required for SMAD-dependent coactivation of SOX9. Our results demonstrate the critical role of KDM4B in the epigenetic regulation of TGF-β-mediated chondrogenic differentiation of MSCs. Since histone demethylases are chemically modifiable, KDM4B may be a novel therapeutic target in cartilage regenerative therapy.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
56 |
23
|
Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an in vitro model of lung fibrosis. Matrix Biol Plus 2019; 1:100005. [PMID: 33543004 PMCID: PMC7852317 DOI: 10.1016/j.mbplus.2019.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Lung fibrosis is characterized by excessive deposition of extracellular matrix (ECM), in particular collagens, by fibroblasts in the interstitium. Transforming growth factor-β1 (TGF-β1) alters the expression of many extracellular matrix (ECM) components produced by fibroblasts, but such changes in ECM composition as well as modulation of collagen post-translational modification (PTM) levels have not been comprehensively investigated. Here, we performed mass spectrometry (MS)-based proteomics analyses to assess changes in the ECM deposited by cultured lung fibroblasts from idiopathic pulmonary fibrosis (IPF) patients upon stimulation with transforming growth factor β1 (TGF-β1). In addition to the ECM changes commonly associated with lung fibrosis, MS-based label-free quantification revealed profound effects on enzymes involved in ECM crosslinking and turnover as well as multiple positive and negative feedback mechanisms of TGF-β1 signaling. Notably, the ECM changes observed in this in vitro model correlated significantly with ECM changes observed in patient samples. Because collagens are subject to multiple PTMs with major implications in disease, we implemented a new bioinformatic platform to analyze MS data that allows for the comprehensive mapping and site-specific quantitation of collagen PTMs in crude ECM preparations. These analyses yielded a comprehensive map of prolyl and lysyl hydroxylations as well as lysyl glycosylations for 15 collagen chains. In addition, site-specific PTM analysis revealed novel sites of prolyl-3-hydroxylation and lysyl glycosylation in type I collagen. Interestingly, the results show, for the first time, that TGF-β1 can modulate prolyl-3-hydroxylation and glycosylation in a site-specific manner. Taken together, this proof of concept study not only reveals unanticipated TGF-β1 mediated regulation of collagen PTMs and other ECM components but also lays the foundation for dissecting their key roles in health and disease. The proteomic data has been deposited to the ProteomeXchange Consortium via the MassIVE partner repository with the data set identifier MSV000082958.
Quantitative proteomics of TGF-β-induced changes in ECM composition and collagen PTM in pulmonary fibroblasts TGF-β promotes crosslinking and turnover as well as complex feedback mechanisms that alter fibroblast ECM homeostasis. A novel bioinformatic workflow for MS data analysis enabled global mapping and quantitation of known and novel collagen PTMs Quantitative assessment of prolyl-3-hydroxylation site occupancy and lysine-O-glycosylation microheterogeneity TGF-β1 modulates collagen PTMs in a site-specific manner that may favor collagen accumulation in lung fibrosis
Collapse
Key Words
- 3-HyP, 3-hydroxyproline
- 4-HyP, 4-hydroxyproline
- AGC, automatic gain control
- ANXA11, annexin A11
- BGN, biglycan
- COL1A1, collagen-I alpha 1 chain
- Collagen
- Collagen post-translational modifications
- DCN, decorin
- ECM, extracellular matrix
- Extracellular matrix
- FN1, fibronectin 1
- G-HyK, galactosylhydroxylysine
- GG-HyK, glucosylgalactosylhydroxylysine
- HyK, hydroxylysine
- HyP, hydroxyproline
- ILD, interstitial lung disease
- IPF, idiopathic pulmonary fibrosis
- LH, lysyl hydroxylase
- LOX(L), lysyl oxidase(-like)
- LTBP2, latent-transforming growth factor β -binding protein 2
- Lysyl glycosylation
- Lysyl hydroxylation
- P3H, prolyl-3-hydroxylase
- P4H, prolyl-4-hydroxylase
- PAI1, plasminogen activator inhibitor 1
- PCA, principal component analysis
- PLOD (LH), procollagen-lysine,2-oxoglutarate 5-dioxygenases (lysyl hydroxylases)
- PTM, post-translational modification
- Prolyl hydroxylation
- Pulmonary fibrosis
- SEMA7A, semaphorin 7a
- TGF-β, transforming growth factor β
- TGM2, transglutaminase 1
- Transforming growth factor-β
- VCAN, versican
- Xaa, Xaa position in the Gly-Xaa-Yaa repeat in triple-helical collagen
- Yaa, Yaa position in the Gly-Xaa-Yaa repeat in triple-helical collagen
- α-SMA, α-smooth muscle actin
Collapse
|
Journal Article |
6 |
56 |
24
|
Chen HA, Chen CM, Guan SS, Chiang CK, Wu CT, Liu SH. The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152917. [PMID: 30978648 DOI: 10.1016/j.phymed.2019.152917] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The pathology change of renal tubulointerstitial fibrosis is a critical feature of chronic kidney disease (CKD), regardless of the primary insults. The infiltration of inflammatory cells and the consecutive secretion of profibrotic factors are frequently and conspicuously observed during the development of renal fibrosis. Icariin, an active polyphenol of the Epimedium genus, has been found to alleviate the symptoms of chronic diseases like diabetes, neurodegeneration, and heart and renal diseases. The effect and mechanism of icariin on the prevention of CKD-associated renal fibrosis still needed clarification. PURPOSE The aims of this study were to investigate whether icariin treatment improves the development of CKD-associated renal fibrosis and its possible mechanism. METHODS An experimental unilateral ureteral obstruction (UUO)-induced chronic renal fibrosis mouse model was used. Mice were orally administered with icariin (20 mg/kg/day) for 3 consecutive days before and 14 consecutive days after UUO surgery. RESULTS The pathological changes, collagen deposition, and protein expressions of profibrotic factors (transforming growth factor-β and connective tissue growth factor) and fibrotic markers (α-smooth muscle actin and fibronectin), which were significantly elevated in the kidneys of UUO mice, could be significantly reversed by icariin treatment. Icariin treatment also significantly inhibited the increased Smad2/3 and decreased E-cadherin protein expressions in the kidneys of UUO mice. Icariin treatment prominently mitigated the protein expression of proinflammatory factors like nuclear factor-κB, cyclooxygenase-2, interleukin 1-β and prooxidative enzyme (NADPH oxidase-4), and it increased the protein expression of antioxidative enzymes (superoxide dismutase and catalase). CONCLUSION Icariin treatment protects against CKD-associated renal fibrosis via its antifibrotic and anti-inflammatory properties. Icariin may serve as a therapeutic agent in the prevention of CKD-associated renal fibrosis.
Collapse
|
|
6 |
55 |
25
|
Abstract
Few pharmacotherapies are currently available to treat castration resistant prostate cancer (CRPC), with low impact on patient survival. Transforming growth factor-β (TGF-β) is a multi-functional peptide with opposite roles in prostate tumorigenesis as an inhibitor in normal growth and early stage disease and a promoter in advanced prostate cancer. Dysregulated TGF-β signaling leads to a cascade of events contributing to oncogenesis, including up-regulated proliferation, decreased apoptosis, epithelial-to-mesenchymal transition (EMT) and evasion of immune surveillance. TGF-β signaling pathway presents an appropriate venue for establishing a therapeutic targeting platform in CRPC. Exploitation of TGF-β effectors and their cross talk with the androgen axis pathway will provide new insights into mechanisms of resistance of the current antiandrogen therapeutic strategies and lead to generation of new effective treatment modalities for CRPC. Points of functional convergence of TGF-β with key oncogenic pathways, including mitogen-activated protein kinase (MAPK) and androgen receptor (AR), are discussed as navigated within the EMT landscape in the tumor microenvironment. In this context the emerging anti-TGF-β pharmacotherapies for prostate cancer treatment are considered. Targeting the functional cross-talk between the TGF-β signaling effectors with the androgen axis supports the development of novel therapeutic strategies for treating CRPC with high specificity and efficacy in a personalized-medicine approach.
Collapse
|
Journal Article |
10 |
52 |